
Journal of

Marine Science 
and Engineering

Article

Application of Feature Point Matching Technology to Identify
Images of Free-Swimming Tuna Schools in a Purse
Seine Fishery

Qinglian Hou 1, Cheng Zhou 1, Rong Wan 1,2,*, Junbo Zhang 1 and Feng Xue 3

����������
�������

Citation: Hou, Q.; Zhou, C.; Wan, R.;

Zhang, J.; Xue, F. Application of

Feature Point Matching Technology

to Identify Images of Free-Swimming

Tuna Schools in a Purse Seine Fishery.

J. Mar. Sci. Eng. 2021, 9, 1357.

https://doi.org/10.3390/jmse9121357

Academic Editors: Fausto Pedro

García Márquez,

Mayorkinos Papaelias and

Simone Marini

Received: 11 October 2021

Accepted: 19 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
d200200048@st.shou.edu.cn (Q.H.); c-zhou@shou.edu.cn (C.Z.); jb_zhang@shou.edu.cn (J.Z.)

2 National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University,
Shanghai 201306, China

3 Jiangsu Timi Smart Technology Co., Ltd., Nanjing 210031, China; fengxuetimi@163.com
* Correspondence: rwan@shou.edu.cn; Tel.: +86-021-186-1682-9865

Abstract: Tuna fish school detection provides information on the fishing decisions of purse seine
fleets. Here, we present a recognition system that included fish shoal image acquisition, point
extraction, point matching, and data storage. Points are a crucial characteristic for images of free-
swimming tuna schools, and point algorithm analysis and point matching were studied for their
applications in fish shoal recognition. The feature points were obtained by using one of the best point
algorithms (scale invariant feature transform, speeded up robust features, oriented fast and rotated
brief). The k-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new
points, which means that new data points will be assigned a value based on how closely they match
the points that exist in the database. Finally, we tested the model, and the experimental results show
that the proposed method can accurately and effectively recognize tuna free-swimming schools.

Keywords: image recognition; ORB algorithm; tuna shoal searching; unmanned aerial vehicle

1. Introduction

Purse seine fishing is a sophisticated fishing method that involves a series of advanced
technologies to aid the process of fish detection, attraction, and capture. In general, fish
schools targeted by purse seining can be divided into unassociated schools (e.g., free-
swimming schools) and log- or fish aggregating device (FAD)-associated schools. Although
catches for FAD-associated fish schools account for approximately 78% of the total landings
in the Chinese tuna seine fishery [1,2], due to the negative effects that FAD exerts on
pelagic ecosystems [3–10], this fishing method has been limited by tuna Regional Fisheries
Management Organizations to conserve and manage tuna resources. For example, in
2008, the Western and Central Pacific Fisheries Commission proposed the implementation
of a seasonal ban on tuna fishing with driftwood (or FADs) in the exclusive economic
zones and high seas of the members of the Nauru Agreement. Since 2009, the fishing
ban has been gradually extended from two months to four months, and the fishery ban
provisions of the conservation and management measures for fishing member states in 2019
included a three-month closure of FADs in exclusive economic waters (July to September,
including releasing FADs and casting nets) and two consecutive months (April to May and
November to December) of high-seas FAD closures. Resolution 18/08 of the Indian Ocean
Tuna Commission stipulates that the number of FAD satellite sonar buoys activated by
each operating vessel at sea at any time should not exceed 350. Resolution c-16-01 of the
Inter-American Tropical Tuna Commission stipulates that the maximum number of FADs
released by large tuna purse seine vessels (with a total hold capacity of 1200 m3 or more) at
any time is 450.
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At present, many purse seine ships in Japan, China Taibei, the United States, and
other countries or regions rent or equip fishing helicopters for fish detection. However,
leasing helicopters is associated with high costs and safety risks for workers. Currently,
unmanned aerial vehicle (UAV) technology is gradually replacing the use of aircrafts to
obtain remote sensing information; as time progresses, UAVs will become more and more
commonplace, and their potential uses will be adapted to fishery. For example, public and
private actors involved in fisheries management used camera-equipped UAVs for marine
surveillance [11–13]; because of decreasing costs, increasing flight times, and an improving
capacity for an easy launch and retrieval at sea, UAV is rapidly expanding its utility
for surveys of marine life [14–16]; the development of UAVs has brought technological
innovation to the recreational fishing sector, and recreational anglers have also begun using
UAVs to physically assist in the capture of fish [17]; a drone coupled with automated image
processing has the potential to be used more widely in ecological monitoring [18–20].

