
Article

A Projection Method for the Estimation of Error Covariance
Matrices for Variational Data Assimilation in Ocean Modelling

Jose M. Gonzalez-Ondina 1,* , Lewis Sampson 2 and Georgy I. Shapiro 3

����������
�������

Citation: Gonzalez-Ondina, J.M.;

Sampson, L.; Shapiro, G.I. A

Projection Method for the Estimation

of Error Covariance Matrices for

Variational Data Assimilation in

Ocean Modelling. J. Mar. Sci. Eng.

2021, 9, 1461. https://doi.org/

10.3390/jmse9121461

Academic Editor: Mikhail Emelianov

Received: 19 November 2021

Accepted: 14 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 University of Plymouth Enterprise Ltd. (UoPEL), Drake Circus, Plymouth PL4 8AA, UK
2 Met Office, FitzRoy Road, Exeter EX1 3PB, UK; lewis.sampson@metoffice.gov.uk
3 School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;

g.shapiro@plymouth.ac.uk
* Correspondence: jose.ondina@plymouth.ac.uk

Abstract: Data assimilation methods are an invaluable tool for operational ocean models. These
methods are often based on a variational approach and require the knowledge of the spatial
covariances of the background errors (differences between the numerical model and the true values)
and the observation errors (differences between true and measured values). Since the true values are
never known in practice, the error covariance matrices containing values of the covariance functions
at different locations, are estimated approximately. Several methods have been devised to compute
these matrices, one of the most widely used is the one developed by Hollingsworth and Lönnberg
(H-L). This method requires to bin (combine) the data points separated by similar distances, compute
covariances in each bin and then to find a best fit covariance function. While being a helpful tool, the
H-L method has its limitations. We have developed a new mathematical method for computing the
background and observation error covariance functions and therefore the error covariance matrices.
The method uses functional analysis which allows to overcome some shortcomings of the H-L
method, for example, the assumption of statistical isotropy. It also eliminates the intermediate steps
used in the H-L method such as binning the innovations (differences between observations and
the model), and the computation of innovation covariances for each bin, before the best-fit curve
can be found. We show that the new method works in situations where the standard H-L method
experiences difficulties, especially when observations are scarce. It gives a better estimate than the
H-L in a synthetic idealised case where the true covariance function is known. We also demonstrate
that in many cases the new method allows to use the separable convolution mathematical algorithm
to increase the computational speed significantly, up to an order of magnitude. The Projection
Method (PROM) also allows computing 2D and 3D covariance functions in addition to the standard
1D case.

Keywords: data assimilation; variational methods; analysis of innovations; ocean modelling;
operational forecast

1. Introduction

Due to intrinsic inaccuracies in the model equations, numerical schemes and quality of
input data streams, even the best ocean models gradually deviate from reality and can only
be considered an estimate of the true ocean state [1]. The introduction of Data Assimilation
(DA) techniques allowed to reduce the deviation of models from the true state, vastly
improving the accuracy of ocean forecasting [2].

There are a number of DA methods currently in use [1,3]. Many modern operational
Variational Data Assimilation schemes have originated from the method of optimal
interpolation Gandin [4,5], and are based on minimising the so-called cost function, see, e.g.,
Lorenc [6], Waters et al. [7] and Carrassi et al. [1]. The cost function includes a combination
of the model forecasts and the observational data, weighted by the relative correctness
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of each component as represented by their error covariance matrices (ECM). This DA
technique allows to compute a more accurate state called the analysis, which then is used
as an initial condition for a new forecasting cycle.

The cost function used to obtain the analysis vector with the maximum likelihood of
concordance with the truth [2] is given below (see, e.g., [8])

J[δx] = δxTB−1δx + (H(δx)− d)TR−1(H(δx)− d), (1)

δx = xa − xb, d = yo − H
(

xb
)

, (2)

where observational and background data are represented by vectors yo and xb,
respectively. Vector d contains the so-called innovations (differences between observation
values and model values interpolated at the observation location), δx the analysis increment,
and xa the analysis vector. The operator H, referred to as the observation operator, takes
model data into observational space. The matrices B and R are the ECMs for background
and observational data, respectively (see Ide et al. [9], for a description of the notation).

The calculation of the background (or forecast) and observation error covariance
matrices (ECM) is a key component of variational data assimilation systems. The more
precisely they are estimated, the smaller difference there is between the analysis fields
and the true state of the ocean [10]. In practice, the estimation of the ECMs is not an easy
task. Firstly, observations are usually scarce. Even today, when satellite imagery is at one’s
disposal, only some data are available in large quantities and only at the ocean surface.
Data within the water column are limited to places where buoys or drifters exist. Secondly,
the true state of the ocean is never known, so the methods rely on statistics on the available
observations to estimate it. Errors has to be estimated by some proxy, typically either
from innovations or model differences [10]. Thirdly, ECM estimation requires to process
large amounts of data coming from the model and the observations. The computation of
all correlations from a set of N observations requires to carry out O

(
N2) floating point

operations. This is a mammoth task even for modern high-performance computers.
Since there are such computational difficulties with calculating the ECMs,

simplifications have been developed in order to make the process feasible. These include
parametrising the covariance matrices [7] and the assumption of isotropic error correlation
[11,12]. The isotropic assumption means that the direction is ignored when calculating
correlation, and distance becomes the only determining variable for the correlation. A
widely used method for computing the error covariances under assumptions of statistical
isotropy and lack of spatial correlation between observational errors was designed by
Hollingsworth and Lönnberg [13] and is hereafter called the H-L method, which is used in
many operational systems (see, e.g., [1]). Due to the nature observations it is common to
assume that they are spatially uncorrelated [14], and therefore allow R to be a diagonal
ECM. Using this assumption, the H-L method is able to produce a joint estimate for both
the observation and background EMCs.

