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Abstract: Underway replenishment is essential for ships performing long-term missions at sea,
which can be formulated into the problem of leader-tracking configuration. Not only the position
and orientation but also the velocities are required to be controlled for ensuring the synchronization;
additionally, the control inputs are constrained. On this basis, in this paper, a novel synchronization
controller on account of model predictive control (MPC) for dynamic positioning (DP) ships is devised
to achieve underway replenishment. Firstly, a novel synchronization controller based on MPC is
devised to ensure the synchronization of not only the position and orientation but the velocities;
furthermore, it is a beneficial solution for its advantages in handling the control input constraints
ignored in most studies of underway replenishment. Secondly, a neurodynamic optimization system
is applied to the implementation of MPC, which can improve the computational efficiency and
shorten the simulation time. Thirdly, stability, frequently neglected by traditional MPC, is ensured by
the means of adding a terminal cost function exported from the Lyapunov equation into the objective
function. Finally, the effectiveness and advantages of the proposed control design are illustrated by
extensive simulations.

Keywords: dynamic positioning (DP); synchronization; model predictive control (MPC); neurody-
namic optimization

1. Introduction

Dynamic positioning (DP) control has received intense research interest due to its
wide applications in sea exploration such as offshore oil, underwater cable laying, and gas
drilling. It is well known that DP control is autonomous, which can regulate the horizontal
position and course of marine vessels either bound to a specific point, namely, absolute DP,
or to a moving unit, that is relative DP [1,2]. Considerable solutions have been presented
for the absolute DP in the past years [2–10]. Nevertheless, the relative DP, like underway
replenishment, is still with challenges. Underway replenishment operation involves cargo
transfer between two ships in transit, which is essential for ships performing long-term mis-
sions at sea to avoid returning to the base for replenishing storage or personnel [11–13]. It is
normally formulated into the leader-tracking configuration [14–20]. Specifically, the leader
vessel is controlled to sail on the steady velocity and course independently; however,
the follower vessel requires to move upward alongside with a predefined offset to receive
cargos. Apparently, for underway replenishment, not only the position and orientation are
required to be controlled precisely, but the velocities must be synchronized simultaneously.
There are six variables that needed to be controlled, namely longitudinal displacement,
lateral displacement, yaw angle, surge velocity, sway velocity, and yaw rate, which lead to
a multi-variable control problem. Additionally, it is worth noting that the constraint of the
control input is exiting in the actual underway replenishment, but this problem is ignored
in the above studies [11–13].

In previous years, model predictive control (MPC) has captured more attention owing
to the formidable advantages of handling the multi-variable control problem with con-
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straints [21]. The purpose of MPC is to forecast the future state in advance in virtue of an
explicit model. Then, a control sequence can be calculated by means of handling an opti-
mal problem on-line using current information of the system at every sampling moment.
Control horizon, that is, the first of the above calculated resultant control sequence, is used
for the plant, and the entire procedure is regarded as the next control intervals [21–23].
MPC is a promising solution for the underway replenishment of the DP ship for the fol-
lowing reasons: (1) the input constraints embedded in the actuators of the DP ship are
directly considered in the design of control actions; (2) the multiple control variables are
incorporated into one objective function where the optimization is conducted; (3) the
negative effects of model uncertainty and disturbance can be compensated by the on-line
calculation process; (4) the predictive capability of MPC is advantageous for sailing safety
because the control action can be made in advance. The major challenges that prevent MPC
from being widely applied in practice are computational efficiency and stability [21–23].
Fortunately, the neurodynamic optimization based on the parallel structure of a recurrent
neural network proves to be efficient for the optimization problem [24–26], which has been
applied to various areas successfully [26–29]; therefore, it is applied herein. For the sake of
stability, in this paper, the MPC with a quasi-infinite horizon is introduced. Specifically,
a linear state feedback gain is first calculated; then the terminal penalty matrix, which is
the primary part of the terminal cost function, is calculated on account of the solution of a
Lyapunov equation; finally, the resultant terminal cost function is applied into the objective
function [30,31].

In summary, the primary contributions are summarized blew:

(1) The underway replenishment of the DP ship is formulated into the leader-tracking
configuration, and a novel model predictive control design (MPC) is presented; both
the position and orientation are controlled to achieve the desired responses, and the
velocities are controlled to be synchronized simultaneously.