At present, UAVs have been already studied in areas such as marine recreation fish-
ing, as well as monitoring illegal fishing and marine fauna, but used UAVs to detect
free-swimming tuna schools in tuna purse seine fisheries need further discussion. Con-
sequently, it is possible to use UAVs to detect tuna free-swimming shoals and automatic
recognition goals. The application of UAVs covering areas beyond the visual line of sight
and image identifying technology in tuna purse seine fisheries will reduce costs, save
energy consumption, and ameliorate stock monitoring for assessments.

2. Materials and Methods
2.1. Materials

From 26 October 2018 to 9 December 2018, a researcher of Shanghai Ocean University
boarded a tuna purse seine fishing vessel, “Xiefeng 789”, operated in the central and
western Pacific Ocean, and used a SONY FDR-AX60 4K HDR camera to shoot fish shoals
from the lookout platform of the main mast of the seine vessel and the helicopter launched
from the vessel. The researcher obtained a total of 424 GB audio-visual data, and all video
data (1920 × 1080) were 25 frames per second (fps). The test data of free-swimming tuna
schools that was clear and stable was selected from the original audio-visual data.

2.2. Methods

Based on feature point matching technology, we based the construction of the tuna free-
swimming school and free-swimming school image recognition models on the technical
process of “image acquisition-image processing-image feature library construction-fish
shoal identification” to identify images.

This paper summarizes and identifies the most suitable method from three robust
feature detection methods: Scale Invariant Feature Transform (SIFT), Speeded Up Robust
Features (SURF), and Oriented FAST and Rotated Brief (ORB) [21–23], from the computing
speed and robustness performance indicators such as robustness, rotation, blur, and illumi-
nation changes. This study applied KNN (K-Nearest Neighbor) and RANSAC (Random
Sample Consensus) to the three detection methods to analyze the results of the methods’
applications in feature recognition [24]. In the experiment, we used repeatability mea-
surements [25] and the number of correct matches for the evaluation measurements. The
repeatability measurement is computed as a ratio between the number of point-to-point
correspondences that can be established for detected points and the mean number of points
detected in two images [25]:

r1,2 =
C(I1, I2)

mean(m1, m2)
(1)

where C(I1, I2) denotes the number of corresponding couples, and m1 and m2 means the
numbers of the detector. This measurement represents the performance of finding matches.

The special image processing method is used to process the grays in an image and
reduce noise before obtaining feature points [26]. In this study, Mongodb was used as
the tuna shoal feature database to store the feature point descriptors marked by a feature
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algorithm. The image feature points were extracted, and feature matching was performed
using the KNN algorithm, which predicts the values of new points based on how closely
they match the points in the database [27]. This method allows for the intelligent recognition
of fish shoals, as shown in Figure 1.
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Figure 1. Study flow of the identification system of fish schools based on point matching technology.
UAV is unmanned aerial vehicle. KNN is K-Nearest Neighbor.

The methods used in this research were all based on Opencv [26]. All analyses were
performed on an Intel(R) core(TM) i7-7700 CPU with 8.0 GB RAM, with Windows 10 as
the operating system. We used the image dataset photographed by our own researchers
(Figure 2). This included image preprocessing, a comparison of feature point algorithms, the
construction of the Mongodb feature library, and a recognition experiment. The procedures
1–6 are described below:

(1) Image preprocessing. To improve the computing speed and reduce data storage, we
used the perceptually weighted formula [26]:

Y = (0.299)R + (0.587)G + (0.114)B (2)

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 4 of 12 
 

 

   
   
 

(A) (B) 

      
(C) (D) 

Figure 2. Part of a test image. (A) rotation image; (B) blurred images; (C) illumination-changed im-
age; (D) tested computing speed. 

Among them, Y is the grey value, and R, G, and B are pixel values of the three-chan-
nel RGB image (Figure 3). 

 
Figure 3. Image graying. 