The H-L method produces the covariance function for each model grid node using
the following steps [13]. First, all possible products of pairs of innovations relevant to
each model grid node, are calculated and binned by their distances. Second, the products
related to a certain bin are averaged (usually using time averaging) to give an approximate
value of covariance. Third, a curve is fitted through the covariance points (not taking into
account the first bin) to produce a covariance function which then is used to calculate the
diagonal element of R related to that grid node, and a row of elements for the B matrix, both
diagonal and non-diagonal. Although the binning step was not considered an essential
part of the H-L method by the authors, it was recommended when the amount of data is
large. In modern practice, the number of innovations can be in the order of millions and,
more importantly, observations are rarely taken at the same locations, therefore, binning
is unavoidable (see, e.g., [15,16]). Despite being widely used, the H-L method has some
weaknesses such as inability to include anisotropy and underperformance in sparsely
observed areas.
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The proposed Projection Method (PROM) follows the general variational approach
based on minimisation of the cost function and aims to improve upon the H-L method.
Instead of calculating the covariances in bins and then fitting a curve to them, PROM
uses exact locations of the observations and fits the covariance curve using all individual
products of innovations. The PROM method does not require the assumption of isotropy
as it always finds the best fitting surface instead of a curve.

Section 2 presents a description of the method and the data used for the numerical
experiments, Section 3 presents the results of numerical experiments using PROM for two
cases from an operational model of the North Indian Sea. One case considers a slightly
idealised situation when the true covariance function is known, and the second relates to
the actual outputs from the North Indian Sea model. Performance of PROM in comparison
to the H-L method is considered in the Section 4. The Section 5 gives a final summary of
the main points presented in the paper.

2. Materials and Methods

We have developed a method to jointly estimate covariance matrices B and R based
on the analysis of innovations. This method is similar in concept to H-L, but it removes the
intermediate step of binning the innovations. As we shall see, removing this step requires
to look at the analysis of innovations and function fitting from a different point of view.
The following subsections describe the PROM method in detail.

2.1. Analysis of Innovations

The core concept of the analysis of innovations is that the model error covariances can
be computed from the innovation covariances:

 = xt − xb, ε = xt − yo, (3)

d = yo − H
(

xb
)
= (xt + ε)− (xt + η) = ε− η, (4)

where η and ε are the background and observation errors, respectively. To calculate the
covariance of the innovations, some assumptions are made. The first assumption is that the
errors are not biased, which simplifies the equation of the covariance for innovations to:

f (r) = d(r0)d(r), (5)

where d(r) = ε(r)− η(r) is a random variable that represents the innovations at r, f (r)
is the spatial covariance of innovations and r is the 2- or 3-dimensional relative position
vector from a grid point assumed to be located at r0. The over-line means ensemble average
but, in practice, the ergodic hypothesis is invoked allowing to replace the ensemble average
with a time average over a period when the process can be considered statistically in a
steady state [17].

By substituting the definition of d into Equation (5) we obtain:

f (r) = (ε(r0)− η(r0))(ε(r)− η(r))

= ε(r0)ε(r)− η(r0)ε(r)− ε(r0)η(r) + η(r0)η(r).
(6)

Assuming that observations and forecast error are uncorrelated, and that for nonzero
separation the observation errors are also uncorrelated, the innovation covariance can be
written as follows:

f (r) =

{
ε(r0)ε(r0) + η(r0)η(r0), for r = r0

η(r0)η(r), for r 6= r0.
(7)

As the number of observations increase the innovations statistics converge in
Equation (5) to a function for forecast error covariance for r 6= r0. At r = r0, f (r) is not
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continuous, because error variances include both forecast and observation
errors [10,13] and for this reason, this point is treated differently in all methods based
on innovations.

2.2. Fitting the Covariance Model to Innovations

The main idea of the PROM method is that the binning step used in H-L method is
unnecessary, except for a “central bin” located at grid point r0. This is to cover the situation
in which the actual observations near r0 are located at slightly different locations, but the
covariance function will be computed at r0. For illustration, let us consider the 2D case
shown in the sketch in Figure 1 on page 4, where the isotropy assumption is not used. The
red/blue dots, located at ∆r = r j − ri, are all the products of pairs of innovations d(ri)d(r j)
for which ri is inside the central bin of the target point r0, defined as all the points at a
small distance Lc from r0. Interestingly, if a surface (e.g., a 2D Gaussian) is fitted to these
products, it will be a good approximation to the true covariance function. In what follows
we will prove why fitting to the products produces a good estimate of the covariance and
we will show how to compute this fit efficiently.

x y

(a)

(b)

(c)

Figure 1. Sketch of the PROM method for a 2D case (i.e., anisotropic). The dots are products of pairs
innovations (where one of the elements of the pair being close to the point where the covariance is
computed) located at position ∆r computed as the vector difference between the locations of the
“far” innovation and the one in the central bin. The model covariance (an anisotropic 2D Gaussian
surface in this case) is fitted to all innovation products. For clarity we have plotted in red colour the
products above the fitted Gaussian surface and in blue those below, representing the fact that the
fitted covariance function tends to be somewhere in the middle. The plots in panels (a,b) represent
profiles of the covariance functions along the X and Y axis to show the anisotropy of the function
and data while the plot in panel (c) shows the full covariance function fitted to all the data. The black
dot represents the variance of the innovations at the centre r0.

