
Journal of

Marine Science 
and Engineering

Article

Interannual to Interdecadal Variability of the Southern Yellow
Sea Cold Water Mass and Establishment of “Forcing
Mechanism Bridge”

Yunxia Guo 1 , Dongxue Mo 2,3,4,5,* and Yijun Hou 2,3,4,5

����������
�������

Citation: Guo, Y.; Mo, D.; Hou, Y.

Interannual to Interdecadal

Variability of the Southern Yellow Sea

Cold Water Mass and Establishment

of “Forcing Mechanism Bridge”. J.

Mar. Sci. Eng. 2021, 9, 1316. https://

doi.org/10.3390/jmse9121316

Academic Editor: Anatoly Gusev

Received: 29 September 2021

Accepted: 18 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China; guoyunxia14@mails.ucas.edu.cn

2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences,
7 Nanhai Road, Qingdao 266071, China; yjhou@qdio.ac.cn

3 University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
4 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science and Technology,

1 Wenhai Road, Qingdao 266237, China
5 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
* Correspondence: dongxuemo@qdio.ac.cn; Tel.: +86-0532-82898873

Abstract: The Yellow Sea cold water mass (YSCWM) occupies a wide region below the Yellow Sea
(YS) thermocline in summer which is the most conservative water and may contain clearer climate
signals than any other water masses in the YS. This study investigated the low-frequency variability of
the southern YSCWM (SYSCWM) and established the “forcing mechanism bridge” using correlation
analysis and singular value decomposition. On the interannual timescale, the southern oscillation
can affect the SYSCWM through both the local winter monsoon (WM) and the sea surface net heat
flux. On the decadal timescale, the Pacific decadal oscillation (PDO) can affect the SYSCWM via two
“bridges”. First, the PDO affects the SYSCWM intensity by Aleutian low (AL), WM, and surface
air temperature (SAT). Second, the PDO affects the SYSCWM by AL, WM, Kuroshio heat transport,
and Yellow Sea warm current. The Arctic oscillation (AO) affects the SYSCWM by the Mongolian
high, WM, and SAT. Before and after the 1980s, the consistent phase change of the PDO and the AO
contributed to the significant decadal variability of the SYSCWM. Finally, one simple formula for
predicting the decadal variability of SYSCWM intensity was established using key influencing factors.

Keywords: Southern Yellow Sea cold water mass; low-frequency variability; forcing factors; bridge

1. Introduction

The Yellow Sea (YS) is a shallow and semienclosed marginal sea of the Pacific Ocean,
bordered by the Chinese mainland to the west, the Korean peninsula to the east, and the
Bohai Bay to the north. There is a remnant of cold water (<10 ◦C) under the seasonal
thermocline in the central trough of the YS which is referred as the Yellow Sea cold water
mass (YSCWM) [1]. The YSCWM occupies almost 30% of the YS area and is present
throughout the whole summer every year which becomes one of the most important
characteristics of the YS. The YSCWM has a large impact on the hydrographic features and
the phytoplankton biomass and production in the YS [2–4]. There are strong temperature
gradients between cold water masses and surrounding waters, which generate special
hydrodynamic processes, e.g., the bottom thermal front, cyclonic gyre above the cold
water mass [5,6]. The YSCWM is regarded as a nutrient-rich pool that contributes to
the subsurface chlorophyll maximum phenomenon during summer and therefore affects
primary production [7–11]. The key species of zooplankton (Calanus sinicus) is favored to
survive the hot summer in the YSCWM [12]. Consequently, the demersal fish stocks are
closely related to the YSCWM intensity [13,14]. The diverse characteristics of the YSCWM
have drawn the attention of many international scholars.
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He et al. [1] first studied the formation and properties of the YSCWM and identified
that the water mass was locally formed during the previous winter by sea surface cooling
and strong vertical mixing. After this pioneering work, there were many studies on the
seasonal evolution of the YSCWM and its formation mechanism [15–21]. The formation
mechanism of the YSCWM including the strong tidal mixing, wind stirring, warming
surface, winter air temperature, thermocline, warm current and topography [22,23].