(2) The control input constraints, which are ignored in most studies of underway replen-
ishment [11–13], are considered in the presented MPC design herein; the comparative
research is carried out to validate the advantages.

(3) The closed-loop stability, frequently neglected by traditional model predictive control,
can be guaranteed herein by means of integrating the terminal cost function exported
from the Lyapunov equation into the objective function.

This paper can be organized into the following sections. Concretely, Section 2 depicts
preliminaries and problem formulation. Section 3 describes the design of the synchroniza-
tion controller on the basis of MPC for DP ship in underway replenishment. Section 4 pro-
poses the simulation results and detailed analysis. Section 5 summarizes the conclusions.

2. Preliminaries and Problem Formulation
2.1. The Mathematical Model of DP Ship

Normally, 3-DoF (degree-of-freedom) ship motion is considered for the maneuvering
of marine surface vessels, namely surge, sway, and yaw. The kinematics of 3-DoF ship
motion can be described as [32]

.
η = J(ψ)υ (1)

here η = [x, y, ψ]T denotes the lengthwise shift, transverse shift, and course separately;
υ = [u, v, r]T represents the surge velocity, the sway velocity, and the yaw rate respectively;
the rotation matrix is

J(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (2)

The kinetics of ship motion is normally defined as [33]

M
.
υ = −C(υ)υ− D(υ)υ + τT (3)
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where M =

 m− X .
u 0 0

0 m−Y .
v mxg −Y.

r
0 mxg − N .

v Iz − N.
r

 is the inertia matrix; the damping matrix

is D(υ) =


−Xu − X|u|u|u| − Xuuuu2 0 0

0 −Yv −Y|v|v|v| −Y|r|v|r| −Yr −Y|v|r|v| −Y|r|r|r|
0 −Nv − N|v|v|v| − N|r|v|r| −Nr − N|v|r|v| − N|r|r|r|

,

and C(υ) =

 0 0 −(m−Y .
v)v− (mxg −Y.

r)r
0 0 (m− X .

u)u
(m−Y .

v)v + (mxg −Y.
r)r −(m− X .

u)u 0


denotes the Coriolis and centrifugal matrix; furthermore, τT = [ τ1 τ2 τ3 ]

T are the
control inputs, and it has |τ1| ≤ 2.0 N, |τ2| ≤ 2.0 N, and |τ3| ≤ 1.5 N ·m; The X(·), Y(·), N(·)
represent hydrodynamic parameters [33].

2.2. Wave-Frequency (WF) Model

The WF model, which is widely adopted for stimulating the disturbances for dynamic
positioning [2,32,34,35], is employed herein. The basic idea is to use a second-order system
as an approximation for the linear wave spectrum for each degree of freedom. It has the
following form [2,32]

.
ξx = xw
.
ξy = yw
.
ξψ = ψw
.
xw = −2ςw0xw − w2

0ξx + Kwwn1
.
yw = −2ςw0yw − w2

0ξy + Kwwn2
.
ψw = −2ςw0ψw − w2

0ξψ + Kwwn3

(4)

where w0 is the frequency of dominating wave, ς is the damping ratio of dynamic model,
wn1 is Gaussian noise, and Kw is the parameter related to the wave intensity (the relation-
ship between parameters’ value and sea state are given Table 4 in [2]). The disturbances
can be presented as ηw =

[
xw yw ψw

]T . Above all, the total motion of DP ship can be
represented as [2,32]

ηtotal = η + ηw (5)

2.3. Problem Formulation

The underway replenishment control problem herein is formulated into a leader-
tracking configuration [36,37]. The leader ship is controlled independently to maintain
its course and speed, and the tracking ship is controlled to move up alongside a given
offset. The purpose of the traditional tracking problem is to make the position of a marine
ship follow a predefined trajectory as closely as possible; however, for missions, such as
underway replenishment, the major challenge is to require the synchronization of velocities
simultaneously while controlling the position and direction precisely. The leader ship is
regarded as the reference for the follower ship, and the model can be depicted as

.
ηr = J(ψr)υr

M
.
υr = −C(υr)υr − D(υr)υr + τTr

(6)