From a mathematical point of view, the PROM method defines a subspace of functions
(a parametric model of the covariance) and then finds the function with minimum distance
to the data projected into that subspace. The method also assumes that the background
model and observations are unbiased and the local homogeneity of the covariance, as it is
done for the H-L method. The subspace can be defined by any basis of functions, including
anisotropic ones.
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Let us assume that, for certain physical variable, we have a set of N innovations di,
i = 1, . . . N computed as differences of observations performed at locations ri and times ti
and a background model interpolated at (ri, ti). All innovations are contained in the spatial
domain and time range of interest. The times are assumed to be multiple of some interval:
ti = k∆t (for example, ∆t is equal to one day) for k = 1 . . . T. To simplify the following
derivation, we will define fr to be the covariance function centred at r as (see Equation (7)):

fr(∆r) = d(r, t)d(r + ∆r, t), for r 6= 0, (8)

where r ∈ Ω is any location in the domain, Ω, ∆r is a relative location to r, t is time and
the over-line stands for the time average, which by invoking the ergodic hypothesis we
use in place of the ensemble average. In practice, fr is never computed exactly, instead
it is approximated by a simple model f̃r(∆r, a0, a1, . . . ), where ai are parameters that, in
general, depend on r.

In order to obtain the values of the model parameters ai that better approximate f̃r to
fr , the first step is to define what we mean by “approximate”, that is, a measure of how close
a function is to another. For this we will define a ‖ ‖ that allows to compute a distance
between two functions

∥∥ fr,t − f̃r,t
∥∥.The definition of this norm is the most important aspect

of the method because it determines how faithful the model will be to the true covariance,
and how difficult the computation of the model will be. The next subsection will be devoted
to defining this norm. Once this is done, the fitting parameters ai will be computed using a
norm minimisation approach similar to the least squares method.

2.3. Distance between Functions

The only points were we have information about innovations are the spatial locations
where the observations were made. For this reason we chose the following norm defined
for functions fr ∈ V, where V is the space of all real functions on the domain Ω with origin
at r:

‖ fr‖ ≡

√√√√ N

∑
i=1

[ fr(∆ri)]
2, (9)

where ∆ri = ri − r. This discrete norm takes into account the values of the function at all
locations where the observations were made. It can be thought as a “sampling” norm,
where the values of the function are only picked at certain locations. This type of norm is a
good choice if the locations ri are scattered more or less uniformly in the domain, which is
true in most practical cases.

This norm can be derived from an inner product as the canonical norm for said inner
product: ‖ fr‖ =

√
〈 fr , fr〉, where:

〈 f , g〉 =
N

∑
i=1

f (ri)g(ri). (10)

Assuming that functions are identified if and only if they coincide on all the points ri,
it is trivial to check that the definitions above satisfy the conditions for norms and inner
products for the space of functions V.

However, there is still one difficulty. The covariance functions fr are not known,
not even at points ri, only the innovations d(ri,ti) are. This means that norms and inner
products including fr cannot be computed exactly, they have to be approximated. This will
be described in Section 2.5, meanwhile, we will assume that we can compute any norm or
inner product.

2.4. Finding the Projection

We search for a function f̃r as close as possible to the true fr. In other words, we
search for:
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min
a1,a2,...am

∥∥ f̃r(∆r, a1, a2, . . . am)− fr
∥∥ (11)

Let us assume that all f̃r conform a finite dimensional function subspace Vm ⊂ V, so
we can write:

f̃r(∆r, a1, a2, . . . ) = a1φ1(∆r) + a2φ2(∆r) + . . . + amφm(∆r), (12)

where φ0, φ1, . . . are a basis of Vm, the m-dimensional space of all the Equations f̃r . (11) is
equivalent to:

min
a1,a2,...am

〈
f̃r(∆r, a1, a2, . . . am)− fr , f̃r(∆r, a1, a2, . . . am)− fr

〉
, (13)

which can be computed by solving the system resulting from differentiating the inner
product with respect to each coefficient ai and then equalling to zero. After simplification
this system can be written as:〈

f̃r(∆r, a1, a2, . . . am), φj
〉
=
〈

fr , φj
〉
, ∀j = 1, 2, . . . m, (14)

which is equivalent to finding the projection of fr onto Vm.
For simplicity, in what follows we will consider m = 2, so there are only two basis

functions φ1 and φ2, but the process is exactly the same for the case of more functions.
Substituting f̃r by a1φ1(∆r) + a2φ2(∆r):

〈a1φ1 + a2φ2, φ1〉 = 〈 fr , φ1〉
〈a1φ1 + a2φ2, φ2〉 = 〈 fr , φ2〉.

(15)

Simplifying by using the linearity of the inner product:

a1〈φ1, φ1〉+ a2〈φ2, φ1〉 = 〈 fr , φ1〉
a1〈φ1, φ2〉+ a2〈φ2, φ2〉 = 〈 fr , φ2〉.

(16)

Now, under the assumption that all the inner products in the system of equations
above can be computed, the system can be solved for the coefficients a1 and a2. The
resulting function f̃r will be the one in V2 closest to fr in terms of the discrete norm.

The system of Equation (16) must be solved for all points for which we want to
estimate the covariance. The coefficients a1 and a2 depend on r because the right-hand
side of Equation (16) depends on r. The inner products can be computed very quickly
and efficiently in modern hardware and the system of two linear equations can be solved
using any simple method as it is a very quick operation. Even in more general cases, the
number of unknowns ai is small and the typical system is well-conditioned. Only when
the amount of available data for a particular node is very small, there may be cases where
the system is ill-conditioned. These cases can be detected (for example, by looking at the
number of available data or the condition number of the equation matrix) and removed
from the final results.

Once the projection is found, matrix B can be parametrised using a1 and a2 [18]. Matrix
R can then be computed by subtracting f̃r(0) = a1 + a2 from the variance at r computed
in the central bin (see Equation (7)). This is completely analogous to what is done in the
H-L method.

