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Abstract: The shipbuilding industry demands intelligent robot, which is capable of various tasks
without laborious pre-teaching or programming. Vision system guided robots could be a solution for
autonomous working. This paper introduces the principle and technique details of a vision system
that guides welding robots in ship small assembly production. TOF sensors are employed to collect
spatial points of workpieces. Huge data amount and complex topology bring great difficulty in
the reconstruction of small assemblies. A new unsupervised line segment detector is proposed to
reconstruct ship small assemblies from spatial points. Verified using data from actual manufacturing,
the method of this paper demonstrated good robustness which is a great advantage for industrial
applications. This paper’s work has been implemented in shipyards and shows good commercial
potential. Intelligent, flexible industrial robots could be implemented with the findings of this study,
which will push forward intelligent manufacturing in the shipbuilding industry.

Keywords: intelligent manufacturing; machine vision; autonomous robotic welding; point cloud;
line segment detector

1. Introduction

An industrial robot is the technical trend of intelligent shipbuilding and is expected to
replace labor work in actual manufacturing. However, most welding jobs in shipyards are
still performed manually because conventional welding robots lack flexibility. Industrial
robots could be classified into 2 categories: teach-replay robots and offline-programming
robots, which trajectories are achieved through laborious manual teaching or program-
ming. These approaches are impractical in the shipbuilding industry because shipbuilding
consists of multi-type and small-batch manufacturing for which the time and labor cost
of manual teaching or programming are unacceptable from a commercial point of view.
Thus most welding jobs in shipyards are still performed by manual operators. As rising
labor cost and lack of skilled workers are posing challenges to shipyards, the demands of
intelligent welding robot, which is capable of autonomous welding, is proposed by the
shipbuilding industry.

Studies of autonomous robotic welding in shipbuilding have been attempted [1-5].
The major drawback in previous works is that robots’ trajectories depend on guide rails
or rollers, thus repetitive installation and uninstallation of rails or robots consumes too
much labor and time. Programming of welding robots also leads unfavorable ration of
programming time to production time. Approaches to reduce robot programming costs
could be classified in 3 ways: CAD-based method, hybrid method, and vision-based
method. The CAD-based method employs macros or templates to reduce programming
efforts [6,7]. This leads to significant maintenance costs and does not consider the derivation
of workpieces. The hybrid method combines the CAD model with visual images, enjoying
better flexibility but still requires CAD data or manual input [8]. The vision-based method
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could be an optimized solution for intelligent robotic welding because it is completely
independent of CAD data and routine user inputs [9,10]. Meanwhile, the vision-based
method proposes a great challenge, and splitting it into several small tasks could be a
better solution [11]. Chen described robot pose control for the weld trajectory of a spatial
corrugated web sheet based on laser sensing [12]. Additionally, welding robots with
vision-based weld seam tracking modular are developed, which enjoy better tolerance
to position deviation than conventional robots [13-18]. Research aiming at weld seam
recognition are also conducted. Tsai produced welding path plans for golf club heads [19],
and Zhang reconstructed a single weld seam using structured light [20]. Tsai and Zhang's
work successfully recognize a single weld seam in laboratory conditions. However, in
previous studies, the problem was not solved under actual manufacturing conditions
because workpieces in shipyards usually include complicated weld seam structures. The
aforementioned studies did not consider multiple workpieces with various shapes, which
is common in actual manufacturing in the shipyard.

Grid-based algorithms are generally more computationally efficient than other algo-
rithms [21]. Most grid-based algorithms achieve a time complexity of O(n), where n is the
number of spatial points. STING [22], Wave Cluster [23], and CLIQUE [24] are the most
commonly used grid-based algorithms. The aforementioned algorithms emphasize point
clustering more than line segment detection. However, the topic of the present study was
intelligent robotic welding for shipbuilding, which requires segments reconstructed from
complicated spatial points.

For the demand of intelligent shipbuilding, a vision-based method is presented to
achieve autonomous robotic welding for small assemblies of various shapes without pre-
teaching or programming. This method is tested in actual manufacturing data from the
shipyard and demonstrated good tolerance, robustness, and accuracy.

2. Hardware Implementation

This study focuses on autonomous welding of small assemblies. Small assembly refers
to the basic components in shipbuilding, consisting of plates and stiffeners, as in Figure 1.
Most small assemblies are limited within the dimensional size of 4 m x 4 m, and the weight
of 1 ton. All stiffeners need to be double-sided welded onto the plates.