Noise reduction. Image noise is a random variation of brightness or color information 
in images and an undesirable by-product of images that obscures the desired information. 
Therefore, we chose Non-Local Means to reserve the details of each image while removing 
the random noise from the image as much as possible [28] (Figure 4). 

 
(a) 

 
(b) 

Figure 4. Comparison of color image (a) before and (b) after noise reduction by Non-Local Means. 

Figure 2. Part of a test image. (A) rotation image; (B) blurred images; (C) illumination-changed image; (D) tested computing
speed.



J. Mar. Sci. Eng. 2021, 9, 1357 4 of 12

Among them, Y is the grey value, and R, G, and B are pixel values of the three-channel
RGB image (Figure 3).
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Figure 3. Image graying.

Noise reduction. Image noise is a random variation of brightness or color information
in images and an undesirable by-product of images that obscures the desired information.
Therefore, we chose Non-Local Means to reserve the details of each image while removing
the random noise from the image as much as possible [28] (Figure 4).
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(2) Comparison of Rotational Variation Robustness. Image rotation is essential in feature
detection application. When the image is rotated, the corresponding angle of each
pixel, the gradient value and direction information of the pixels around the original
feature point, and the main direction of the feature point will change. The method was
applied as follows: image tuna1 as the test image was selected from the tuna image
set (Figure 2A) and rotated 0, 45, 90, 135, 180, 225, 270, and 315 degrees clockwise to
get T-Rotate1 to T-Rotate8. The RANSAC algorithm was used to optimize the rotated
tuna1 image, and the feature points of the rotated tuna1 image were matched with
the original image.

(3) Fuzzy Transformation Robustness Comparison. In the actual application environment,
the fuzzy degree of image acquisition changes with the external environment and
the working state of the remote sensing equipment. After a fuzzy transformation,
the resolution of an image decreases. With a decrease in resolution, the performance
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of the image feature point recognition also decreases. In contrast, with an increase
in resolution, the recognition performance of the feature point algorithm gradually
improves. We tested the robustness of the fuzzy transformation as follows: the t-
Gaussian blur image in the free-swimming image set (Figure 2B), through altering
differently sized ksizes (1,1), (3,3), (5,5), (7,7) and (9,9) to obtain T-Bulr1, T-Bulr2,
T-Bulr3, T-Bulr4, and T-Bulr5. The processed image was matched with the original
image. The matching feature points were optimized using RANSAC and the number
of feature points that could be correctly matched to the analysis. Finally, the change
range of the characteristic points was observed and recorded.

(4) Brightness Transformation Robustness Comparison. In the actual identification,
the illumination intensity will differ according to different operation times. Under
different illumination conditions, there are large intra-class divergences between
images, and some key feature points become more prominent or weakened under the
influence of illumination. This makes the feature points differ in gray scale spaces,
which is not an ideal condition for feature point analysis. We tested the robustness of
the brightness transformation as follows: we randomly selected an image, T-Light
(Figure 2C), and adjusted the bias parameter to 0, 25, 50, 75, 100 and 125 to obtain
T-Light1 to T-Light6, the processed image was matched with the original image, and
the matched feature points were optimized using RANSAC. Then, we compared the
number of feature points that could be correctly matched and observed the change
range of the feature points.

(5) Construction of Mongodb Feature Library. Mongodb is a database that supports
a variety of data structures and complex data types [29]. In this study, Mongodb
was used as the feature database of a free-swimming shoal to store the feature point
descriptors marked by the ORB feature algorithm. When constructing the tuna free-
swimming school feature database, it is necessary to recruit technicians engaged in
tuna purse seine fishing to identify and annotate tuna free-swimming school videos.
Figure 5 shows an example of the tuna shoal feature points labeled by the ORB
algorithm. The red frame represents the marked area in which the feature points were
identified and stored. For this video acquisition, more than 200,000 feature points
were obtained.
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The rough matching method of the brute-force matcher was used to match the fea-
ture points of the test set to the sample set in Mongodb. Euclidean distances were then
calculated, and KNN values were obtained using the KNN calculation, as follows:

Supposing the database sample x belongs to n-dimensional space Rn, set the ith sample
Xi = xi

1, xi
2 . . . xi

n ∈ Rn, where the nth characteristic represents the point from ORB that
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attributes value to the ith sample. Then, the Euclidean distance between the two samples
was defined as:

d(Xi, Xj) =

√
n

∑
n=1

(xi
n − xj

n)2 (3)

(6) Recognition experiment. For the ratio parameter of the descriptor distance, n = 0.7
and n = 0.6 were selected for the recognition experiment. The recognition experiment
was conducted as follows: using the k-fold cross-validation method, the test dataset
was selected from the tuna database and divided into 10 mutually exclusive subsets
(10 small videos, each containing 50 frames). Then, 10 training sets were obtained and
tested 10 times. For the correct identification of the fish school (or to not recognize the
non-fish school), the identification system was compared and analyzed.