2.5. Approximating the Inner Product

There is still one difficulty—how to compute the inner products 〈 fr , φ〉. Let us start by
substituting the definition of the inner product and fr :

〈 fr , φ〉 =
N

∑
i=1

fr(∆ri)φ(∆ri) =
N

∑
i=1

d(r, t)d(r + ∆r, t)φ(∆ri). (17)
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This expression is not computable because the innovations are known only at the
points and times of observations, and not at any point d(r, t); however, this expression can
be approximated by using the Central Limit Theorem. This theorem states that we can
substitute each mean in a sum by one random value following the same distribution and
the value of the sum will still converge to the original value. This can be done by assuming
that choosing the particular time when the i-th observation was taken is a random choice.

〈 fr , φ〉 =
N

∑
i=1

d(r, ti)d(ri, ti)φ(∆ri) + O
(

N−1/2
)

. (18)

The value of the innovation d(r, ti) is still not known. By using the hypothesis of local
homogeneity we can approximate it as:

〈 fr , φ〉 =
N

∑
i=1

d0(ti)d(ri, ti)φ(∆ri) + O
(

N−1/2
)

, (19)

for D0(ti) =
1
ni

ni

∑
j=1

d
(

rk(i,j), tk(i,j)

)
,

where ∆ri = ri − r; k(i, j) the indices of the j = 1, ..., ni innovations inside the central
bin at time ti and d

(
rk(i,j), tk(i,j)

)
are these innovations; in other words, those such that∥∥r j − r

∥∥ < Lc, for some distance Lc. This distance Lc is usually chosen as half the size of the
output grid cell. This approximation of the inner product converges fast when the number
of innovations N is large enough. In contrast to the H-L method, which only uses one data
point (the covariance) in each bin, the PROM method considers all the observations (and
hence innovations) as if they were taken at the same time.

2.6. Data

To test the PROM method and perform comparisons with H-L we have used real
innovations computed in an ocean operational model of the North Indian Sea [19]. This
area was chosen because its circulation pattern is complex, as it is its bathymetry, containing
areas of deep and shallow waters. This model uses NEMO v3.6 stable [20] for the dynamic
simulation and NEMOVAR [21] as the DA engine. The computational mesh for NEMO
uses hybrid enveloped sigma coordinate system [22] (see Figure 2 on page 9).

As it was done for the operational model, for this paper we have assumed that the
covariances have seasonal variability, but that they can be considered statistically uniform
during a season for the purpose of computing the error covariances. The innovation data
we used were already preprocessed, as part of the operational system, to remove biases
from observations and model and passed a quality control that removed the erroneous
observations. We chose to use sea surface temperature (SST) because it had the largest
amount of data available.

For some tests we used what we call “idealised” or “synthetic” data. The difference
between “real” and “idealised” cases are explained in the following sections. These
idealised data allow to test the PROM and H-L methods in controlled conditions of data
spatial and time density, but knowing exactly what the true covariance function is. The
way the synthetic innovation data are generated is described in Section 3.1. The “real” case
uses the actual innovations supplied to the operational model for data assimilation.

3. Results

To test the method we have used data as realistic as possible to test the characteristics
of our method. Firstly, we introduce an “idealised case” which uses the real location of real
innovations for a domain in the North Indian Sea. The “idealised” part comes from the fact
that, instead of using actual innovations for which the covariance function is unknown, we
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use a function with known correlation. This allows to compare the skills of both methods
in a well-known scenario.

Secondly, we present a comparison with real temperature innovations. In this case
the covariance is not known a priori, but the quality of the results obtained, combined
with the knowledge obtained from the idealised case, allows to confirm the benefits of the
proposed method.

3.1. Idealised Case

For this case we used the location and time of Sea Surface Temperature (SST) innovation
data for one year’s summer season (JJA) to mimic a seasonal time-average. Instead of the
actual innovation data we associated to these locations synthetic data of known spatial
correlation. This part of the data is not a perfect representation of real innovations, but it
will be a good test of the skill of the methods. If a method does not perform well in this
situation it is not likely to do better in a real situation. Additionally, the performance of the
PROM method relative to the density of data can be analysed.

The synthetic innovation data used follow the expression:

ds(r, t) = at e‖r−r0‖2/2b2
0 + cεr,t, (20)

where r0 is a test point in the domain, b0 a length scale (0.88 km in the tests), c the amplitude
of the random noise (0.5 in the tests) and at and εr,t are random variables with normal
distribution N(0, 1). It is assumed that idealised innovations are not correlated in time. For
these data it is easy to prove that the covariance function at r0 is exactly the Gaussian curve

Ψ(r) = e|r−r0|2/2b2
0 :

ds(r0, t)ds(r, t) = a2
t e|r−r0|2/2b2

0 + atεr0,te‖
r−r0‖2/2b2

0 + atεr,t + c2εr,tεr0,t. (21)

By using the facts that the average is linear, that the random variables are uncorrelated,
and that a2

t = 1 we get:

ds(r0, t)ds(r, t) = e‖r−r0‖2/2b2
0 , for r ∈ Ω− {r0}. (22)

For this exercise we consider only 2D “horizontal” isotropic covariance functions,
which can be understood as a function along a constant z, σ, isopycnal or any other
convenient computational surface. We tested these innovations at ten locations which
cover areas with different characteristics (density of data and presence of land masses),
as shown in Figure 2 on page 9. This type of innovation has only Gaussian covariance
Ψ(r) at r0, so the tests are repeated by making r0 equal to each location in the figure and
constructing a different set of innovation data. The locations considered are a subset of
nodes of a 2D grid of grid size 0.3◦× 0.275◦ (lon× lat) covering the area between longitudes
45◦–74◦ and latitudes 8◦–32◦. This grid was chosen for the simplicity of calculations and is
different from the NEMO grid from which the innovations were computed. The benefit
of using this synthetic innovation data is that the true covariance is perfectly known a
priori, so it is possible to provide accurate measurements of the skills of the method. Since
actual locations and times or real innovations were used, most of the problems associated
to computing the covariance for real data were taken into account.