Many researchers also have explored interannual and long-term variability of the
YSCWM. Hu and Wang [18] adopted the empirical orthogonal function (EOF) method to
find that the vertical circulation in the southern YS is correlated with the surface wind
curl on the interannual timescale. Park et al. [21] found there are three cold events and
two warm events in the west of southern YSCWM (SYSCWM) using the EOF method
and the variation of the YSCWM is influenced by sea level pressure (SLP), surface air
temperature (SAT), sea surface temperature (SST), Pacific decadal oscillation (PDO), and
Arctic oscillation (AO). Jiang et al. [24] found the Kuroshio meander always induces a
warmer YSCWM in the following year and the temperature of the northern YSCWM has
a linear trend which is related to the winter air temperature. Wei et al. [25] found the
interannual variation of winter water temperature in the YS is driven by the lateral heat
input from the intrusive Yellow Sea warm current (YSWC). Yang et al. [26] studied the
interannual variation of the southern limit of the YSCWM and found that the colder SST in
winter is associated with the increased southern limit in the following summer. Li et al. [27]
found winter AO and PDO modulate the decadal variability of the YSCWM by the local
heat flux and wind stress, and in summer, El Niño/southern oscillation (ENSO) is the
dominant factor influencing the YSCWM. Zhu et al. [28] showed that the air–sea heat flux
is the dominant factor influencing the YSCWM’s intensity.

Previous studies of the variability of the SYSCWM (e.g., Park et al. [21]; Li et al. [27])
have identified that remote factors affect local factors but the forcing mechanisms have not
been discussed. Therefore, the objectives of this study were to characterize the interannual
and decadal variability of the SYSCWM and to establish the “forcing mechanism bridge”
from remote factor to SYSCWM. Remote forcing factors do not usually act directly on local
factors. Instead, intermediate factors generally act as a “bridge” connecting the remote and
local factors. This study established several “bridges” via which remote factors (e.g., ENSO,
PDO, and AO) might influence local factors (e.g., the winter monsoon (WM), sea surface
net heat flux (NHF), SAT, and YSWC) through intermediate factors (e.g., Kuroshio heat
transport (KHT), Mongolian high (MH), and Aleutian low (AL)) and ultimately affect the
SYSCWM on interannual and decadal timescales. This is helpful for further understanding
the forcing mechanisms of climate factors. One simple formula for predicting the decadal
variability of SYSCWM intensity was established using key influencing factors.

2. Materials and Methods
2.1. Study Area

The depth of the thermocline in YS is about 20 m. In summer, there is cold front
doming up to the surface and separating the upper layer into two warm water lenses [18].
The YSCWM is traditionally defined as the cold water lower than 10 ◦C under the seasonal
thermocline in the central trough of the YS in summer [1]. The stirring of strong northerly
wind during winter results in vertically well-mixed waters from the surface to the bottom.
In summer, increased solar radiation drives strong stratification which prevents water
from vertical mixing. Cold water that forms in winter maintains its temperature beneath
the stratified thermocline which forms the YSCWM. The topography of the YS from the
ETOPO1 dataset (https://www.ngdc.noaa.gov/mgg/global/, accessed on 17 November
2021) is shown in Figure 1.

2.2. CORA Data

Ocean reanalysis datasets, which have better spatiotemporal coverage than observa-
tional records, are suitable for supporting investigation of the features of the entire YSCWM

https://www.ngdc.noaa.gov/mgg/global/
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and its response to climate variability. Therefore, the China Coastal Waters and Adjacent
Seas Reanalysis (CORA) data were used in this study.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 22 

 

 

prevents water from vertical mixing. Cold water that forms in winter maintains its 
temperature beneath the stratified thermocline which forms the YSCWM. The 
topography of the YS from the ETOPO1 dataset 
(https://www.ngdc.noaa.gov/mgg/global/) is shown in Figure 1. 

 
Figure 1. Topography of the YS. The color contours denote bathymetry (m). The red solid line is 
the section A–B. 

2.2. CORA Data 
Ocean reanalysis datasets, which have better spatiotemporal coverage than 

observational records, are suitable for supporting investigation of the features of the entire 
YSCWM and its response to climate variability. Therefore, the China Coastal Waters and 
Adjacent Seas Reanalysis (CORA) data were used in this study. 

The CORA data are based on an oceanic dynamical model, which incorporates wave 
breaking parameterization and tidal mixing processes, together with assimilation of in 
situ observed temperature and salinity profiles. CORA data have been validated using 
independent observations in previous studies, and the results have shown that CORA 
data are well suited for the simulation of both the temperature–salinity structure and the 
mesoscale and large-scale circulations of the western North Pacific Ocean including the 
YS [29]. The CORA dataset covers a 54-year period from January 1958 to December 2011. 
The domain of 10°S–52°N, 99°–150°E includes the Bohai Sea, YS, East China Sea, South 
China Sea, and adjacent seas. The dataset consists of monthly mean fields with horizontal 
resolution of 0.125°and 35 vertical levels with determined depth, e.g., 2.5 m, 10 m, 20 m, 
30 m. Figure 2 presents the climatological temperature in the YS in July along 35 °N from 
CORA data. It can be seen that the CORA data can well represent the mixing layer, tidal 
fronts, and the bottom cold water within the YS. 

