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Abstract: Nowadays, system-based simulation is one of the main methods for ship manoeuvring
prediction. Great efforts are usually devoted to the determination of hydrodynamic derivatives
as required for the mathematical models used for such methods. System identification methods
can be applied to determine hydrodynamic derivatives. The purpose of this work is to present a
parameter identification study based on least-squares support-vector machines (LS-SVMs) to obtain
hydrodynamic derivatives for an Abkowitz-type model. An approach for constructing training data
is used to reduce parameter drift. In addition, wavelet threshold denoising is applied to filter out
the noise from the sample data during data pre-processing. Most of the resulting derivatives are
very close to the original ones—especially for linear derivatives. Although the errors of high-order
derivatives seem large, the final predicted results of the turning circle and zigzag manoeuvres agree
pretty well with the reference ones. This indicates that the used methods are effective in obtaining
manoeuvring hydrodynamic derivatives.

Keywords: ship manoeuvrability; hydrodynamic derivatives; parameter identification; support
vector machine; wavelet threshold denoising

1. Introduction

With the development of large-scale and professional ships over past decades, ships
have become more difficult to control, and accidents may occur. Navigational safety issues
related to manoeuvrability have attracted much attention worldwide recently. The Interna-
tional Maritime Organization (IMO) has formulated standards for ship manoeuvrability [1]
to improve the quality of ship design and manufacturing. In addition, with the introduction
of the concept of green ships, energy-saving and emission reduction have become vital
goals. Accurate ship manoeuvring prediction can help control ships in an appropriate
manner and reduce energy consumption.

There are usually two methods for evaluating ship manoeuvrability at the initial stage
of design. One is to perform free-running tests, which can directly obtain the characteristic
parameters including advance, transfer, tactical diameter, overshoot angles, etc. The other
is to predict manoeuvring performances based on system simulations. For the latter, the
Abkowitz-type model [2] is one of the most widely used ship manoeuvring mathematic
models. However, many hydrodynamic derivatives need to be determined in advance.
Therefore, it is essential to obtain hydrodynamic derivatives when an Abkowitz-type model
is applied to predict ship manoeuvring motion.

Common methods for obtaining hydrodynamic derivatives may include databases,
empirical formulae, captive model tests, computational fluid dynamics (CFD) calcula-
tions, and system identification (SI). The SI-based approach is an effective and convenient
method that is less costly. Moreover, this method can be applied to full-scale trials to
avoid scale effects. There have been many successful applications of SI methods for the
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determination of hydrodynamic derivatives over past decades. Traditional SI methods may
include least-squares (LS) estimation [3], improved least-squares [4], extended Kalman
filter (EKF) [5], and recursive prediction error (RPE) [6] methods. However, the application
of these methods is limited due to some issues. For example, such methods are highly
dependent on the selection of initial values and are sensitive to noise. With the devel-
opment of artificial intelligence, some new SI methods are expected to overcome these
defects, such as artificial neural networks (ANN) [7], support vector machines (SVMs),
Bayesian optimisation (BO) [8], genetic algorithms and optimisation methods [9]. In this
paper, SVM is used to identify hydrodynamic derivatives. SVMs have good generalisation
performance and global optimal solutions. Furthermore, they can effectively avoid the
problem of dimensionality, and there is no dependence on the initial parameter estimates.
In recent years, Luo and Zou identified the hydrodynamic derivatives of the Abkowitz-type
model by using a least-squares support-vector machine (LS-SVM) algorithm [10]. Then,
particle swarm optimisation (PSO) [11] and the artificial bee colony algorithm (ABC) [12]
were applied to find the optimal hyper-parameter in the LS-SVM algorithm. However, the
LS-SVM algorithm still has a shortcoming, which is the lack of sparsity of the solution.
To overcome this problem, ε-SVM was applied to adjust the sparsity of the solution and
to identify the hydrodynamic derivatives [13]. Besides this, some black-box modelling
methods that do not need hydrodynamic derivatives were also applied to predict ship
manoeuvring motion [14–16].