We used innovation data for three summer months (JJA), replicating an attempt of
computing seasonal covariances. In total, we used nearly five million data points scattered
over the whole domain, covering most of its surface with variable density of data. This
amounts to an average of more than 50,000 data points per day in the domain.

For each location we also tested the sensitivity of having reduced amounts of data
by randomly selecting different percentages of the innovation points. Tests were run
for 100% (all the innovation points included), 75, 50, 20, 10, 5, 2 and 1%, where each
test (or realisation) used different selection of innovation points. Most of the tests where
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performed 30 times, with different random innovations, but the last three of 5, 2 and 1%
were performed 60 times accounting for the larger statistical variability of the results.

Figure 2. Domain of the operational system, showing the locations where the covariance functions
were computed. The background colours show the density of innovations as the mean number of
innovations per day on each grid cell.

In Figure 3 on page 10 we have plotted the results of the Gaussian curve

Ψ(r) = a e−(r−r0)
2/2(88.8)2fitted to one realisation of innovation products using 100% of

the data points. This is a 1D illustration of the actual 2D fitting process, but valid being a
case of isotropic covariance. We have chosen locations B and H (r0 = rB and r0 = rH) as
being representative of how the fitting mechanism works. In the plots, the green dots are
all pairs of products relevant to each location and the continuous black line is the Gaussian
curve fitted to all these products using the PROM method. As it can be seen in Figure 2
on page 9, location B is in a region where there is high density of innovation data, while
location H is in a region of relatively scarce amounts of data. This is mirrored in the density
of innovation products in each plot of Figure 3 on page 10. It is worth noticing that the
fitted line gives good results of the fitting parameter a, even if the green points seem to be
scattered all over the place. For location B, where there is a large amount of data, the green
dots cover densely a region that seems to be between two vaguely defined Gaussian curves,
with the fitted function at an intermediate location. For H, located in an area with more
scarce data, both in time and space, there are regions mostly empty of green points, but the
fitting function still approximates quite well the covariance. The black dot at distance 0 is
the variance of the innovations close to r0 (i.e., in the central bin), which in this idealised
case should tend to 1 + c2 = 1.25, where c is the amplitude of the random noise as given by
Equation (20). In most cases we tested, the black dots are above the value of the Gaussian
curve at r0. The difference between the computed variance and the value of the fitted curve
at r0 is the variance of the observations, which corresponds to the diagonal element of R.

Figure 4 on page 10 shows the errors of the fitting coefficient a (the difference between
it and the true value of 1), for all the realisations for the same points B, H and different
amounts of data. The crosses (+) are the average values of the variance and the lines
represent the standard deviation based on many realisations of randomly generated
innovations. As one would expect, the mean errors are closer to zero when the number
of data points is higher, as it is the variation of these errors in different realisations of the
experiment. When the number of data points is very low, there are cases where the method
is not able to produce a solution for the fitting coefficient and even when it is able, the error
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can be quite high. However, there is a wide range of density of observations where the
PROM method produces consistent results. This suggests that PROM is quite stable to
changes in density of innovations.

Figure 3. Gaussian function Ψ(r) = a e−(r−r0)
2/2(88.8)2 fitted to all pairs of innovation products around points B and H for one

particular realisation and 100% of the data. The green dots are products of innovations plotted against the distance between
them and the black line is the Gaussian fitted to all points using the PROM method. Each plot has a label with the fitting
coefficient a, the theoretical value for this coefficient is 1. The black dots represent the variances at r0. The vertical axis limits
have been chosen to make the figure more clear, about 3% of the green points lie outside of this range and they are not
shown.

Figure 4. Sensitivity of PROM to the density of data. The top of each plot represents the error between the computed
variance and the true value of 1 averaged for many realisations. The lines represent the standard deviation of these errors
around the average. The bottom part of each plot shows how many of the realisations PROM method failed to obtain
a result.

3.2. Real Case

The next set of experiments were designed to test the skill of the PROM method with
real data. This is a more difficult task, since the covariance function is not known and
hence, it is impossible to compute exactly the errors associated to each calculation of the
covariance curve.

However, it is possible to test the validity of results in a different way that allow us
to assess the skill of the method. For calculations we used the same summer season data
from previous section, but in this case we used the actual innovations as computed by the
NEMO operational model of the North Indian Sea. As pointed out before, we are assuming
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ergodicity of time averages and a seasonal uniformity of the statistical properties of the
temperature field. Following standard practices [12], the covariance function is assumed to
be isotropic and that it can be modelled by the sum of two horizontal Gaussian functions
accounting for a small scale (of the order of the Rossby Radius) and a large scale (a fixed,
predetermined length scale) [18]. In other words, the covariance function can be written as:

f̃r0(∆r) = a0 e‖∆r‖2/2[Lr(r0)]
2
+ a1 e‖∆r‖2/2L2

, (23)

where Lr(r0) is the Rossby Radius at r0 (capped from below to 25 km), L is the large
length scale fixed at 444 km and r0 is the location of each node in the grid. The free
parameters a0 and a1 were obtained by the PROM method. This choice of two Gaussian
functions of different length scales is adopted from the literature [18] as it has shown good
correspondence with real background error covariance functions, including the local effects
due to ocean circulation and the regional effects of larger scale.

Figure 5 on page 11 shows the fitting of f̃r0(∆r) to real innovation products at points
B and H. As with the idealised case, there are products of innovation pairs scattered all
over the place (green dots), but the PROM method was able to fit the covariance model to
these data.