Figure 1. Topography of the YS. The color contours denote bathymetry (m). The red solid line is the
section A–B.

The CORA data are based on an oceanic dynamical model, which incorporates wave
breaking parameterization and tidal mixing processes, together with assimilation of in
situ observed temperature and salinity profiles. CORA data have been validated using
independent observations in previous studies, and the results have shown that CORA
data are well suited for the simulation of both the temperature–salinity structure and the
mesoscale and large-scale circulations of the western North Pacific Ocean including the
YS [29]. The CORA dataset covers a 54-year period from January 1958 to December 2011.
The domain of 10◦ S–52◦ N, 99◦–150◦ E includes the Bohai Sea, YS, East China Sea, South
China Sea, and adjacent seas. The dataset consists of monthly mean fields with horizontal
resolution of 0.125◦and 35 vertical levels with determined depth, e.g., 2.5 m, 10 m, 20 m,
30 m. Figure 2 presents the climatological temperature in the YS in July along 35◦ N from
CORA data. It can be seen that the CORA data can well represent the mixing layer, tidal
fronts, and the bottom cold water within the YS.
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2.3. Climate and Intensity Indices

According to previous studies [21,27,30], remote factors (ENSO, PDO, AO), local factors
(WM, NHF, SAT, YSWC), and intermediate factors (KHT, MH, AL) can all affect the interan-
nual or decadal variability of the SYSCWM. The Nino3.4 index is one of several ENSO indica-
tors downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/, accessed on
17 November 2021. Its positive values represent El Niño events and the negative values
represent La Niña events. The PDO index (http://research.jisao.washington.Edu/pdo,
accessed on 17 November 2021) is defined as the leading principal component of monthly
SST north of 20◦ N in the North Pacific. The AO index (http://www.cpc.ncep.noaa.gov/
products/precip/CWlink, accessed on 17 November 2021) is the dominant pattern of
nonseasonal SLP variability north of 20◦ N. The local WM index is defined as the anomaly
of winter meridional wind speed averaged over the domain 32.5–37.5◦ N, 120–127.5◦ E.
The NHF and SAT indices are defined as the anomaly of winter sea surface net heat flux
and the anomaly of winter surface air temperature, respectively, averaged over the same
domain. Based on the CORA data, we defined the YSWC intensity index as the distance of
the northern limit of the 10 ◦C isotherm from the reference latitude of 33◦ N in January;
the greater the distance, the more intense the intrusion of the YSWC. KHT is calculated
based on the temperature data along the PN section referring to Zhang et al. [31]. MH
index is defined as the surface integral of the potential height difference over a specific
area in winter referring to Sun et al. [32]. AL index is defined similarly to MH referring to
Wang et al. [33]. The wind field, heat flux, and pressure data used in the definitions of the
WM, NHF, SAT, MH, and AL were obtained from the National Centers for Environmental
Prediction/National Center for Atmospheric Research reanalysis (NCEP) [34].

With reference to previous research [26,27], we also defined an index of SYSCWM
intensity, i.e., the anomalies of averaged temperature (T-10) of the SYSCWM, which is
defined as the cold water lower than 10 ◦C in the bottom of the south YS, in July, as shown
in Figure 3. Based on the Mann–Kendall test, the T-10 index has a significant increasing
trend of 0.0022 ◦C/year during 1958–2011, associated with recent global warming [35–37].
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2.4. Methods

The time series data used in this study included both interannual and decadal vari-
ability. The interannual variability was obtained by removing the climatological monthly
means. The decadal variability was obtained by applying 7-year low-pass filtering to
remove the most significant interannual signal, i.e., ENSO. Some summer (averaged from
June to August) and winter (averaged from December to February) climate indices were
used to examine the effects of different seasonal climate forcings. For instance, 1958 winter
(summer) is an average of December 1957, January 1958, and February 1958 (June, July,
and August 1958).

EOF method is used to analyze the spatial-temporal variation of the YSCWM. It can
reflect the main information of meteorological field in a few modes. To extract the dominant
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mode of temperature in the southern YS, the EOF method was used on the interannual
time series.

Strong correlation with a certain climate index would imply that the corresponding
climate factor is associated with YSCWM variability; therefore, examination of the corre-
lation could represent a quick guide to the relationships of the background variables. In
addition, correlation with a lag/lead time would reveal whether the two time series are
related remotely and which of the time series leads. This is achieved by cross-correlation
function in present study. A positive lag indicates that the climate index leads the SYSCWM.
The correlation coefficients reported in this paper are all statistically significant at the 90%
confidence level.