In the application of an identification method, the accuracy of the identification
results is closely related to the training data. However, the training data obtained from
experiments often contain noise. Meanwhile, the structure of the high-fidelity manoeuvring
model is usually very complex and redundant. Such models are often prone to over-
fitting [17]. In previous studies, most scholars directly used noisy data when applying
identification methods. For example, Sutulo and Guedes Soares developed a classic genetic
algorithm using the Hausdorff metric, and it was validated using simulated responses
polluted with white noise [9]. Xue and Liu et al. used Gaussian process regression
to identify a dynamic model with input noise [18]. Wang and Zou et al. applied an
improved nu-SVM to predict ship manoeuvring motion with input noise [19]. However,
few scholars consider applying denoising methods to the processing of training data.
Moreover, parameter identification results are usually far from the true values [20]. This
phenomenon may be caused by parameter drift. Parameter drift is a common problem
when the SI method is applied to obtain model parameters. To diminish parameter drift,
some scholars have tried several methods. Hwang applied “parallel processing” to process
the training data but did not completely eliminate parameter drift [20]. Shenoi et al.
simplified Son and Nomoto’s nonlinear model using sensitivity analysis [21]. Yoon and
Rhee reduced parameter drift by modifying the input scenario [22]. Luo and Li reduced the
multicollinearity in the input matrix by adding excitation to the training samples [23]. Luo
reduced multicollinearity using a difference method and an additional signal method [24].
Most of these methods are mainly from the perspective of reconstructing training samples
to reduce parameter drift. Their results indicate that parameter drift cannot be eliminated,
but can be significantly reduced.

Recently, wavelet threshold denoising [25] has drawn attention in marine engineering.
Wavelet threshold denoising is a theory based on wavelet analysis. As a new time-frequency
analysis method, wavelet analysis is known as the “mathematical microscope”, because of
its ability to perform multi-resolution analysis, which can focus on any details in the signal
for performance of multi-resolution time-frequency analysis. Therefore, wavelet threshold
denoising has been widely applied to data pre-processing. Zhang and Zou applied wavelet
threshold denoising to filter out the noise in the training data and then used the denoised
training data to identify the response model [26]. However, the response model contains
only a few parameters, and the prediction accuracy of the response model is not very high.

In this study, an LS-SVM method with wavelet threshold denoising is introduced into
the identification process of hydrodynamic derivatives for an Abkowitz-type model. The
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hydrodynamic derivatives, based on Reynolds-averaged Navier–Stokes (RANS) simula-
tions, are used to obtain the original training data. The wavelet threshold denoising is
applied to filter out the noise from the polluted training data during data pre-processing.
The hydrodynamic derivatives in the Abkowitz-type model are identified by LS-SVM. A
modified regression model is used to reduce parameter drift without adding additional
excitation, which usually has to be considered in traditional approaches. Generalisation
performance of the identified model is evaluated by predicting manoeuvring motions not
included in the training data.

The structure of the paper is organized as follows: Section 2 describes the ship math-
ematical model. The algorithms of LS-SVM are presented in Section 3. In Section 4, the
regression model and the wavelet threshold denoising algorithm are described. Moreover,
a simulated experimental example is presented to demonstrate the validity of the identified
model. Section 5 summarizes the study with conclusions.

2. Mathematical Model of Ship Manoeuvring Motion

To describe ship motion, two coordinate reference systems were used here, as shown
in Figure 1. One was the earth-fixed coordinates Oe − XeYeZe; the other was the body-fixed
coordinates O− XYZ, where u, v, r were the surge velocity, sway velocity and yaw rate,
respectively, ψ was the heading angle, and δ was the rudder angle.
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Figure 1. Coordinate reference systems of ship.

According to Newton’s law, the equations for surge motion, sway motion and yaw
motion can be written as follows:

m(
.
u− vr− xGr2) = FX

m(
.
v + ur + xG

.
r) = FY

IZ
.
r + mxG(

.
v + ur) = FN

(1)

where m is ship mass; xG is the longitudinal coordinate of the ship gravity center in the
body-fixed coordinate system; IZ is the moment of inertia about the Z axis; FX , FY, FN are
the longitudinal force, transverse force and yaw moment; according to the Abkowitz-type
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model [2], the hydrodynamic forces and moment on the right side of Equation (1) may be
approximated by the following expressions:

FX = Xu∆u + Xuu(∆u)2 + Xvvv2 + X .
u

.
u + Xrrr′2 + Xvrvr + Xδδδ2 + Xvδvδ + Xrδrδ

FY = Yvv + Yvvv2 + Yvvvv3 + Y .
v

.
v + Yrr + Yrrr2 + Yrrrr3 + Y.