To study the sensitivity of PROM to data density, we also run many tests for different
percentages of the total data. For each test, only a percentage of all innovations were
randomly selected (100% meant that all available innovations were used). As for the ideal
case, we repeated the test many times for each percentage, where each test (or realisation)
differs from another only on the percentage of innovations and which innovations were
selected. This contrasts with the idealised case, where the innovations also changed their
values randomly.

Figure 6 on page 12 shows the coefficients a0 and a1 computed using PROM for
different percentages of innovation data for the same two locations B and H. PROM
produces results of the average variance that are stable in a wide range of data densities.
For example, for location B, the estimated variance using all the innovation data was
0.058 ◦C2 and for 25% of the data, 0.063 ◦C2. For location H, the estimated variance for
100% was 0.028 ◦C2 and for 25% of the data, 0.027 ◦C2.

Figure 5. Linear combination of Gaussian functions, Ψ2(r) = a0 e‖r−r0‖2
/2[Lr(r0)]

2
+ a1 e‖r−r0‖2

/2L2 fitted to all pairs of innovation
products around points B and H for 100% of the data. The green dots are products of innovations located at the distance
between them, and the black line is the function fitted to all points using the PROM method. The black dot represents the
variance at r0. The values of a0 and a1 and the Rossby Radius are shown in labels on each plot. The vertical axis limits were
chosen to make the figure more clear, about 3% of the green points lie outside of this range and they are not shown.
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Figure 6. Sensitivity of PROM to the density of data. Each plot represents the computed error variance averaged for many
realisations of randomly selected data points. The number of realisations for which PROM method failed to obtain a result
are the same as in the idealised case (see Figure 4 on page 10).

Figure 9 on page 17 and Figure 10 show the variances and length scale ratios computed
using PROM for 100% of the data. The method was able to produce results everywhere
in the domain, even in the regions where the amount of data is scarce. Further analysis is
given in the Discussion section.

As the true solution for the covariance function is not known, objective estimations
on the quality of the results are obtained by indirect methods. The number of points
where the method is not able to compute the covariance function is one of these objective
measurements. Another test that can be applied to the grid points where is based on the
Cauchy–Schwartz inequality applied to covariances. Let us consider two random variables
α, β, the Cauchy–Schwartz inequality states:

Covar(α, β)2 ≤ Var(α)Var(β). (24)

This expression is always true, in particular, it can be applied to the innovations at
any pair of locations in the domain r1, r2 as Covar(d(r1), d(r2))

2 ≤ Var(d(r1))Var(d(r2)).
In reality, we do not know the covariances and variances exactly, only the approximate
covariance functions f̃r1 , f̃r2 . For these functions, the inequality does not hold in general,
but we can use it as a test. If f̃r1 and f̃r2 do not satisfy the inequality, they cannot be real
covariance functions. One must be careful because many methods of calculating error
covariances (PROM and H-L included) produce inconsistent covariances in the sense that,
in general, for two different points r1, r2, f̃r1(r2 − r1) 6= f̃r2(r1 − r2) (this problem is usually
fixed at a later stage, see, for example, in Weaver and Courtier [23] how covariance matrices
are made symmetric). To avoid this problem we compute the approximate covariance as
the minimum value between the two values provided by fr1 and fr2 :

min
(

f̃r1(r2 − r1), f̃r2(r1 − r2)
)2 ≤ f̃r1(0) f̃r2(0) (25)

For this test, we compared all nodes with the node to its immediate one the east
using Equation (25) and plotted a yellow cross in the location of the nodes that do not
satisfy it. These results can be seen in Figure 11 on page 18, where it can be seen that the
concentration of “uncertain” grid points (i.e., those which do not satisfy the condition) is
higher in regions of lower density of data or near the coast.

4. Discussion

The PROM method shares points in common with the H-L method and for this reason,
most of the discussion consists of comparisons between both methods. For H-L we used a
standard implementation of the method based on the initial description by Hollingsworth
and Lönnberg [13]. Different groups may use different implementations which can differ in
a few technical aspects. We have checked that the implementation of the H-L method used
for comparison in this section reflects standard practices used by the MetOffice (private
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communication). Briefly, our implementation of the H-L method consists of the following
steps. First, all possible products of pairs of innovations relevant to each model grid
node, are calculated and binned by their distances. Second, the products related to a
certain bin are averaged (usually using time averaging) to give an approximate value of
covariance. Third, a curve is fitted through the covariance points (not including the first
bin) to produce a covariance function which then is used to calculate the diagonal element
of R related to that grid node, and a row of elements for the B matrix, both diagonal and
non-diagonal. The central bin around the grid point in question in the H-L has the same
size as in PROM method.

A bin is considered valid if it contains products of innovations coming from, at least,
K different time intervals of length ∆t (one day in our case). Otherwise, it is assumed that
there are not enough data to compute the covariance in an statistically meaningful way
and the bin is disregarded. This is done, instead of just putting a limit on the total amount
of products of innovations per bin, to avoid cases where there are relative large amounts of
data in a bin, but coming from just a few (or even just one) time intervals. In cases like this,
all the innovations in the bin come from few different ocean states and the statistics cannot
be trusted. In this section we present results for K = 5, 10 and 20. Additionally, as we did
in PROM, if the central bin is empty for one time interval, the data for the whole interval
are also disregarded. The results obtained by applying the H-L method are then compared
with our PROM results.

Usually, the covariance matrices are not used directly as computed by methods like
H-L. In practice, a post-processing stage deals with missing values and noise. We will not
discuss these methods as they would be similar for any method, and will focus only on the
raw results.