In addition to correlation analysis, we also used singular value decomposition (SVD)
analysis to identify the covariance between two variables. The purpose of SVD is to separate
regions of high correlation between paired fields, to elucidate the spatial structure of the
correlation field between the paired fields and to determine their respective contributions
to the correlation field. The results of the SVD analysis include a spatial pattern, normalized
time series, and heterogeneous correlation pattern. We only present results of the first SVD
mode because the first mode accounts for the largest fraction of variance. As can be seen
from Figure 4 below, the YSCWM can be clearly seen in temperature field at 50 m depth
and in July, the surface covered by the 10 ◦C isotherm is the largest. Therefore, in SVD
analysis, the July temperature anomaly at the depth of 50 m in the southern YS was used to
represent SYSCWM variability. In fact, the temperature field of YSCWM at the 50 m depth
has been frequently used in other studies [20,21,28,38–40]. In this paper, we conducted
SVD analysis on climate index and SYSCWM index at the lead time determined in the
correlation analysis.
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Generally, the effect of remote factors is manifest through local or intermediate forc-
ing. Therefore, we first examined how local or intermediate forcings might affect the
SYSCWM. Then, we examined how the remote forcings might affect the local or inter-
mediate factors. Finally, we explored the direct links between the remote factors and the
SYSCWM, and we established several “forcing mechanism bridges” through which the
remote factors might affect the local or intermediate factors that in turn affect the variability
of SYSCWM intensity.

3. Results

Figure 4 illustrates the distribution of the climatological monthly averaged temper-
ature (◦C) during 1958–2011 at the depth of 50 m in the YS based on the CORA data. It
can be seen that the bottom water temperature in the YS warms gradually from winter
to spring and that the SYSCWM (bottom water colder than 10 ◦C), which disappears in
autumn, can be identified clearly in summer. Further, the lower part of all rectangles in
Figure 4 contains warmer water throughout the year which is the YSWC in autumn, winter,
and spring or the surrounding warmer water in summer [19,41,42].

3.1. Interannual Variability of the SYSCWM

The EOF method was used on the interannual components of temperature along
section A–B (Figure 1), which spans the whole area of the southern YS, to investigate
the interannual spatiotemporal characteristics of the SYSCWM. In the EOF analysis, the
interannual variation signal of surface water is much stronger than that of the SYSCWM.
Therefore, we extracted the data deeper than 40 m along section A–B for EOF analysis.
The first EOF mode that represents the surface temperature variability of the southern YS
explained 45% of the total variance but were not of concern in this study. Therefore, they
are not presented. The second EOF mode (EOF2) of the interannual temperature explains
37% of the total variance. As shown in Figure 5a, EOF2 shows negative loading over the
southern YS trough, indicating that the interannual variability of the SYSCWM and of the
surface and the bottom are out of phase. The time coefficients (principal component, PC) of
EOF2 were shown in Figure 5b. The positive anomaly signals of temperature during El Niño
years (e.g., 1958–1959, 1963–1966, 1969–1970, 1972–1973, 1991–1992, 1997–1998, 2002–2004,
2009–2010) indicate that the SYSCWM is warmer during El Niño events. Conversely, the
negative anomaly signals of temperature during La Niña years (e.g., 1973–1976, 1984–1985,
2000–2001, 2007–2008) indicate that the SYSCWM is colder during La Niña events.

3.1.1. Local Forcings

Li et al. [27] demonstrated that local heat flux and wind stress in winter both affect
YSCWM intensity. Zhu et al. [28] also showed that air–sea heat flux is the dominant factor
influencing YSCWM intensity. Park et al. [21] reported that YSCWM intensity is associated
with SAT. Li [43] showed that YSCWM intensity is also affected by KHT. Therefore, we
examined the effects of the local WM, sea surface NHT, SAT, and KHT (Figure 6) on
SYSCWM intensity. The correlation coefficients and corresponding p-values between
SYSCWM intensity and those factors are shown in Figure 7.

It can be seen from Figure 7 that the T-10 index has positive correlation with the WM
with a 1-year lead time, which suggests that a strong WM could reduce the temperature
of the SYSCWM. Owing to the shallow depth of the YS, a strong WM can strengthen
mixing and heat loss that both act to cool the bottom water in the YS trough. During the
summer, this low-temperature water is maintained by the thermocline. Previous studies
identified two different roles of the WM. For example, Kim and Kimura [44] revealed that
strong northerly winds introduce a large vertical temperature difference at the air–sea
interface, which produces a large amount of heat loss from the ocean. Conversely, both
Hsueh and Yuan [45] and Moon et al. [46] showed that the increase in sea level induced by
the northerly monsoon generates inflow of warm salty water from the YSWC, which might
reduce the area of the YSCWM in the following summer [25,47]. Here, based on correlation
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analysis that indicates that the cooling effect of the WM is greater than the heating effect,
we conclude that the WM can cool the SYSCWM. Wei et al. [30] also reported that during
the cooling season, the lateral heat transport from the YSWC is about five times smaller
than that of the net surface heat loss integrated over the YS.
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Figure 8 shows the first SVD mode of the WM–SYSCWM fields, which accounts
for 94% of their covariance (Table 1). As the spatial pattern of the SVD resembles the
heterogeneous correlation pattern, we only provide the latter (and the same is true below).
The heterogeneous correlation (Figure 8a) is high in the SYSCWM, indicating that a cold
event in the SYSCWM is associated with a strong WM (Figure 8b); the correlation coefficient
of the normalized time series of the first spatial pattern (Figure 8c) is 0.48. This coefficient
is different from that in Figure 7. That is because the correlation coefficient in Figure 7 is
obtained by the two original fields, while the coefficient here is the correlation of the time
series from the high correlation modes of the two original fields.
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Table 1. First SVD mode of ENSO and SYSCWM.