By following the coordinate transformation [16,38,39], Equation (1) can be rewritten as

z1 = x cos ψ + y sin ψ
z2 = −x sin ψ + y cos ψ
z3 = ψ

(7)
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and the kinematics part of Equation (6) with the offset displacement (xo, yo) can be repre-
sented as

z1r = (xr − xo) cos ψr + (yr − yo) sin ψr
z2r = −(xr − xo) sin ψr + (yr − yo) cos ψr
z3r = ψr

(8)

Then, the error system of synchronization control of the DP ship for underway replen-
ishment can be defined as

zie = zi − zir i = 1, 2, 3
ue = u− ur
ve = v− vr
re = r− rr

(9)

MPC is a natural solution for the multi-variable control problem of Equation (9)
because the variables can be treated as an objective function systematically where the opti-
mization can be applied [21–23,40–42]. Additionally, the control inputs of the DP ship are
constrained in practice, so it is particularly important for sailing in proximity. Considering
the large inertia of ship motion is the main cause for collision, the predictive mechanism of
MPC allows it to handle the constraint ahead of time, which can mitigate the influence of
the large inertia of ship motion. Therefore, in this paper, a novel synchronization controller
on account of model predictive control (MPC) for dynamic positioning (DP) ships is de-
vised to achieve underway replenishment. Firstly, a novel synchronization controller based
on MPC is devised to ensure the synchronization of not only the position and orientation
but the velocities; furthermore, it is a beneficial solution for its advantages in handling the
control input constraints ignored in most studies of underway replenishment. Secondly,
a neurodynamic optimization system is applied to the implementation of MPC, which
can improve computational efficiency and shorten the simulation time. Thirdly, stability,
frequently neglected by traditional MPC, is ensured by the means of adding a terminal cost
function exported from the Lyapunov equation into an objective function. Additionally,
the design block diagram of the presented synchronization controller is shown in Figure 1.
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3. The Controller Design

In this part, the synchronization controller of the DP ship for underway replenishment
is devised on the basis of the stable MPC and neurodynamic optimization.

By differentiating Equation (9) and linearizing the resultant equation, it yields

.
xt = Atxt + BtτT (10)
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where xt =
[

z1e z2e z3e ue ve re
]T, and At =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 − d11

m11
0 0

0 0 0 0 − d22
m22

0

0 0 0 0 0 − d33
m33


,

Bt =



0 0 0
0 0 0
0 0 0
1

m11
0 0

0 1
m22

0
0 0 1

m33


, here m11 = m− X .

u, m22 = m− Y .
v, m33 = Iz − N.

r, d11 = −Xu,

d22 = −Yv, d33 = −Nr. Based on a sampling moment, Equation (10) is rewritten as the
following discrete form

x(k + 1) = Ax(k) + Bτ(k) (11)

where x, y ∈ R6, A ∈ R6×6, B ∈ R6×3; k represents the current sampling moment.

3.1. Design of Terminal State Matrix

A quadratic terminal cost function is devised to guarantee stability, and the terminal
state matrix, which is the primary part of the terminal cost, is derived from an appropriate
Lyapunov equation [30,31]. The process of design is described as follows.

A linear state feedback law for Equation (11) can be determined by

τ = Kx (12)

where K is the vector of control gain. Then, the state matrix of terminal cost P can be
derived from the following Lyapunov equation

(Ak + κ I)T P + P(Ak + κ I) = −(Qlq + KT RlqK) (13)

where Ak = A+ BK; Qlq and Rlq are weighing matrices on control output and input [30,31].
κ is chosen as according to the following principle

κ < −λmax(Ak) (14)

It ensures the negativity of the real parts of all eigenvalues of Ak + κ I [30,31].

3.2. MPC Design

Given that NP is the predictive horizon, Nc is the control horizon [40–42]. Then,
the further responses of Equation (11) can be forecasted by

x(k + 1 |k) = Ax(k) + Bτ(k)
x(k + 2 |k) = Ax(k + 1|k) + Bτ(k + 1)

= A2x(k) + ABτ(k) + Bτ(k + 1)
...

x(k + NP
∣∣k) = ANP x(k) + ANP−1Bτ(k) + ANP−2Bτ(k + 1)
+ . . . + ANP−Nc Bτ(k + Nc − 1)

(15)

where x(k + i|k), i = 1, 2, · · · , NP is the forecast of x(k + i).
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The following vectors can be described as

X = [ x (k + 1|k) T x (k + 2|k) T · · · x (k + NP|k) T ]
T ∈ R6NP

Γ = [ τ(k)T τ(k + 1)T · · · τ(k + Nc − 1)T ]
T ∈ R3Nc

(16)

For the sake of simplicity, Equation (15) is rewritten as the following form

X = Fx(k) + ΦΓ (17)

where F =


A
A2

...
ANp

 ∈ R6NP×6, Φ =


B 0 · · · 0

AB B · · · 0
...