4.1. Idealised Case

For the idealised case we only considered the results at locations A–J (see Figure 2
on page 9). For the locations with a small number of available data, H-L often failed to
produce results. Sometimes because there were not enough data for the fitting procedure,
other times because the results obtained by H-L for the variance exceeded a prescribed
threshold |variance− 1| > 10. In contrast, PROM produced results much more often,
even in those cases where H-L fails. This is represented in the lower part of each plot in
Figure 7 on page 15, where the blue lines correspond to the percentage of cases when the
H-L method was not able to find a valid value for the variance and the dashed and the
red line does the same for PROM. As it can be seen, the H-L method completely failed to
produce results for locations A, C and H where data density is lower, and only produced
results for high percentage of the data in the rest of the points. On the other hand, PROM
produced results in all points when 100% of the data was included. In most cases, this
happened even for percentages below 10%.

Finally, PROM usually produces better results to H-L. Not only in terms of the value
of the variance averaged among all realisations, but also showing less variation of those
values. Moreover, the method is more stable as the number of available data decreases,
showing good skill in the whole range shown.

The results obtained are summarised in Figure 7 on page 15, where for all the locations
and selected percentages we show the average error (difference between the computed
variance and the true value of 1) and the range of the standard deviation of errors computed
from all realisations.

4.2. Real Case

For the real case we produced results in the whole domain, however, firstly, we will
consider only the results at points A–J to see how they compare. Additionally, we can
use the knowledge obtained from the idealised case to estimate the quality of the results.
In this case, the term “realisation” means the subset of innovations which are selected
randomly from the full data set. For a particular percentage (for example 50%), different
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“realisations” contain 50% data of the full data set, but the set of innovations chosen is
different in each case. The process of selection of innovations used the same random seed
as in the idealised case and, for this reason, the number of cases where both methods failed
is identical to the idealised case (see Figure 7 on page 15) being much more likely that
H-L fails compared to PROM. Figure 8 on page 17 shows the variances obtained for all
the percentages and locations in Figure 2 on page 9 averaged for all realisations. There are
many more cases where PROM is able to produce a result compared to H-L. The variance
results produced for 100% of the data are “similar" or, at least, not entirely dissimilar, for
both methods, being them usually more similar for locations where the density of data
is higher. In general, PROM stays close to its horizontal line (red) for a wider range of
data amount percentages than H-L does to its line (dash blue). In practice this means that
PROM method will produce valid covariance functions much more often than H-L.

Figure 7. Cont.
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Figure 7. Comparison of variance values obtained by H-L and PROM methods. Each plot represents results obtained
from at least 30 numerical experiments realised at each point (see Figure 2 on page 9). The top part of each plot shows
comparisons of differences of the computed variance with respect to the true value of 1 (red × for PROM method, blue +

for H-L). The lines represent the standard deviation of computed values for all realisations of the same experiment with
different random innovations. The bottom part of each plot shows the percentage of cases where each method failed to
produce a value of the variance.

The results for the variance for the entire domain computed using PROM and H-L
are shown in Figure 9 on page 17, where we have included results of H-L for different
minimum number of days required per bin (K = 5, 10, 20).

Even for the rather small value of K = 5, H-L was unable to produce results in the
some parts of the domain, while PROM was able to find a result of the covariance function
for all grid nodes. This limitation of H-L can be mitigated somewhat by increasing the size
of the central bin so there are more innovations and hence more product pairs, however,
there are two things to consider. First, increasing the size of the central bin reduces the
spatial resolution of the method and requires to stretch the condition of local homogeneity
to larger scales; second, the results obtained this way should be compared with PROM
results obtained with the same enlarged central points. In this case, PROM will also have
more data to work with and the covariance results will improve as well.

In this real case, we do not know the true error variances, but by inspecting Figure 9
on page 17 and Figure 10 one can extract some conclusions about the quality of the results
obtained. The modelled error variances and length scales obtained from H-L are slightly
noisier than those obtained using PROM, even in the regions where data are less scarce. In
these areas, the results of H-L and PROM are very similar, which means that when there
are plenty of data, both methods converge to the same results. In the regions with smaller
data density, H-L often fails to produce a result for the covariance.

The plots in Figure 11 on page 18 show that the number of “uncertain” points (those
which do not satisfy Equation (25)) is much smaller for PROM (779) than for H-L (1622).
Not surprisingly, the uncertain points are more common near the coast lines and in the
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regions where the density of innovations is low (see Figure 2 on page 9). Once again,
PROM seems to be able to extract more information from the available data.

The PROM method can also be much faster than H-L. This is possible because PROM
can be written in terms of convolutions of the basis functions φi with the covariance
function. In the case when φi are separable (they can be written as products of functions
depending only on each spatial coordinate) as Gaussian functions are, the convolution
can be computed with reduced computational complexity. This is described in detail in
Appendix A where computational complexity estimates are also given.

Our Python implementation of both methods was optimised using the JIT compilation
library NUMBA [24] to increase the performance of two inner loop functions in the case
of H-L and using the method described in Appendix A for PROM when computing the
maps. The computing time for a typical case of 100% data was 27 s for PROM and 300 s for
H-L. A very sizeable computational time reduction consistent with the time computational
complexities is shown in Appendix A.

Figure 8. Cont.
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Figure 8. Comparison of H-L and PROM methods. Each plot represents results obtained from many numerical experiments
realised at each location (see Figure 2 on page 9) showing comparisons of the computed variance (red × for PROM method,
blue + for H-L). The respective horizontal lines are located at the value of the variance obtained for 100% in each method.

Figure 9. Background model error variances (a0 + a1) computed using both methods. For H-L we
have included results for bin sizes δr = 20 m and different minimum number of days to consider
a bin valid for computing covariances (K = 5, 10, 20). H-L method is very sensitive to K, and only
produces results in most of the domain nodes for K = 5.
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Figure 10. Weights of the length scales of the background model error (a1/(a0+a1)) computed using
both methods. For H-L we used δr = 20 m and a minimum of days per bin, K = 5.