Fraction of Covariance (%) Correlation Coefficient of
Time-Series

WM−SYSCWM 92 0.48
NHF-SYSCWM 89 0.56
SAT-SYSCWM 99 0.78
ENSOsum-WM 79 0.50

ENSOsum-SYSCWM 68 0.38
ENSOwin-NHF 84 0.43

WM−NHF 93 0.62

The T-10 index has negative correlation with sea surface NHF at a 1-year lead time
(Figure 7), which suggests that strong winter heat loss from the ocean to the atmosphere
can cool the SYSCWM.

The T-10 index has positive correlation with SAT at a 1-year lead time (Figure 7),
indicating that higher SAT in the previous winter can warm the SYSCWM.

The positive correlation between T-10 and winter KHT at a 1-year lead time (Figure 7)
suggests that large KHT can warm the SYSCWM.

3.1.2. Effect of ENSO

We investigated the correlation between local factors and the ENSO index, as shown
in Figure 7 and Table 1. The Nino3.4 index is well correlated synchronously with the WM.
Positive correlation indicates that El Niño (La Niña) events correspond to a weak (strong) WM.
A positive phase of ENSO can lead to the development of an anticyclone and southern wind
anomaly in the lower troposphere of the western Pacific Ocean, weakening the winter wind.

The Nino3.4 index is also related to the T-10 index at a 2-year lead time, as shown in
Figure 7. The correlation coefficients indicate that the SYSCWM is colder (warmer) during La
Niña (El Niño) events, consistent with the results of the EOF analysis discussed in Section 3.1.
Figure 9 presents the first SVD mode of the summer tropical SLP–SYSCWM fields, which
accounts for 68% of their covariance (Table 1). The heterogeneous correlation in Figure 9a is
high in the SYSCWM, while that in Figure 9b shows the ENSO mode, indicating that a colder
event in the SYSCWM is associated with La Niña; the correlation coefficient of the normalized
time series is 0.38 (Figure 9c). From the correlation between ENSO, WM, and the SYSCWM,
we can conclude that ENSO can affect SYSCWM intensity via the local WM.
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The negative correlation between the Nino3.4 index and sea surface NHF (Figure 7)
suggests that during El Niño events, the NHF is from the atmosphere to the ocean, which
can warm the SYSCWM. This prompts the question of how ENSO is related to the local
sea surface NHF. It can be seen from Figure 7 that the winter NHF is affected by the local
winter wind (correlation coefficient of −0.53) on a synchronous timescale. The correlation
and SVD analysis indicate that a stronger winter wind contributes to a large amount of
heat loss from the ocean to the atmosphere, and the local winter wind is affected by ENSO.

Table 1 shows the SVD analysis among other variables. Due to the space limitation
of this paper, the modal diagrams are not listed one by one, but the results of these SVD
analysis are consistent with the correlation analysis (Figure 7).

3.2. Decadal Variability of SYSCWM

In addition to the remarkable interannual variability of the SYSCWM, its decadal
variation is also significant. Previous studies [21,27] have examined how both the PDO
and the AO, which are the most significant decadal oscillations in the Pacific and Eurasian
regions, might affect the YSCWM. In addition to the WM, NHF, SAT, and KHT described in
Section 3.1, the lateral transport of heat into the YS via the YSWC also affects the SYSCWM.
As is well known, the WM is always affected by the East Asian WM, which is controlled
by the MH and AL. The PDO has strong correlation with the AL in winter [21,27,48] and
the AO is well correlated with the MH [21,49]. Therefore, both the MH and the AL are
considered as intermediate factors that affect the SYSCWM.

3.2.1. Local or Intermediate Forcings

The various indices after 7-year low-pass filtering are shown in Figure 10.
Figure 11 shows the correlation coefficients and corresponding p-values between the

decadal variability of the SYSCWM and various forcing factors. Table 2 shows the SVD
analysis of different factors and the results of these SVD analysis are consistent with the
correlation analysis (Figure 11).