. . .
...

ANp−1B ANp−2B . . . ANp−Nc B

 ∈ R6NP×3Nc .

Then, the multi-variable control problem of the synchronization of the DP ship is
transformed into the optimization problem with a terminal cost

J = XTQmpcX + ΓT RmpcΓ + XT
P PXP (18)

subject to
Γmin ≤ Γ ≤ Γmax (19)

where Qmpc, Rmpc are weighing matrices, XT
P PXP denotes the terminal cost, XP is the

terminal state, P is the state matrix of terminal cost determined by Equation (13).

3.3. Neurodynamic Optimization Design

One challenge of the implementation of the MPC method is the computational burden.
In this section, a neurodynamic system is set up to deal with the constrained optimization
problem parallelly using the PNN.

Substituting Equation (17) into Equation (18), it yields

J = [Fx(k) + ΦΓ]TQmpc[Fx(k) + ΦΓ] + ΓT RmpcΓ

+
[
Fxp(k) + ΦΓ

]T P
[
Fxp(k) + ΦΓ

]
= [Fx(k)]TQmpc[Fx(k)] + ΓTΦTQmpcΦΓ + ΓT RmpcΓ +

[
Fxp(k)

]T P
[
Fxp(k)

]
+ΓTΦT PΦΓ + 2[Fx(k)]TQmpcΦΓ + 2

[
Fxp(k)

]T PΦΓ

= ΓT(ΦT PΦ + ΦTQmpcΦ + Rmpc)Γ +
[
2
[
Fxp(k)

]T PΦ + 2[Fx(k)]TQmpcΦ
]
Γ

+[Fx(k)]TQmpc[Fx(k)] +
[
Fxp(k)

]T P
[
Fxp(k)

]
(20)

Define
H = ΦT PΦ + ΦTQmpcΦ + Rmpc

W = 2
[
Fxp(k)

]T PΦ + 2[Fx(k)]TQmpcΦ

ξ = [Fx(k)]TQmpc[Fx(k)] +
[
Fxp(k)

]T P
[
Fxp(k)

] (21)

Thus, Equation (20) can be written as

J = ΓT HΓ + WΓ + ξ (22)

The control variable Γ is considered as the states of the PNN, and the neurodynamic
system is described as

dΓ
dt

= ϑ{PΩ(Γ−Ω(Γ))− Γ} (23)
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here ϑ is the convergent rate, Ω(Γ) is set as ∇J [24,25], and PΩ is the projection operator.

PΩ(τi) =


τmin, τi < τmin
τi, τmin ≤ τi ≤ τmax
τmax, τi > τmax

(24)

Consider the following Lyapunov function

V(Γ) =
∫ 1

0
(Γ− Γ∗)Ω(Γ∗ + t(Γ− Γ∗))dt (25)

By differentiating Equation (25), we can obtain [24,25],

dV(Γ)
dΓ

= ∇V(Γ)T = Ω (26)

where ∇V(Γ) represents the gradient of V.
Then, we have

dV(Γ)
dt

=

[
dV
dΓ

]
dΓ
dt

= ϑΩ(Γ)T{PΩ(Γ−Ω(Γ))− Γ} (27)

Since Ω(Γ)T{PΩ(Γ−Ω(Γ))− Γ} ≤ −ϑ‖PΩ(Γ−Ω(Γ))− Γ‖2 [24,25]. Thus,

dV
dt
≤ 0 (28)

We can conclude that the neurodynamic system is steady. In other words, each
trajectory corresponding to the dynamic system can converge to an equilibrium point from
any initial point in the domain [24–29].