r
.
r + Yδδ + Yδδδ2 + Yδδδδ3

+Yvrrvr2 + Yvvrv2r + Yuδ∆uδ + Yvδδvδ2 + Yvvδv2δ + Yrδδrδ2 + Yrrδr2δ

FN = Nvv + Nvvv2 + Nvvvv3 + N .
v

.
v + Nrr + Nrrr2 + Nrrrr3 + N .

r
.
r + Nδδ + Nδδδ2

+Nδδδδ3 + Nvrrvr2 + Nvvrv2r + Nuδ∆uδ + Nvδδvδ2 + Nvvδv2δ + Nrδδrδ2 + Nrrδr2δ

(2)

Equation (2) is substituted into Equation (1), and they are rewritten in a dimensionless
form. The acceleration terms are then on the left side, and the other terms are on the right
side. By doing this, the following equations are obtained:

(m′ − X .
u
′)

.
u′ = F1

′(u, v, r, δ)

(m′ −Y .
v
′)

.
v′ + (m′xG

′ −Y.
r
′)

.
r′ = F2

′(u, v, r, δ)

(m′xG
′ − N .

v
′)

.
v′ + (IZ

′ − N.
r
′)

.
r′ = F3

′(u, v, r, δ)

(3)

F1
′ = Xu

′∆u′ + Xuu
′(∆u′)2 + Xvv

′v′2 +
(
m′xG

′ + Xrr
′)r′2 + (m′ + Xvr

′)v′r′ + Xδδ
′δ′2 + Xvδ

′v′δ′ + Xrδ
′r′δ′

F2
′ = −m′u′r′ + Yv

′v′ + Yvv
′v′2 + Yvvv

′v′3 + Yr
′r′ + Yrr

′r′2 + Yrrr
′r′3 + Yδ

′δ′ + Yδδ
′δ′2 + Yδδδ

′δ′3

+Yvrr
′v′r′2 + Yvvr

′v′2r′ + Yuδ
′(∆u)′δ′ + Yvδδ

′v′δ′2 + Yvvδ
′v′2δ′ + Yrδδ

′r′δ′2 + Yrrδ
′r′2δ′

F3
′ = −m′xG

′u′r′ + Nv
′v′ + Nvv

′v′2 + Nvvv
′v′3 + Nr

′r′ + Nrr
′r′2 + Nrrr

′r′3 + Nδ
′δ′ + Nδδ

′δ′2

+Nδδδ
′δ′3 + Nvrr

′v′r′2 + Nvvr
′v′2r′ + Nuδ

′(∆u)′δ′ + Nvδδ
′v′δ′2 + Nvvδ

′v′2δ′ + Nrδδ
′r′δ′2 + Nrrδ

′r′2δ′

(4)

where F1
′, F2

′, F3
′ are the polynomials related to the state information, as shown in Equation (4),

the change of surge speed relative to the initial surge velocity u0 is ∆u = u− u0.

3. Least-Squares Support-Vector Machine

Least-squares support-vector machine (LS-SVM) is an improved support-vector ma-
chine (SVM) based on statistical theory [27]. Traditional SVM needs to solve an inequality
constraint, which increases the computing time. LS-SVM can transform the inequality con-
straints in traditional SVM to equality constraints, and uses the error squared loss function
as the experience loss of the training set. This greatly simplifies the calculation process.
Therefore, LS-SVM has been successfully applied to the field of system identification. Its
specific algorithm is introduced in the following:

Suppose the training sample is given as T = {xi, yi}k
i=1, where k is the number of

training samples, xi ∈ Rk is the input variable, and yi ∈ Rk is the output variable. The
nonlinear function Φ(x) = {ϕ(xi)}n

i=1 is selected to map the input space to the feature
space. The form of the nonlinear function modeling is:

y(x) = wT ϕ(x) + b (5)

where w is a weight matrix and b is the bias term. According to the risk minimization
principle, the constraint problem can be established as: min

w,b,e
J(w, e) = 1

2‖w‖
2 + γ

2

n
∑

i=1
e2

i

s.t.yi = wT ϕ(xi) + b + ei i = 1, 2, · · · , n
(6)
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where ‖w‖2 is the regularized part; γ is the regularization parameter; ei is the error between
the model and the training sample; and e is the error variable. By introducing the Lagrange
multiplier α, Equation (6) can be written as:

L(w, b, ei, α) =
1
2
‖w‖2 +

γ

2

n

∑
i=1

e2
i −

n

∑
i=1

[
αi

(
wT ϕ(xi) + b− yi

)]
(7)

According to the Karush–Kuhn–Tucker conditions (KKT) [28], the following formula
can be obtained: 

∂L
∂w = 0→ w =

n
∑

i=1
αi · ϕ(xi)

∂L
∂b = 0→

n
∑

i=1
αi = 0

∂L
∂ei

= 0→ γei = αi i = 1, · · · , n
∂L
∂αi

= 0→ yi = wT ϕ(xi) + b + ei i = 1, · · · , n

(8)

The αi and b in Equation (8) can be obtained using the following solution:[
0 sT

s K(xi, xj) + γ−1 I

][
b
α

]
=

[
0
y

]
(9)

where α = [α1, α2, · · · αn]
T , y = [y1, y2, · · · yn]

T , s = [1, 1, · · · , 1]T , I is the identity matrix,
and K(xi, xj) is the kernel function:

K
(
xi, xj

)
=
〈

ϕ(xi), ϕ
(
xj
)〉

(10)

where 〈·, ·〉 is the inner product of the eigenspace. The common kernel functions are the
linear kernel function, polynomial kernel function, RBF kernel function, and sigmoid kernel
function. Referring to the work of Luo and Zou [10], the linear kernel function is adopted
in this study. The linear kernel is defined as follows:

K
(
xi, xj

)
= xi

Txj (11)

The final function model can be obtained as:

f (x) =
n

∑
i=1

(αi · K(x, xi)) + b (12)

4. Case Study
4.1. Construction of Regression Model

As mentioned above, parameter drift is a significant problem when the regression
method is applied to obtain hydrodynamic derivatives. Parameter drift is caused by
multicollinearity in the regression model. Multicollinearity means that although the results
of the function fitting are perfect, the results of parameter identification will still show
significant deviations. Luo and Li reduced multicollinearity by adding additional excitation
to the training samples [23]. In this study, a modified regression model was used to identify
hydrodynamic derivatives without adding additional excitation. The detailed structure of
the regression model is described below.

Equation (4) can be rewritten as:

F1
′ −m′xG

′r′2 −m′v′r′ = X · A(i)

F2
′ + m′u′r′ = Y · B(i)

F3
′ + m′xG

′u′r′ = N · C(i)

(13)
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where the hydrodynamic derivatives and speed state variables in Equation (13) are as follows:

X =
[
Xu
′, Xuu

′, Xvv
′, Xrr

′, Xvr
′, Xδδ

′, Xvδ
′, Xrδ

′]
1×8

Y =
[
Yv
′, Yvv

′, Yvvv
′, Yr

′, Yrr
′, Yrrr

′, Yδ
′, Yδδ

′, Yδδδ
′, Yvrr

′, Yvvr
′, Yuδ

′, Yvδδ
′, Yvvδ

′, Yrδδ
′, Yrrδ

′]
1×16

N =
[
Nv
′, Nvv

′, Nvvv
′, Nr

′, Nrr
′, Nrrr

′, Nδ
′, Nδδ

′, Nδδδ
′, Nvrr

′, Nvvr
′, Nuδ

′, Nvδδ
′, Nvvδ

′, Nrδδ
′, Nrrδ

′]
1×16

A(i) =
[
∆u′(i), ∆u′2(i), v′2(i), r′2(i), v′(i)r′(i), δ′2(i), v′(i)δ′(i), r′(i)δ′(i)

]T

1×8

B(i) =

[
v′(i), v′2(i), v′3(i), r′(i), r′2(i), r′3(i), δ′(i), δ′2(i), δ′3(i), v′(i)r′2(i),
v′2(i)r′(i), ∆u′(i)δ′(i), v′(i)δ′2(i), v′2(i)δ′(i), r′(i)δ′2(i), r′2(i)δ′(i)

]T

1×16

C(i) =

[
v′(i), v′2(i), v′3(i), r′(i), r′2(i), r′3(i), δ′(i), δ′2(i), δ′3(i), v′(i)r′2(i),
v′2(i)r′(i), ∆u′(i)δ′(i), v′(i)δ′2(i), v′2(i)δ′(i), r′(i)δ′2(i), r′2(i)δ′(i)