(b)

(d)

Figure 1. Examples of small assemblies in the shipyard. (a,b,d) consist of orthogonal stiffeners, and

(c) consists of parallel stiffeners.
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The hardware of this study is displayed in Figure 2. Welding robots and time-of-flight
(TOF) laser sensors are installed on the gantry. The robot controller and TOF sensors are
connected to the PC by LAN cable.

(b)

Figure 2. (a) Robot and TOF sensor (shroud removed) installed on a gantry; (b) TOF sensor (with
shroud).
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The TOF laser sensors cast laser stripes onto small assemblies and collect depth values.
As the gantry moves, the TOF laser sensors scan over small assemblies on rollers, as shown
in Figure 3.

Laser stripes

Figure 3. TOF sensors scan over small assemblies.

Data from the TOF laser sensor are organized in a depth matrix. The depth matrix is
visualized in a depth-colored grayscale image, as shown in Figure 4. It could be transformed
into a point cloud of the workpiece as the scan parameters are provided.
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Figure 4. Depth-colored grayscale image of small assemblies.

3. Reconstruction of Small Assembly

Reconstruction of small assembly is the precondition for autonomous robotic welding.
The welding robot needs the exact location of each weld seam, which could be calculated
from the stiffener’s centerline. Thus, the section introduces the method adopted in the
reconstruction of all the stiffeners’ center lines from the depth matrix.

3.1. Spatial Points of Stiffeners

To reduce computation cost, the depth matrix is processed using various approaches to
separate profiles from the background. For instance, Zhang used the Canny edge detector
and Tsai calculated the geometric center of profiles [19,20]. In this study, we adopted Tsai’s
method because it preserves profile information of stiffener. In this method, the recognition
of the profile is performed within each scanned point of each laser stripe. Figure 5a shows a
TOF sensor casting a laser stripe onto a workpiece with 2 stiffeners, and Figure 5b displays
scanned points collected by the TOF sensor, in which the convex bumps in the dashed
circle clearly indicate the location of the stiffener profile.

%4—TOF Sensor

Stiffener

Laser strip /

(a)

Figure 5. Cont.



J. Mar. Sci. Eng. 2021, 9, 1313 60of 18

| - Scanned points |

1500 + Profile
-1800 - /,,—_\\/ \—:“\
Vo) o)
E i St ) : -
é L s e _"-"“'-'.r"-'\-_ _ - ---"-"""-"‘-h.—'_ e
N_-2100 1 T
-2400
T T T T T T 1
0 80 160 240 320 400 480 560

Point number

(b)
Figure 5. (a) Laser stripe on the small assembly; (b) Profiles in the row of scanned points.
By extracting the profile centers from each column, the spatial points of stiffeners are

obtained. Figure 6 gives examples of small assemblies and corresponding spatial points in
this study.

Figure 6. Cont.
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Figure 6. Small assemblies (a,c,e,g) and corresponding spatial points (b,d,f,h).
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3.2. Grid-Based Line Segment Detector

Problems arise as we are trying to reconstruct all the stiffeners from these spatial
points. Inevitable noise interferes with conventional line segment detectors (e.g., Hough
transformation (HT), RANSAC, LSD). For example, line segments detected by the HT from
spatial points of Figure 6b are marked in red in Figure 7. It’s clear that noise results in
missing points and false detection. Deliberately adjusting the parameters of the HT may
alleviate the interference of noise. However, this is impractical in real-time manufacturing
because the entire process is expected to run unsupervised. Moreover, the uncertainty of
stiffeners” count, multi-density of points, and complex topology of small assemblies add
more difficulties to this work.

false .’
detection

missing

Figure 7. Line segments were detected (in red) from spatial points.

Thus, a new unsupervised approach is required to detect all of the line segments from
spatial points. Here we introduce a grid-based line segment detector. It consists of 5 steps:
sampling, rotation, convolution, deconvolution, and reconstruction, which are shown in

Figure 8.
L _J
® e ® L J L4 Data point
Spatial points o
e @
o ® Empty cell
5 (white pixel)
Non-empty cell
Samplin, '
ping (black pixel)
mTTTT
/ /' Deconvolution cell
o __
Rotation o Points in segment
gm
= == = = Reconstructed segment
Convolution
Deconvolution

Figure 8. Steps of line segment reconstruction from spatial points.