4. Simulation Results

Multiple simulations are carried out to illustrate the effectiveness and advantages
of the presented novel synchronization controller on account of model predictive con-
trol. Specifically, the multiple simulations can be segmented into two groups: the first
group of simulations is to illustrate the effectiveness of the presented synchronization con-
troller from the different initial points with disturbances, the disparate predictive horizon,
and the changes in velocities and course; the advantages of the presented synchronization
con-troller are illustrated by the two comparative simulations, the first is between PID,
LQR, and the presented synchronization controller with and without input constraints,
and the other is between conventional MPC and the presented MPC integrating with PNN.
The parameters of the simulation model are given in [33], specifically, Ts = 0.01s, Nc = 5,
NP = 180, Qmpc = diag

{
3000 3000 3000 1 1 1

}
, and Rmpc = diag

{
1 1 1

}
.

And the parameter of PNN is set as ϑ = 0.001.

4.1. Performance of Synchronization Control from Different Initial Points with Disturbances

In this section, the control performance of the presented novel synchronization con-
troller based on MPC starting from different initial points with disturbances is studied to
illustrate the effectiveness of the presented synchronization controller. The initial states of
leader and follower are given in Table 1.

It is worth noting that the disturbances are simulated using the WF model in Section 2.
The Beaufort number (BN) is chosen as 5, and the environmental effects of BN 5 can be
described with wind speed 10.7 m/s, significant wave height Hs = 2.1 m, peak wave
period T0 = 7.5 s, and current speed 0.75 m/s [43]. The corresponding parameters of WF
model are therefore set as ω0 = 0.838, ς = 0.257, and Kw = 0.296 (the values of parameters
for different Beaufort numbers are given in [2]).
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Table 1. Initial states of leader and follower.

Leader Ship Follower Point-1 Follower Point-2 Follower Point-3

x (m) 0 18 25 30
y (m) 0 0 −5 −10

ψ (deg) 45 45 45 45
u (m/s) 0.1 0.5 1 1
v (m/s) 0.1 0.1 0 1

r (rad/s) 0.05 0.1 0 0.5

In addition, the simulation results are shown in Figures 2–4. Specifically, Figure 2
denotes the tracking performance of the presented synchronization control from different
initial points with disturbances. Figure 3 represents the synchronization of velocities. Ad-
ditionally, Figure 4 indicates the corresponding responses of control inputs. For traditional
underway replenishment, normally, it involves two separated stages. First, the follower
ship is controlled to the predefined location in the formation independently. Then, the ve-
locities are controlled to synchronize with the leader ship. In this section, the position and
velocities of the follower ship are designed to be control outputs together. As shown in
Figures 2 and 3, the follower vessel can move along with the leader ship with a given offset
from different initial points with disturbances automatically. Meanwhile, the synchroniza-
tion of velocities is achieved. After all, the effectiveness of the presented synchronization
controller is illustrated by the simulation results.
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4.2. Influence of Prediction Horizon

The predictive horizon NP is the key control parameter of MPC, representing the
length of prediction. The ship motion normally suffers from large inertia, which is rather
dangerous for navigation safety. The predictive capability of MPC makes it a favorable
solution, because the control action can be decided ahead of time by virtue of the predicted
further responses. This is crucial for underway replenishment to avoid the collision.
Therefore, in this section, the simulations are carried out by set different predictive horizon
NP varies as 100, 400, and 450 to illustrate the effectiveness of the presented synchronization
controller. It is worth noting that NP = 100 indicates that the future responses in 1 s
(Ts = 0.01 s) are predicted and then used in the control design. The simulation results are
shown in Figures 5–7, which are the tracking performance, synchronization of velocities,
and the corresponding responses of control inputs with different predictive horizons.
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Figure 5. The tracking of performance of the synchronization control with disparate
prediction horizon.

It is worth noting that the control input constraints |τ1| ≤ 2.0 N, |τ2| ≤ 2.0 N,
and |τ3| ≤ 1.5 N ·m are considered in this case and the forthcoming cases. As we can
see, when NP = 100, the responses of the follower ship fluctuate, particularly in the surge
velocity, see Figure 6; when NP = 400 and NP = 450, the responses of the follower ship are
nearly the same. It can be concluded that when NP ≥ 400, the control performance does
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not improve much as NP increases. Therefore, in this paper, the predictive horizon is set as
NP = 400, i.e., the control action can be taken in advance approximately 4 s.
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Note that, in Section 4.1, the predictive horizon is NP = 180 and the control per-
formance seems fine because the control input constraints are not initiated, see Figure 4.
The authors use such arrangement to show the influences of control input constraints,
which is frequently ignored in underway replenishment [11–13]. However, it truly exists in
reality. The details are reported the following case.