]T

1×16

(14)

where X, Y, N are the unknown terms containing the hydrodynamic derivatives. The
structure of the regression model for identification can be written as follows:

Input variables: [A(i), B(i), C(i)]
Output response:

(
m′ − X .

u
′)L

.
u

u2(i) −m′xG
′L2 r2(i)

u2(i) −m′L v(i)r(i)
u2(i)(

m′ −Y .
v
′)L

.
v

u2(i) +
(
m′xG

′ −Y.
r
′)L2

.
r

u2(i) + m′L u(i)r(i)
u2(i)(

m′xG
′ − N .

v
′)L

.
v

u2(i) +
(

IZ
′ − N.

r
′)L2

.
r

u2(i) + m′xG
′L u(i)r(i)

u2(i)


(15)

.
u,

.
v,

.
r can be obtained by discretization using the explicit Euler scheme as follows:

.
u =

u(i + 1)− u(i)
∆t

,
.
v =

v(i + 1)− v(i)
∆t

,
.
r =

r(i + 1)− r(i)
∆t

(16)

where ∆t is the time step and i and i + 1 are two consecutive time steps. Then, the input
variables and output response were input into the LS-SVM to verify the validity of the
modified regression model in the next section.

4.2. Identification

The second variant of Korea Very Large Crude Carrier (KVLCC2) was selected for the
present case study. The main particulars of KVLCC2 are shown in Table 1.

Table 1. Main particulars of KVLCC2.

Parameters Values

Length between perpendiculars 320.00 m
Breadth 58.00 m

Design draft 20.80 m
Block coefficient 0.81

x coordinate of CG (xG ) 11.136 m
Inertia in yaw (IZ ) 2.00× 1012 kg/m2

Rudder turning rate 2.34
◦
/s

Approach speed 7.956 m/s
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In order to obtain the training data, the hydrodynamic derivatives based on RANS
simulations were used to simulate ship free-running motions. To this end, a series of
captive model tests for KVLCC2, such as static drift motion, static circle motion, dynamic
sway motion, dynamic yaw motion, etc., were simulated by the RANS method to obtain
the hydrodynamic forces. Hydrodynamic derivatives were then determined by regression
analysis of the RANS results. More details on RANS computations can be found in the work
of Yao et al. [29]. A 20

◦
/20

◦
zigzag test was simulated by using the Abkowitz-type model,

where the hydrodynamic derivatives were obtained by RANS computations. The sampling
interval was 1 s, and the sampling time was 1000 s. The regularization parameter γ = 107

was chosen. The identification results of the LS-SVM are shown in Table 2. The acceleration
derivatives, including X .

u
′, Y .

v
′, Y.

r
′, N .

v
′ and N.

r
′, were calculated by RANS computations.

The values of these derivatives were as follows: X .
u
′ = −0.001135, Y .

v
′ = −0.014508,

Y.
r
′ = −0.001209, N .

v
′ = −0.000588, N.

r
′ = −0.000564.

Table 2. Comparison of the original and predicted values, without considering noise.