It can be seen that the WM/SAT has good positive correlation with the T-10 index at
a 2-year lead time, and that sea surface NHF is correlated negatively with the T-10 index
at a 2-year lead time. The mechanism via which the WM, NHF, and SAT influence the
SYSCWM was explained in Section 3.1.

Winter KHT has strong positive correlation with the T-10 index at a 2-year lead time
(Figure 11), which suggests that substantial KHT can warm the SYSCWM. Because ocean
analysis data have good spatiotemporal coverage, we downloaded the northward current
velocity data of the PN section from the CORA dataset and calculated the velocity anomaly,
which represents the variation of KHT [31]. The first SVD mode of the winter northward
current velocity–SYSCWM fields (Figure 12), which accounts for 90% of their covariance
(Table 2), also indicates that a warmer event in the SYSCWM is associated with larger KHT.
The YSWC has positive correlation with the T-10 index (Figure 11), which can be explained
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by the greater lateral transport of heat into the YS when the winter intrusion of the YSWC
is enhanced. The correlation coefficient between the intensity of the YSWC and the winter
KHT is 0.38 (Figure 11), which suggests that substantial KHT can strengthen the YSWC.
Tang et al. [41] verified that the YSWC represents mixing of the northward Kuroshio branch
and the shelf water of the East China Sea. Thus, we conclude that the Kuroshio can affect
the SYSCWM through the YSWC.

Table 2. First SVD mode of PDO/AO and SYSCWM.

Fraction of Covariance (%) Correlation Coefficient of
Time-Series

MH-SYSCWM 51 0.67
MH-WM 84 0.52

AL-SYSCWM 88 0.49
AL-WM 51 0.47

KHT- SYSCWM 90 0.61
PDOwin-SYSCWM 85 0.76

PDOsum-WM 70 0.50
PDOsum-SAT 88 0.49
PDOwin-AL 65 0.72

PDOwin-KHT 54 0.46
AOwin-SYSCWM 92 0.65

AOwin-WM 87 0.35
AOwin-SAT 95 0.52
WM−SAT 96 0.57
WM−KHT 84 0.39
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Figure 11. Correlation coefficients between the SYSCWM intensity and the indexes of WM, NHF,
SAT, YSWC, KHT, AL, MH, PDO, AO on the decadal timescale. The leading times (year) of forcing
factors from cross-correlation function are in red. The two correlation coefficients correspond to
summer and winter. The data before the bracket is the correlation coefficient, and the data in the
bracket is the p-value.
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The MH is correlated negatively with the T-10 index at a 3-year lead time (Figure 11),
which means the stronger the MH, the colder the SYSCWM. The correlation coefficient
between the MH and WM is −0.43 on a synchronous timescale (Figure 11), meaning that a
strong MH can strengthen the local winter wind in the YS. Because the MH has negative
correlation with the WM and the WM has positive correlation with the T-10 index, the MH
has negative correlation with T-10 index. Thus, we conclude that the MH influences the
SYSCWM through the local winter wind.

The AL is negatively connected with the T-10 index at a 3-year lead time (Figure 11),
which means a stronger AL is associated with a warmer SYSCWM. As is well known, a
barometric field is always connected to the wind field. The correlation coefficient between
the AL and the WM is −0.36 at a 2-year lead time (Figure 11), which means a strong AL
can weaken the local winter wind in the YS. The AL also affects the SYSCWM through the
local winter wind. The reason why the AL and the WM are correlated negatively will be
explained in Section 3.2.2.

For the above forcing factors, the correlation coefficients of the WM, SAT, and KHT
with the SYSCWM are the highest (Figure 11), meaning the WM, SAT, and KHT play the
most important roles in the decadal variation of SYSCWM intensity.

3.2.2. Remote Forcings

We examined the correlation coefficients between the PDO/AO and local or interme-
diate factors, as shown in Figure 11.

The PDO has strong negative correlation with the AL on a synchronous timescale
(Figure 11), implying that the AL is enhanced when the PDO is in its positive phase. When
the PDO is in its positive phase, the SST in the subtropical North Pacific Ocean appears
as a warm anomaly. Therefore, the AL is enhanced and the pressure over the subtropical
North Pacific Ocean is also enhanced. This SST and pressure distribution contributes to the
anticyclonic wind over the eastern Philippines, which produces a southerly wind anomaly
in southern China. In winter, this southerly wind anomaly can weaken the prevailing
northerly monsoon, which explains why both the AL and the WM are correlated negatively,
as mentioned above. As the PDO is correlated negatively with the AL, the AL is in turn
negatively associated with the WM. Therefore, the PDO should be correlated positively
with the WM, as is shown in Figure 11 with a correlation coefficient of 0.41 at a 4-year
lead time.