Figure 11. Points that do not satisfy the inequality in Equation (25) for horizontally adjacent valid
grid nodes. In the left plot are the 779 uncertain points found for the PROM method, in the right, the
1622 uncertain points found for H-L with a bin size of 20 km and a minimum number of days per bin
K = 5.

5. Conclusions

We have presented a novel method to compute the error covariance matrices based on
analysis of innovations named Projection Method (PROM). Similarly to the widely used
H-L method [13], PROM uses statistics of innovations, i.e., differences between model
and observations. The main novelty is that PROM does not require spatial binning of
the innovations and all the statistics are performed over the whole available data set.
This means that no innovation value is discarded which allows to obtain better results
by making better use of all the information. It also means that the method is simpler to
implement, especially for anisotropic cases.

To test the new method we first applied it to an idealised case, where the location
and timings of the innovations are real (coming from an operational model of the North
Indian Sea), but the innovation values are substituted by a synthetic field based on random
fluctuations following a known covariance function. Then, PROM was applied to real data
from the same modelling system.

The idealised case demonstrates that the PROM method performs better than H-L
when compared to a known, true covariance function. The results obtained in ten selected
geographical locations and for different amounts of input data are used to test the sensitivity
of each method to the data available. The PROM method is shown to produce reasonable
results even when the H-L method fails due to insufficient amount of data. In areas with
large number of observations both methods produce similar results.

In the case of real data for innovations, the true solution for the covariance function is
not known, so the capabilities of both methods are assessed indirectly. In regions with low
density of observations, the H-L method often fails to produce a valid result, especially
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for some choices of the bin sizes (δr) and minimum number time intervals per bin (K). On
the other hand, PROM always produced a result. The test based on initial description
inequality for covariances shows that the H-L method results fails the test in more than
twice the number of points of grid nodes as compared with PROM.

Finally, we developed a computational optimisation scheme, which is based on the
concept of “separable convolution”, that can be applied to our method but not to H-
L. This optimisation reduces the algorithmic complexity of the method and is able to
reduce computation times greatly. Both methods were implemented in Python, and
PROM computational time is seven or more times shorter than H-L using similar levels of
code optimisation.
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Appendix A. Optimisation of the Algorithm

PROM method is conceptually simpler than the H-L method because binning is not
necessary nor is there the need to compute each bin’s covariances. However, in terms of
computational complexity both methods are equivalent when the trivial implementations
are used. Let us assume for simplicity that we want to compute the covariance functions
for a square mesh of M × M nodes and that, for each node, there are an average of n
innovations inside its central bin, and N other innovations considered to form innovation
pairs. With this assumptions the computational complexity will be O

(
nNM2) (number

of nodes times the number of pairs) for both methods when using the trivial algorithm.
Usually, N is a big number (typically, hundreds of thousands) so the time spent in the
calculations can grow very large as M increases. Not requiring as many steps as H-L,
PROM is simpler and the implementation can potentially be faster than H-L, but not
by much.

However, PROM has one advantage that allows to reduce the algorithmic complexity
to just O(MT), which can result in huge time savings when computing large covariance
matrices. Let us call rpq the location of a grid node of the output grid with indices (p, q).
The inner products that need to be computed for each node are (see Equation (19)):

〈
frpq , φ

〉
≈

N

∑
i=1

d0(ti)d(ri, ti)φ(∆ri), (A1)

where we have dropped the error term O
(

N−1/2
)

and opted for a more concise notation.
Let us now suppose that instead of basis functions φ we use discretised versions of them
φ′, such that φ

(
rpq
)
= φ′

(
rpq
)
, and that the values of φ′ are constant inside each cell of

the grid with centres at rpq. In other words, φ′ are discretised, non-continuous, stair-like
versions of φ functions. In this case, Equation (A1) can be rewritten as:

〈
frpq , φ′

〉
≈

M

∑
l=1

M

∑
m=1

T

∑
t=1

d0(t)Dlm(t)φ(∆rlm), (A2)

where Dlm(t) are the sums of all the innovations inside each grid cell (l, m) at time index t.
Equation (A2) is now formally a 2D spatial convolution that can be computed in O(MT) if
φ′ is separable, which is the case for 2D Gaussian functions and their discretised versions.
Pre-computing the required d0(t) and Dlm(t) takes a comparatively small amount of time
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and we will not take it into account here. In most cases, MT is much smaller than nNM2

and hence PROM can be much faster than H-L. This was confirmed by the timings of our
implementations for PROM and H-L methods.

One could argue that the discretisation of φ as φ′ is another way of performing a
spatial binning, and in some respects this is true. There are two main differences, however.
First and more importantly, there is no statistical requirement on the minimum number of
innovations inside each bin; second, the output grid can be the same mesh we are using in
the ocean model, so function φ′ is consistent with the rest of the variables (e.g., the SST)
that are also discretised in a similar way.

At a first glance, the optimised code for PROM seems not well suited for non-
homogeneous covariance functions like Equation (23). The reason is that the separable
convolution method only works for homogeneous, separable functions. However, this
limitation can be easily overcome by performing the inner product for Gaussian functions
of several length scales in the range of values that take the Rossby radius in the area, and
use these values to interpolate to the desired length scale.

In this case, we have performed convolutions with Gaussian curves of length scale
equal to the large length scale (L) and for Lr taking 20 values between 25 and 133 km (the
minimum and maximum Rossby radius values considered). Even with the added cost
of computing the extra convolutions, PROM is almost an order of magnitude faster than
H-L. In this paper, all the results computed for the real data have been computed using the
method presented in this appendix after testing that they were almost identical to those
obtained using the trivial algorithm.
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