X-Coef. Original LS-SVM Y-Coef. Original LS-SVM N-Coef. Original LS-SVM

Xu
′ −0.0022 −0.0022 Yv

′ −0.01902 −0.0190 Nv
′ −0.007886 −0.00788

Xuu
′ 0.0015 0.0015 Yvv

′ 0.000639 0.000637 Nvv
′ −0.000308 −0.000308

Xvv
′ 0.00159 0.00159 Yvvv

′ −0.1287 −0.1232 Nvvv
′ 0.00175 0.0028

Xrr
′ 0.000338 0.000337 Yr

′ 0.005719 0.0057 Nr
′ −0.003701 −0.0037

Xvr
′ 0.01391 0.0139 Yrr

′ −0.000002 −0.000002 Nrr
′ −0.000002 −0.000002

Xδδ
′ −0.00272 −0.0027 Yrrr

′ −0.000048 0.00061 Nrrr
′ −0.000707 −0.00053

Xvδ
′ 0.001609 0.0016 Yvrr

′ −0.02429 −0.0203 Nvrr
′ 0.003726 0.0047

Xrδ
′ −0.001034 −0.0010 Yvvr

′ 0.0211 0.0291 Nvvr
′ −0.019 −0.017

Yδ
′ 0.00408 0.0041 Nδ

′ −0.001834 −0.0018
Yδδ
′ −0.000114 −0.000114 Nδδ

′ −0.000056 −0.000056
Yδδδ

′ −0.003059 −0.0031 Nδδδ
′ 0.001426 0.0014

Yuδ
′ −0.00456 −0.0046 Nuδ

′ 0.00232 0.0023
Yvδδ

′ 0.00326 0.0029 Nvδδ
′ −0.001504 −0.0016

Yvvδ
′ 0.003018 0.0032 Nvvδ

′ −0.001406 −0.0014
Yrδδ

′ −0.002597 −0.0028 Nrδδ
′ 0.001191 0.0011

Yrrδ
′ 0.000895 0.000833 Nrrδ

′ −0.000398 −0.000396

The results in Table 2 show that most of the hydrodynamic derivatives were accurately
determined. These results indicate that the regression model is valid. However, due to an
error of the sensor and various external uncertain disturbances, including wind, waves, and
current, the training samples obtained from the actual experiment were noisy compared
with the simulated ones. Therefore, for real situations, the results obtained will have a
significant deviation when the LS-SVM directly identifies hydrodynamic derivatives. For
this, wavelet threshold denoising was employed here to reduce interference in the data.
Based on Sutulo and Soares’s method of noise generation [9], Gaussian white noise was
added to the sample data to simulate the real situation. The detailed process was as follows:

ζi = ζ0i + ζmaxk0kζ ζi (17)

where ζ = u, v, r, δ,ζ0i is the original “clean” reference data, ζmax is the maximum absolute
value of the clean data, k0 is the general reduction factor used to represent different noise
levels—which is set to 5% in this study—kζ is a specific reduction factor based on the
values of different variables, and ζi is a random variable with a variance of 0.2 following
Gaussian distribution. According to the records of previous experimental data, the noise
of the ship surge velocity is significantly less than the rate of yaw and drift angle, and the
noise of the rudder angle can be ignored. Therefore, the reduction factor kζ was set to 0.2
for the surge velocity and 1.0 for the remaining responses.
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4.3. Wavelet Threshold Denoising

Commonly, a signal model with noise can be written as follows:

s(t) = f (t) + n(t) (18)

where s(t) is the signal with noise; f (t) is the original effective signal; and n(t) is the noise
signal. The purpose of denoising is to reduce n(t) in s(t).

The basic idea of wavelet threshold denoising [25] is to transform the signal and gene-
rate wavelet coefficients. These wavelet coefficients contain vital signal information. In
general, an effective signal is a low-frequency signal, and a noise signal is a high-frequency
signal. The effective signal has a certain continuity in the time domain. However, the noise
signal is discontinuous in the time domain. Therefore, the wavelet coefficients of effective
signals are usually large, whereas the wavelet coefficients of noise signals are generally
small. An appropriate threshold is required here. When the wavelet coefficient of the
signal is greater than the threshold value, it is retained. When the wavelet coefficient of
the signal is less than the threshold, it is set to zero. Figure 2 is the flow chart for wavelet
threshold denoising.
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The implementation steps of wavelet threshold denoising are as follows:
Step 1: Wavelet decomposition. Wavelet basis function and decomposition levels need

to be determined in this step. Wavelet basis function is chosen by observing the initial sign
s(t). Daubechies 4 wavelet [26] was selected in this study. The decomposition level is a
vital parameter in the filtering process. On one hand, noise separation is more effective
when the decomposition level is larger. On the other hand, excessive decomposition levels
can result in the loss of effective signal. The decomposition level is usually determined by
pre-tests. In this study, the decomposition level was five after testing.