3. Results
3.1. Overview of the Three Feature Algorithms
3.1.1. Matching Speed Comparison

The time evaluation only indicated the tendency of the time cost of the three methods.
We chose the images (Figure 2D) that displayed the same size and quality in order to
maintain consistency in the experiment. Time was counted for the complete processing,
which included feature detection and matching.

From the perspective of the algorithm execution speed, the SIFT algorithm took an
average of 10.832 s to complete, which was the most time-consuming compared to that of
the ORB and SURF algorithms (Table 1). The average execution time of the SURF algorithm
was 6.001 s. However, the fastest algorithm was the ORB algorithm, which took 0.191 s
to complete on average. The ORB algorithm was two orders of magnitude faster than the
SIFT algorithm and one order of magnitude faster than the SURF algorithm. The SIFT
algorithm displayed the most matching logarithm, which was 24,256, followed by that of
the SURF algorithm (22,379), and then ORB (500).

Table 1. Execution speed of the same image match by the Oriented FAST and Rotation Brief (ORB),
Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT) image detec-
tion algorithms.

Algorithm SIFT SURF ORB

time consumed in the first test 10.729 s 6.063 s 0.193 s
time consumed in the second test 10.859 s 6.012 s 0.200 s
time consumed in the third test 11.081 s 6.010 s 0.185 s

time consumed in the fourth test 10.703 s 5.979 s 0.188 s
time consumed in the fifth test 10.790 s 5.965 s 0.190 s

mean 10.832 s 6.001 s 0.191 s
number of matches 24,256 22,379 500

3.1.2. Comparison of Rotational Variation Robustness

Here are the results of SIFT, SURF, and ORB on the number of matching feature points
after the image rotation of T-Rotate1, T-Rotate2, . . . . . . T-Rotate7, and T-Rotate8, respec-
tively representing the images of tuna1 after eight different rotation angles. Although the
logarithm of the feature point matching of the three algorithms showed a downward trend
after eight rotations at different angles, the SIFT and ORB algorithms tended to stabilize
more quickly, while the SURF algorithm remained in an unstable state; meanwhile, SIFT
had the largest repeatability at 53%, and SURF showed the same repeatability performance
as ORB (Table 2, Figure 6).
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Table 2. Rotation changes comparison. The data represents the repeatability and the average of
the repeatability.

Data SIFT SURF ORB

T-Rotate1 100% 100% 100%
T-Rotate2 53% 8% 13%
T-Rotate3 50% 25% 13%
T-Rotate4 60% 9% 18%
T-Rotate5 51% 28% 11%
T-Rotate6 53% 8% 12%
T-Rotate7 50% 27% 12%
T-Rotate8 54% 9% 12%
average 53% 16% 13%
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3.1.3. Fuzzy Transformation Robustness Comparison

Here are the results of SIFT, SURF, and ORB on the number of matching feature points
after the image fuzzy transformation of T-Blur1, T- Blur 2, T- Blur 4, and T- Blur 5, which
respectively represent the images of tuna1 after five different fuzzy degrees. After the
image was Gaussian-blurred by altering the size of the Gaussian kernel, the logarithm of
the feature point matching of each algorithm decreased significantly as the scale of the
blur became larger. The SIFT algorithm displayed the worst repeatability at 29%, while
SURF appeared stable in the later stages, and ORB performed best and had the largest
repeatability at 48% (Table 3, Figure 7).
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Table 3. Blur changes comparison. The data represents the repeatability and the average of the re-
peatability.