J. Mar. Sci. Eng. 2021, 9, 1313 110f18

Before we take the small assembly in Figure 6b to explain the working process of the
detector, it is necessary to introduce the coordinate system on the workpiece. The X-axis
was parallel to the gantry rails, the Y-axis was perpendicular to the rail. The system origin
is located at the corner of the panel, as shown in Figure 9.

Figure 9. Coordinate system on the workpiece.

The first step is sampling, which greatly reduces the complexity of the following
computation. All spatial points are projected into a grid consisting of square cells, and this
is also the grid-based line segment detector named by. Marking empty cells as white, and
non-empty cells as black, the grid could be converted to a binary feature map. Figure 10
shows the process of sampling 15,066 points from Figure 6b to a feature map of 78 x 63 cells.

2500
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(a) (b)
Figure 10. (a) Spatial Points (15,066 points); (b) Sampled feature map.

The rotation layer aligns the grid’s axis to the point’s major direction. The rotation
angle of the axis is given by random sample consensus (RANSAC). RANSAC determines a
single line from these points and calculates its angle from the x-axis, which is denoted by
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0. The grid axis is then rotated by 6 about the origin. Figure 11a shows the results of the
rotation. After rotation, spatial points are re-sampled, as shown in Figure 11b.
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Figure 11. (a) Points after axis rotation; (b) Re-sampled feature map.

Re-sampled feature map is converted to a matrix {f(, j)}, where the matrix entries
f(i, j) = 1 for black pixels and f (7, j) = 0 for white pixels. Matrix {f(i, j)} is convoluted to detect
all line segments. Here 2 kernels are designed to detect horizontal and vertical segments.

First, the horizontal segment detector K}, [size: 3 X (2n + 1)] is introduced, where
n equals half the length of the desired horizontal segment. The convolution operation
using Kj, differs slightly from the conventional convolution operation. It consists of the
following steps:

1. Move kernel’s center to a black pixel (i,j), i is the row index, j is the column index

2. sum=0;

3. I=j—wu

4. Check pixels at (i — 1,]), (i,]) and (i + 1,I), increase sum by 1 if any of these pixels is
black;

5. Increaselby I;

6. Repeat3. until/ =j+n;

7. Convolution output at pixel g(i,j) = 1 if sum is not less than 2n, or g(i,j) = 0;

8. Repeat 1. until all nonzero entries are convoluted.

Figure 12a shows the convolution output of Figure 10b, which removes all vertical
segments. All horizontal segments could be recovered through the deconvolution process,
as shown in Figure 12b. Finally, it helps us extract spatial points to reconstruct stiffeners in
this direction, as shown in Figure 12c.

——— 1500
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l 2000 -
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1000

500

0 T T T T T T J
500 1000 1500 2000 2500 3000 3500 4000

X(mm)

(a)

(b) (©)

Figure 12. (a) Convolution output with Kj,; (b) Horizontal segments recovered (in red bounds); (c) Points of each stiffener

(in red, green, and blue).
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Similarly, the vertical segments are detected by introducing kernel K,. The size of K,
is (2m + 1) x 3, where m is half the length of the desired vertical segment. The convolution
using Ky, is similar to the algorithm used for the horizontal segments. Figure 13 shows the
vertical segment detection process with kernel K.

2500 -

I— | 2000
A1500—
-
>.10()0-
s
— o
‘S0 wwm e mm w0 a0 w450
X(mm)
(a) (b) (0

Figure 13. (a) Convolution output with Ky; (b) Vertical segments recovered (in red bounds); (c) Points of each stiffener (in
red, green, and blue).

The last step is reconstructing all line segments. As the spatial points are classified
into groups corresponding to each stiffener, the Least-Squares Fitting could perform this
job without any challenge. Figure 14 shows the centerlines of all stiffeners by combing the
results shown in Figures 12¢ and 13c. More ever, coordinates of stiffeners’ free ends are
listed in Table 1.

Centerline
= Free end
C
2000 D
E
1500
£
£ 1000 F
>.
A
500
B
0 -

T S T % T % T ¥ T 3 T ki 1
1000 1500 2000 2500 3000 3500 4000
X (mm)

Figure 14. Reconstruction of all stiffeners on small assembly.

Table 1. Coordinates of the reconstructed free ends.

Free End X (mm) Y (mm)
A 1043 452
B 3431 28
C 1691 1919
D 2489 1784
E 3181 1656
F 3754 783
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4. Results and Verification

To investigate the accuracy of the segmented detector, The coordinates of the stiffeners’
free ends were manually measured and compared with the reconstructed position, as
shown in Table 2.