The PDO has strong positive correlation with KHT at a 3-year lead time (Figure 11),
implying that when the PDO is in its positive phase, KHT is enhanced. The PDO can
affect the WM and the WM is related to KHT with a correlation coefficient of 0.53 at a
synchronous timescale (Figure 11). Both Zhang et al. [31] and Qi et al. [50] have proven
that a strong WM will reduce KHT. Thus, we believe that the PDO is connected to KHT
through the WM. As mentioned in Section 3.2.1, KHT is correlated positively with the
YSWC. Therefore, the WM should be correlated positively with the YSWC through KHT.
However, both Hsueh and Yuan [45] and Moon et al. [46] showed that the increase in
sea level induced by a northerly strong monsoon generates inflow of warm salty water
from the YSWC. Therefore, the WM should be correlated negatively with the YSWC. We
calculated the correlation between the WM and YSWC. The resultant positive correlation
(Figure 11) indicates that the effect of the WM on the YSWC through KHT is greater than
that through the sea level.

The AO has strong negative correlation with the MH at a synchronous timescale
(Figure 11), indicating that the MH is weakened when the AO is in its positive phase. The
positive phase of the AO corresponds to decreasing pressure in the polar region, which can
strengthen the zonal wind of the upper atmosphere at mid- and high latitudes. This means
the East Asian trough is filled and the convergence and descent at the rear of the trough is
diminished; thus, the surface MH is weakened. The MH can affect the East Asian winter
monsoon and further affect the local winter wind over the YS. The correlation coefficient
between the MH and WM is −0.43 at a synchronous timescale (Figure 11), suggesting
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that the local winter wind is stronger when the MH is stronger. As the AO is correlated
negatively with the MH and the MH is in turn correlated negatively with the WM, the AO
should be correlated positively with the WM, as shown in Figure 11.

The PDO and AO both have strong positive correlation with SAT (Figure 11). As
is well known, when the WM is strengthened, strong cold air breakouts are common.
The correlation coefficient between the WM and SAT is 0.61 at a synchronous timescale
(Figure 11), implying that a strong WM can cool sea surface air. The PDO and AO both
have positive correlation with the WM and the WM has positive correlation with SAT,
which explains the positive correlation between the PDO/AO and SAT.

Through the above analysis, we find that the PDO and AO can ultimately act on
the WM.

The direct correlation between the PDO/AO and SYSCWM intensity is shown in
Figure 11. The PDO has strong positive correlation with the T-10 index at a 5-year lead time,
implying that when the PDO is in its positive phase, the SYSCWM is warmer. Figure 13
shows the first SVD mode between the winter northern Pacific SST and SYSCWM, which
accounts for 85% of their covariance (Table 2). The heterogeneous correlation shown in
Figure 13b, which is high in the central North Pacific Ocean, reflects the PDO mode. Thus,
we can conclude that when the PDO is in its cold phase, the SYSCWM is colder.
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The AO is correlated positively with the T-10 index at a 5-year lead time (Figure 11),
implying that the SYSCWM is warmer when the AO is in its positive phase. The first SVD
mode between the winter SLP in the Arctic (representing the AO mode) and the SYSCWM
(Figure 14) also verifies this.
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4. Discussion

Based on the analysis from Section 3.1, we can conclude that ENSO affects the WM,
the WM affects the sea surface NHF, and the sea surface NHF affects the SYSCWM. A
schematic of the “forcing mechanism bridge” via which El Niño can affect the SYSCWM is
shown in Figure 15 and that of La Niña is the contrary.
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Li [33] indicated that ENSO is connected with KHT and we also found that both
ENSO and KHT are related to the YSCWM; however, we did not find significant correlation
between ENSO and KHT on the interannual timescale, which is a subject that might require
further study.

By combining the discussions in Section 3.2, we can conclude there are two “forcing
mechanism bridges” via which the remote PDO can affect SYSCWM intensity on the
decadal timescale:PDO −→ AL −→ WM +→ SAT +→ SYSCWM and PDO −→ AL −→ WM +→
KHT +→ YSWC +→ SYSCWM (where the “+” and “−” above the arrow means positive
and negative correlation, respectively). Based on logical operation of the positive and
negative correlations, the PDO is ultimately correlated positively with the temperature of
the SYSCWM via both pathways, as shown in Figure 11. The schematic of the pathway
(Figure 16) through which the PDO affects the SYSCWM reflects a period when PDO is in
its positive phase.
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Other pathways via which the PDO might affect the YSCWM have been reported in
other studies. For example, Li et al. [27] indicated that when the PDO is in its positive
phase, the heat flux from the atmosphere to ocean is increased in the YS, which reduces
the area of the YSCWM. We verified that the sea surface NHF is associated with SYSCWM
intensity, but we did not find evidence of a significant relationship between the PDO and
NHF. Both Jiang et al. [24] and Li [51] found that the Kuroshio Meander always induces a
warmer YSCWM in the following year. This is because the large meander of the Kuroshio
always corresponds to large volume/heat transport of the Kuroshio [52,53] Based on the
relationship between KHT and the SYSCWM revealed in Section 3.2.1, we can confirm that
the large meander of the Kuroshio does warm the SYSCWM.