Data SIFT SURF ORB

T-Blur1 100% 100% 100%
T-Blur2 53% 71% 72%
T-Blur3 32% 51% 56%
T-Blur4 17% 26% 37%
T-Blur5 12% 16% 27%
average 29% 41% 48%
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3.1.4. Brightness Transformation Robustness Comparison

Here are the results of SIFT, SURF, and ORB on the number of matching feature
points after the image brightness transformation of T-Light1, T- Light 2, T- Light 5, and
T- Light 6, which respectively represent the images of tuna1 after six different brightness
degrees. As the scale of the image brightness increases, the logarithm of the feature
point matching of each algorithm decreases significantly. SIFT and SURF showed a good
stability as the brightness changed slightly, and their repeatability was 48% and 43%. ORB
displayed a poor stability when the illumination changed significantly and had the smallest
repeatability at 27% (Table 4, Figure 8).

Table 4. Brightness changes comparison. The data represents the repeatability and the average of
the repeatability.

Data SIFT SURF ORB

T-Light1 100% 100% 100%
T-Light2 96% 96% 63%
T-Light3 78% 72% 39%
T-Light4 46% 34% 21%
T-Light5 15% 9% 9%
T-Light6 3% 2% 2%
average 48% 43% 27%
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3.2. Comparison of the Results

There was no best method for all deformations. Hence, when choosing a feature
detection method, it is best to determine the performance of the specific methods used, as
the results of this experiment were not consistent for all cases (Table 5).

Table 5. Comparison of the experimental results.

Method Time Rotation Blur Illumination

SIFT weak best weak best
SURF good good good good
ORB best weak best weak

ORB showed stability and fast speed in the experiments. It is known as the “Fast”
detector, as ORB is faster than SIFT and SURF. The computing time for SIFT could be
improved; however, it still performs well in most situations. SIFT appears best under
illumination and rotation; however, under large extents of blur, the performance could
be further improved. Taking these factors into account and, in particular, the need for
identification in real time, we chose ORB to computer the feature point descriptors stored
in the feature library and to computer the new point.

3.3. Test Results

In the recognition system, different ratio parameters make different recognition rates.
During the test of the tuna shoal image recognition, we figured out that the recognition
success rate of the tuna school recognition model was approximately 70% (Tables 6 and 7).
The identified feature points are framed (Figure 9). When n = 0.6, the system could
recognize fewer images but did so with a higher recognition accuracy. Meanwhile, for
n = 0.7, the system could recognize more feature images, but the recognition accuracy
was reduced.
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Table 6. Recognition results with the ratio parameter, n = 0.6.

Content
Videos Recognition

Occurrences
Artificial Judgment Result

T-video1 5 Fish shoal correct
T-video2 8 Fish shoal correct
T-video3 4 Fish shoal correct
T-video4 0 Fish shoal incorrect
T-video5 0 Fish shoal incorrect
T-video6 0 Fish shoal incorrect
T-video7 0 Non-Fish shoal correct
T-video8 1 Fish shoal correct
T-video9 0 Non-Fish shoal correct

T-video10 0 Non-Fish shoal correct

Table 7. Recognition results with the ratio parameter, n = 0.7.

Content
Videos Recognition

Occurrences
Artificial Judgment Result

T-video1 5 Fish shoal correct
T-video2 17 Fish shoal correct
T-video3 6 Fish shoal correct
T-video4 0 Fish shoal incorrect
T-video5 0 Fish shoal incorrect
T-video6 0 Fish shoal incorrect
T-video7 0 Non-Fish shoal correct
T-video8 1 Fish shoal correct
T-video9 0 Non-Fish shoal correct

T-video10 0 Non-Fish shoal correct
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4. Conclusions

A technical process of “acquisition-processing-recognition” of tuna school images
based on videos taken from the main mast and a helicopter can be applied on the UAV
aerial photography. The framework mainly included image preprocessing, image feature
extraction, database construction, and image matching recognition, which preliminarily
implemented the computer intelligent recognition of tuna school images.
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The advantages of the ORB algorithm in tuna fish school image recognition appli-
cations are apparent. A comparative analysis of three algorithms, ORB, SURF, and SIFT,
showed that the ORB algorithm was the fastest and could meet real-time calculation require-
ments. The stability of the SURF algorithm fluctuated in terms of the rotation robustness.
Both ORB and SURF performed relatively well in terms of the fuzzy transformation robust-
ness. The performance of ORB was relatively poor in terms of the robustness brightness
transformation, and both SIFT and ORB performed better in terms of the identified pro-
portion of feature points in the feature area. As mentioned above, ORB is suitable for the
identifying models.