Step 2: Threshold processing. This step includes the selection of wavelet threshold
and threshold processing functions. The heuristic threshold [30] is an ordinary wavelet
threshold. The specific algorithm of the heuristic threshold is as follows:

f (k) = (sort|s|)2 (k = 1, 2, · · ·N)

r(k) = [N − 2k +
k
∑

i=1
f (i) + (N − k) f (N − k)]/N

λ1 =
√

min(r) λ2 =
√

2 ln(N)

(19)
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where s is the initial signal; N is the length of the signal; sort means ascending order; k is
the moment; r(k) is the value of risk at that moment; and λ is the threshold value. The
formula for the heuristic threshold can be written as:

eta =

[
N
∑

k=1
|sk|2 − N

]
/N crit =

√
1
N

(
ln N
ln 2

)3

λ =

{
λ2 eta < crit
min(λ1, λ2) eta ≥ crit

(20)

The usual threshold processing functions are the hard threshold processing function
and the soft threshold processing function [31]. In this study, the latter is adopted. The
specific algorithm is as follows:

_
w =

{
[sgn(w)](|w| − λ) |w| ≥ λ
0 |w| < λ

(21)

where w is the original wavelet coefficient,
_
w is the denoised wavelet coefficient.

Step 3. Wavelet reconstruction. According to the denoised wavelet coefficients ob-
tained above, the inverse transform of wavelet decomposition is applied to reconstruct the
denoising signal.

According to Equation (17), polluted 20
◦
/20

◦
zigzag test data can be obtained. The

above methods were applied to denoise the polluted data. The comparison of original
data, polluted data and denoised data are shown in Figure 3. It can be seen from the
enlarged surge velocity comparison graph that the wavelet threshold denoising had a good
denoising performance. Following this, the denoised data was brought into the regression
model for identification by the LS-SVM. The regularization parameter γ = 104 was chosen
here. The results of identification are shown in Table 3.
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Table 3. Comparison of the original and predicted values after noise reduction.

X-Coef. Original Denoising Y-Coef. Original Denoising N-Coef. Original Denoising

Xu
′ −0.0022 −0.0023 Yv

′ −0.01902 −0.0199 Nv
′ −0.007886 −0.0078

Xuu
′ 0.0015 0.0014 Yvv

′ 0.000639 0.000455 Nvv
′ −0.000308 −0.000416

Xvv
′ 0.00159 0.0014 Yvvv

′ −0.1287 −0.0526 Nvvv
′ 0.00175 0.0076

Xrr
′ 0.000338 0.0003 Yr

′ 0.005719 0.0053 Nr
′ −0.003701 −0.0038

Xvr
′ 0.01391 0.014 Yrr

′ −0.000002 0.00004 Nrr
′ −0.000002 0.000022

Xδδ
′ −0.00272 −0.0021 Yrrr

′ −0.000048 −0.0027 Nrrr
′ −0.000707 0.0012

Xvδ
′ 0.001609 0.0037 Yvrr

′ −0.02429 −0.0349 Nvrr
′ 0.003726 0.0097

Xrδ
′ −0.001034 0.00009 Yvvr

′ 0.0211 0.0553 Nvvr
′ −0.019 −0.0095

Yδ
′ 0.00408 0.0035 Nδ

′ −0.001834 −0.0017
Yδδ
′ −0.000114 −0.00024 Nδδ

′ −0.000056 −0.000047
Yδδδ

′ −0.003059 0.001 Nδδδ
′ 0.001426 0.00074

Yuδ
′ −0.00456 −0.0047 Nuδ

′ 0.00232 0.0022
Yvδδ

′ 0.00326 0.0100 Nvδδ
′ −0.001504 −0.00028

Yvvδ
′ 0.003018 0.0204 Nvvδ

′ −0.001406 −0.001
Yrδδ

′ −0.002597 −0.00046 Nrδδ
′ 0.001191 0.0023

Yrrδ
′ 0.000895 −0.00053 Nrrδ

′ −0.000398 −0.0002

It can be observed from Table 3 that most of the predicted hydrodynamic derivatives
were relatively accurate. However, some high-order hydrodynamic derivatives had signifi-
cant errors. One possible reason is the influence of the wavelet threshold denoising process.
As mentioned in Section 4.3, the choice of wavelet decomposition levels and the wavelet
threshold will affect the denoising process. Therefore, one possible explanation is that
the noise in the data was not completely filtered out, or that the wavelet decomposition
levels were too large to filter out part of the effective signal. Another possible reason is
parameter drift. As mentioned in Section 4.1, the fundamental reason for parameter drift is
multicollinearity in the regression model. Although the phenomenon of parameter drift is
not obvious when using clean data for identification, the problem of multicollinearity still
exists in the regression model. When polluted data is used for identification, the noise may
aggravate the multicollinearity in the model and make the parameter drift more obvious.
In addition, high-order hydrodynamic derivatives may be more sensitive. There may not
be enough information to identify them in the training data. In general, although the
predictions of some high-order hydrodynamic derivatives were not sufficiently accurate, it
does not mean that the identified model cannot be used to predict the manoeuvring motion.