The “forcing mechanism bridges” via which the remote AO affects the SYSCWM are
presented in Figure 17. The schematic of this pathway reflects a period when the AO is in
its positive phase.
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Figure 17. The schematic of pathway by which the AO affects the SYSCWM.

The normalized time series of the AO, PDO, T-10, WM, and SAT smoothed by 7-year
low-pass filtering are shown in Figure 18. Around 1980, both the PDO and the AO change
from negative to positive phase. Correspondingly, the WM and SAT exhibit the same
phase transition, which means the WM becomes weaker and SAT becomes higher. Many
other indices of the East Asian WM have indicated its decadal-scale weakening since the
mid-1980s; it is the most prominent characteristic over the previous 100 years. After 1980,
the SYSCWM also becomes warmer. Therefore, the consistent phase change of both the
PDO and the AO contributes to the significant decadal variability of SYSCWM intensity.
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Based on the above analysis, we conclude that the decadal variation of SYSCWM inten-
sity is controlled mainly by the WM, SAT, summer PDO, and winter AO. This encouraged
us to infer SYSCWM intensity by establishing a simple equation using these factors, which
could be helpful in predicting the approximate decadal variability of SYSCWM intensity. If
additional factors were used in the multiple regression analysis, the regression coefficient
of some factors would be opposite to the correlation coefficient in the correlation analysis,
which is against physical principles. Through the test of regression analysis, we found
that the correlation coefficient R2 of the regression analysis remained largely unchanged
irrespective of whether SAT is considered. In addition, SAT has strong correlation with the
WM; therefore, we opted to use the WM, PDOsum, and AOwin to construct the equation.
Through the multiple regression analysis, the formula (which passed the F-test at the 95%
confidence level) for predicting the T-10 (◦C, R2 = 0.72) is as follows:

T−10 = 9.821 + 0.105WM + 0.061PDOsum + 0.035AOwin (1)
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The regression coefficients in Equation (1) suggest that the effect on the SYSCWM
is WM > PDO > AO. The reconstructed time series of T-10 during 1958–2011 (circles
in Figure 19) are compared with the original data (dots in Figure 19). The correlation
coefficients between the original and reconstructed data are 0.83, with a significance level
of 95%. In addition, we predicted the T-10 from 2012 to 2018 based on Equation (1),
and compared the results with the reanalysis data from the National Marine Data Center
(http://mds.nmdis.org.cn/pages/home.html, accessed on 17 November 2021), as shown
in the red line in Figure 19. The comparison results verify the Equation (1). Thus, the
decadal variation of the SYSCWM is effectively captured by these factors.
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5. Conclusions

This study used CORA data to investigate the low-frequency variability of the SYSCWM.
We explored the mechanisms via which the remote forcings affect SYSCWM intensity
through local or intermediate forcings. On the interannual timescale, ENSO can affect the
SYSCWM through the local WM and sea surface NHF. On the decadal timescale, the PDO
affects the SYSCWM via two “bridges”: PDO −→ AL −→ WM +→ SAT +→ SYSCWM and
PDO −→ AL −→WM +→ KHT +→ YSWC +→ SYSCWM. The “forcing mechanism bridge” via
which the AO affects the SYSCWM is AO −→ MH −→WM +→ SAT +→ SYSCWM. Through
analysis of climate change, we concluded that before and after the 1980s, the consistent
phase change of the PDO and the AO has contributed to the significant decadal variability
of the SYSCWM. Finally, we established one simple formula for predicting the decadal
variability of SYSCWM intensity using the key influencing factors.

It should be noted that the atmospheric models such as NCEP has a tendency to
underestimate short wave gain and overestimate the long wave loss [54]. When using
NCEP data to construct climate factors for correlation analysis, it may have an impact
on the magnitude of the correlation coefficient and the determination of lag/lead time.
Because the interaction and the response between the ocean and the atmosphere takes time,
the correlation between different climate factors has lead/lag time. The analysis of the
impact of input data and the causes of lag/lead time in this paper will be our next work.
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