A tuna fish school image recognition model was constructed based on the brute-force
matching method and the KNN algorithm. Computer simulation experiments showed that
the tuna fish school recognition model had a recognition success rate of approximately
70%. The recognition effect was optimal when n = 0.6. The model for identifying images of
free-swimming tuna schools is a crucial part of fish detection based on the UAV system
and is equivalent to a scout on a helicopter. Thus, as the next step we will take UAV with
the recognition system to the tuna purse seiner.

Author Contributions: Conceptualization, Q.H. and R.W.; methodology, Q.H. and F.X.; software,
Q.H.; validation, C.Z. and J.Z.; formal analysis, R.W.; investigation, Q.H. and C.Z.; data curation,
Q.H.; writing—original draft preparation, Q.H.; writing—review and editing, C.Z. and J.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was done through financial support by the National key R&D Program of
China (No. 2019YFD0901502 and No. 2020YFD0901202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available on request from corre-
sponding author.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Lopez, J.; Scott, G.P. The Use of Fads in Tuna Fisheries; European Parliament: Strasbourg, France, 2014; ISBN 978-92-823-5384-4.
2. Fonteneau, A.; Pallarés, P.; Pianet, R. A worldwide review of purse seine fisheries on fads. In Proceedings of the Pêche Thonière

et Dispositifs de Concentration de Poissons, Caribbean-Martinique, France, 15–19 October 1999; pp. 14–35.
3. Gerrodette, T.; Olson, R.; Reilly, S.; Watters, G.; Perrin, W. Ecological metrics of biomass removed by three methods of purse-seine

fishing for tunas in the eastern tropical pacific ocean. Conserv. Biol. 2012, 26, 48–56. [CrossRef]
4. Leroy, B.; Phillips, J.S.; Nicol, S.; Pilling, G.M.; Harley, S.; Caillot, S.; Allain, v.; Hampton, J. A critique of the ecosystem impacts of

drifting and anchored fads use by purse-seine tuna fisheries in the western and Central Pacific Ocean. Aquat. Living Resour. 2013,
26, 49–61. [CrossRef]

5. Dagorn, L.; Bez, N.; Fauvel, T.; Walker, E. How much do fish aggregating devices (fads) modify the floating object environment in
the ocean? Fish. Oceanogr. 2013, 22, 147–153. [CrossRef]

6. Fonteneau, A. Monts sous-marins et thons dans l’Atlantique tropical est. Aquat. Living Resour. 1991, 4, 13–25. [CrossRef]
7. Girard, C.; Benhamou, S.; Dagorn, L. FAD: Fish aggregating device or fish attracting device? A new analysis of yellowfin tuna

movements around floating objects. Anim. Behav. 2004, 67, 319–326. [CrossRef]
8. Josse, E.; Bach, P.; Dagorn, L. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic

surveys. Hydrobiologia 1998, 371–372, 61–69. [CrossRef]
9. Holland, K.N.; Brill, R.W.; Chang, R. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish

aggregating devices. J. Cell Biol. 1990, 148, 492–507. [CrossRef]
10. Ohta, I.; Kakuma, S. Periodic behavior and residence time of yellowfin and bigeye tuna associated with fish aggregating devices

around Okinawa Islands, as identified with automated listening stations. Mar. Biol. 2005, 146, 581–594. [CrossRef]
11. Toonen, H.M.; Bush, S.R. The digital frontiers of fisheries governance: Fish attraction devices, drones and satellites. J. Environ.