4.4. Model Validation

The generalisation performance of the identified model should be checked. This was
essential for the identified model in practise, because it was possible for the identified model
to perform well for the cases from which training data were obtained, but it performed
poorly for other applications. Therefore, the identified model obtained above will be
applied to predict other manoeuvring motions, including 20

◦
/10

◦
zigzag motion, 15

◦
/15

◦

zigzag motion, and 35
◦

turning circle motion. The RANS-based derivatives of KVLCC2
were used to simulate manoeuvring to get the original reference data. The comparison
between the predicted results and the original data is shown in Figures 4–6. Furthermore,
the root mean square error (RMSE) was employed to evaluate the prediction accuracy of
the identified model. The RMSE is defined by the formula:

RMSE =

√
1
n

n

∑
i=1

(∧
yi − yi

)2
(22)

where
∧
yi is the predicted value, and yi is the original data. When the value of RMSE is

smaller, it means that the predicted result is more accurate. The RMSEs of 20
◦
/10

◦
zigzag

motion, 15
◦
/15

◦
zigzag motion and 35

◦
turning circle motion are shown in Table 4.
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Table 4. Estimation of prediction accuracy by RMSE.

20
◦
/10

◦
Zigzag 15

◦
/15

◦
Zigzag 35

◦
Turning

Surge speed 0.0859 0.0744 0.2013
Sway speed 0.1163 0.1090 0.0527

Yaw rate 0.0462 0.0458 0.0160

As shown in Figures 4 and 5, the prediction accuracy of 15
◦
/15

◦
zigzag motion and

20
◦
/10

◦
zigzag motion was generally satisfactory. In a previous study, nu-SVM has been

used to identify data containing noise [21]. Comparing the RMSE of 20
◦
/10

◦
zigzag motion

with the results of nu-SVM, it can be observed that the predicted results of this study were
more accurate. This indicates that wavelet threshold denoising can effectively improve
the identification ability of LS-SVM. However, there was still a cumulative deviation in
the predicted data—especially in the 35

◦
turning circle motion, as shown in Figure 6.

One possible reason is that the identification results of some high-order hydrodynamic
derivatives have larger errors due to parameter drift. When the ship moves at a large
rudder angle, the effects of high-order hydrodynamic derivatives also gradually increase
in the model. So, there is an accumulation of errors. Future work should further study
this regression model or adjust the wavelet threshold denoising algorithm to solve this
problem. On the whole, the identified model could successfully predict the manoeuvering
motion of the ship, and the prediction accuracy was satisfactory.
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5. Conclusions

In this paper, LS-SVM with wavelet threshold denoising was applied to identify the
hydrodynamic derivatives for an Abkowitz-type model. To reduce parameter drift, we
tried to modify the structure of the regression model. The hydrodynamic derivatives based
on RANS simulations were used to simulate the 20

◦
/20

◦
zigzag test to obtain the original

training data. Then, the original training data was used to validate the modified regression
model. The results show that most of the resulting hydrodynamic derivatives were very
close to the original RANS-based ones. This indicates that the modified regression model
can reduce parameter drift. However, for real situations, there will be noise in the training
data. Directly identifying hydrodynamic derivatives will lead to poor results. Therefore,
wavelet threshold denoising was applied to filter out the noise from the sample data
during data pre-processing. The denoised data was identified by using the above modified
regression model. The 20

◦
/10

◦
zigzag motion, 15

◦
/15

◦
zigzag motion, and 35

◦
turning

circle tests were employed as a supplement to verify the generalisation performance of
the model obtained by the identification. The identified results indicate that most of the
hydrodynamic derivatives were quite accurate, and the model obtained by identification
had a strong generalisation performance.

Although the predicted results so far look acceptable, some problems still need to be
addressed in future works:

1. More efforts are needed to reduce parameter drift, as the influence of parameter drift
on identification accuracy remains considerable.

2. The selection of some parameters for wavelet threshold denoising still depends on
experience. How to better determine decomposition layer number and wavelet
threshold during noise filtering is a key problem to be figured out.
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