Table 2. Distance between reconstructed and measured positions.

Free End Measured Position Reconstructed Position Distance (mm)
x,y) x, v
A (1032, 426) (1043, 452) 28.2
B (3410, 25) (3431, 28) 21.2
C (1682, 1910) (1691, 1919) 12.7
D (2483, 1773) (2489, 1784) 10.8
E (3177, 1650) (3181, 1656) 7.2
F (3725, 798) (3754, 783) 32.6

In this study, the welding robot equips a range sensor for precise location and welding
tracking. Tolerance of stiffener position is expected to be less than 50 mm. As shown
in the last column of Table 2, all of the distances were less than 50 mm, satisfying the
accuracy requirement.

Based on the demands of ship manufacturing, this algorithm is expected to give a
reliable output, regardless of the kernel size or the shapes of the spatial points.

Figure 15a shows spatial points for which the convolutional grid-based clustering
approach was adopted to extract all of the horizontal segments from the noise and
other segments. Figure 15b shows the feature map sampled from these spatial points,
and Figure 15c-e shows the convolution output for different sizes of Ky (n = 3, 4, 5).
Figure 15c—e shows similar clustering numbers and positions of the black pixels, which
indicated that the convolution output was insensitive to the value of n. As the goal of this
step is to determine the number and positions of potential straight segments, this finding
indicated the good robustness and tolerance of the algorithm, which are important for
industrial applications. Thus, all the horizontal segments could be easily extracted using
linear fitting. The results of the extracted points and segments are shown in Figure 15f.
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Figure 15. Cont.
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Figure 15. (a) Spatial points of small assemblies; (b) Feature map; (c—e). Convolution output with K,

(n =3, 4, and 5, respectively); (f) Stiffener center line reconstructed.

The line segment detector is expected to deal with small assemblies of various shapes
in the shipyard, thus spatial points of small assemblies from actual manufacturing are
tested. Figure 16a,c,e show the spatial points, and Figure 16b,d,f show the corresponding
segments reconstruction results. The comparison of the spatial points and reconstructed
segments shows perfect matches.
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Figure 16. (a,c,e) Spatial points of small assemblies; (b,d,f) Reconstructed segments of stiffeners.

5. Application

Figure 17 describes a general working flow of autonomous ship small assembly line,
in which the line segment detector plays a crucial role. Data volume from the TOF sensor
ranges from 500 MB to 5 GB, and spatial points number are from 50,000 to 100,000. The grid-
based algorithm contributes to reducing computation complexity, allowing the assembly
line welding to multiply workpieces simultaneously.

Data of workpiece Spatial points
TOF sensor
Grid based line segment detector
">,
. Robot commands Stiffeners’ position

A

Welding robot

Figure 17. Working flow of autonomous ship small assembly line.

The line segment detector was implemented on an autonomous ship small assembly
line in Guangzhou Shipyard International Company Ltd., belonging to China State Ship-
building Corporation Ltd. (CSSC), as shown in Figure 18. The assembly line has been put
into production since 2019. The vision system guided robots preforming various welding
jobs without manual teaching or programming. It is also shown that the assembly line is
capable of mass production, taking the leading position in this field.
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(b)

Figure 18. (a) Vision guided welding robots in production at shipyard; (b) Overview of the assem-

bly line.

6. Conclusions

In this paper, a grid-based line segment detector was introduced, which was used
to guide robots for autonomous welding in ship-building. Intelligent robotic welding
systems were implemented using the proposed algorithm, and the approach was verified
under actual manufacturing conditions. The contributions of this study are summarized
as follows:

(1) The method presented in this paper demonstrated good robustness. It successfully
clustered the points of stiffeners with complicated structures, despite the interference
of noise. The robustness is a great advantage for industrial applications.

(2) This algorithm was verified under manufacturing conditions and exhibited accuracy
and robustness. Based on this work, intelligent ship small assembly lines were
implemented and put into production in shipyards.

Curved segments, which are also important in ship-building, were not considered
in this study. In future research, a detector for curved segments will be conducted to fill
the gaps of this study. Also, we are planning to extend our research to more cases in
shipbuilding, like welding jobs for ship blocks, reversing modeling of hull structures, etc.

Author Contributions: Conceptualization, C.N.; software, C.N.; validation, ].D.; writing—original
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