Policy Plan. 2018, 22, 125–137. [CrossRef]
12. Lukaczyk, T.; Bieri, T.; de Sousa, J.T.; Levy, J.; McGillivary, P.A. Unmanned aircraft as mobile components of ocean observing

systems for management of marine resources. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA,
19–23 September 2016; pp. 1–7.

http://doi.org/10.1111/j.1523-1739.2011.01817.x
http://doi.org/10.1051/alr/2012033
http://doi.org/10.1111/fog.12014
http://doi.org/10.1051/alr:1991001
http://doi.org/10.1016/j.anbehav.2003.07.007
http://doi.org/10.1023/A:1017065709190
http://doi.org/10.1083/jcb.148.5.957
http://doi.org/10.1007/s00227-004-1456-x
http://doi.org/10.1080/1523908X.2018.1461084


J. Mar. Sci. Eng. 2021, 9, 1357 12 of 12

13. Wiyono, A.; Hakim, T.M.I. Sistem kendali kooperatif uav untuk mendukung pengawasan illegal fishing. J. Teknol. Dirgant. 2019,
17, 169. [CrossRef]

14. Colefax, A.P.; Butcher, P.A.; Kelaher, B.P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in
place of manned aircraft. ICES J. Mar. Sci. 2018, 75, 1–8.

15. Hodgson, A.; Peel, D.; Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol.
Appl. 2017, 27, 1253–1267. [CrossRef]

16. Castro, J.; Borges, F.O.; Cid, A.; Laborde, M.I.; Rosa, R.; Pearson, H.C. Assessing the behavioural responses of small cetaceans to
unmanned aerial vehicles. Remote Sens. 2021, 13, 156. [CrossRef]

17. Cooke, S.J.; Venturelli, P.; Twardek, W.M. Technological innovations in the recreational fishing sector: Implications for fisheries
management and policy. Rev. Fish Biol. Fish. 2021, 31, 253–288. [CrossRef]

18. Kiszka, J.J.; Mourier, J.; Gastrich, K.; Heithaus, M.R. Using Unmanned Aerial Vehicles (UAVs) to investigate shark and ray
densities in a shallow coral lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [CrossRef]

19. Raoult, V.; Gaston, T.F. Rapid biomass and size-frequency estimates of edible jellyfish populations using drones. Fish Res. 2018,
207, 160–164. [CrossRef]

20. Cheng, L.; Tan, X.; Yao, D.; Xu, W.; Wu, H.; Chen, Y. A fishery water quality monitoring and prediction evaluation system for
floating uav based on time series. Sensors 2021, 21, 4451. [CrossRef] [PubMed]

21. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up robust features (SURF). Comput. Vis. Image Underst. 2007, 110, 346–355.
[CrossRef]

22. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 12 January 2012; pp. 2564–2571.

23. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 6 August 2002; pp. 1150–1157.

24. Luo, J.; Oubong, G. A Comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 2009, 3, 143–152.
25. Mikolajczyk, K.; Schmid, C. Indexing based on scale invariant interest points. In Proceedings of the IEEE International Conference

on Computer Vision, Vancouver, BC, Canada, 7 August 2002; p. 525.
26. Bradski, G.; Daebler, A. Learning OpenCV: Computer Vision with OpenCV Library; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2008;

pp. 222–264. ISBN 978-0-596-51613-0.
27. Li, L.; Zic, J. Image matching algorithm based on feature-point and daisy descriptor. J. Multimed. 2014, 9, 829–834. [CrossRef]
28. Puetter, R.C.; Gosnell, T.R.; Yahil, A. Digital image reconstruction: Deblurring and denoising. Annu. Rev. Astron. Astrophys. 2005,

43, 139–194. [CrossRef]
29. Chodorow, K.; Dirolf, M. MongoDB: The Definitive Guide; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2010; ISBN 978-1-449-38156-1.

http://doi.org/10.30536/j.jtd.2019.v17.a3128
http://doi.org/10.1002/eap.1519
http://doi.org/10.3390/rs13010156
http://doi.org/10.1007/s11160-021-09643-1
http://doi.org/10.3354/meps11945
http://doi.org/10.1016/j.fishres.2018.06.010
http://doi.org/10.3390/s21134451
http://www.ncbi.nlm.nih.gov/pubmed/34209936
http://doi.org/10.1016/j.cviu.2007.09.014
http://doi.org/10.4304/jmm.9.6.829-834
http://doi.org/10.1146/annurev.astro.43.112904.104850

	Introduction 
	Materials and Methods 
	Materials 
	Methods 

	Results 
	Overview of the Three Feature Algorithms 
	Matching Speed Comparison 
	Comparison of Rotational Variation Robustness 
	Fuzzy Transformation Robustness Comparison 
	Brightness Transformation Robustness Comparison 

	Comparison of the Results 
	Test Results 

	Conclusions 
	References