4.3. Comparative Studies on Input Constraints

In this section, the comparative simulations are carried out between proportion-
integration-differentiation (PID) [11,12], linear quadratic regulation (LQR), and the pre-
sented synchronization controller to illustrate the advantages of the presented synchroniza-
tion controller in solving input constraints. The parameters of PID are set as KP1 = 1000,
Ki1 = 0.1, Kd1 = 10, KP2 = 200, Ki2 = 0.1, Kd2 = 10, KP3 = 200, Ki3 = 0.1, and Kd3 = 10.
The parameters of LQR are Q = diag{1000 1000 1000 1 1 1} , R = diag

{
1 1 1

}
.

Two scenarios, i.e., scenario (a): comparative studies without input constraints and
scenario (b): comparative studies with input constraints, are conducted. The comparative
performance is shown in Figures 8–10. In scenario (a), the control performance is just
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slightly different using PID, LQR, and the presented control design. However, when
the input constraints are initiated, the performance are very different, particularly in the
synchronization of velocities, see Figure 9. Note that the length of simulations is 100 s in
this section. However, in order to show the results clearly, only the transit process, where
the main difference appears, is given in Figures 9 and 10.
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In Figure 9 scenario (b), as we can see, from the perspective of settling time and
overshoot, the best control performance is realized by means of the presented MPC design.
The reason is that the concept of MPC is to use the predicted future responses to determine
current control action, and in this way, the violation of constraints can be predicted and
avoided in advance. The LQR is better than PID because it is an optimal control method
that can handle the multi-variable control problem such as underway replenishment in
a way that PID does not attempt. For underway replenishment, not only the position
and orientation but also velocities are required to be synchronized; moreover, the control
input constraints exist in practice. Nevertheless, the existing references [11,12] use the PID



J. Mar. Sci. Eng. 2021, 9, 1239 12 of 16

method to design the controller, while control input constraints are not considered in all
references [11–13]. It motivates the present study.
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4.4. Performance of Synchronization Control with Changes in Velocities and Course

In this section, the control performance of the presented novel synchronization con-
troller based on MPC with changes in velocities and course is studied to illustrate the
effectiveness of the presented synchronization controller. The reference state information
from the leader vessel is set up as follows

ur = 1 m/s, vr = 0 m/s, rr = 0 rad/s 1 ≤ t < 50 s
ur = 0.5 m/s, vr = 0 m/s, rr = −0.005 rad/s 50 ≤ t < 100 s
ur = 1 m/s, vr = 0 m/s, rr = 0 rad/s 100 ≤ t < 150 s

(29)

The simulation results are described in Figures 11–13. Specifically, Figure 11 represents
the tracking performance of synchronization control with changes in velocities and course.
Figure 12 shows the synchronization of velocities with changes in velocity and course.
Figure 13 shows the corresponding responses of the control inputs. As we can see that
the purpose of synchronization can be realized even the course and velocities change over
time, which can illustrate the effectiveness of the presented synchronization controller.

4.5. Comparative Studies on Computation Efficiency

The computation efficiency is important for real-world applications. Therefore, in this
section, the contrastive research between conventional MPC and the presented synchro-
nization controller is carried out to illustrate the advantages of the presented synchroniza-
tion controller in improving the computation efficiency (Both cases with Intel Core (TM)
i5-6300HQ CPU, 2.3 GHz, 4 GB). It should be noted that the predictive horizon NP = 400
is the same as the above cases, as well as Nc = 400.
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Figure 13. The responses of control inputs with changes in velocities and course.

Figures 14 and 15 show the contrastive performance and control inputs of conven-
tional MPC and the presented MPC integrating with PNN methods. As we can see,
the simulation time of the presented MPC with the PNN method is much less than the
traditional MPC, whereas the control performance of the two methods is nearly the same.
It can be concluded that the presented MPC with the PNN method is with advantage in
computational efficiency.
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5. Conclusions

A novel model predictive control for underway replenishment of the DP ship has
been presented in this paper. The underway replenishment has been formulated into a
leader–follower configuration. A quasi-infinite horizon technique has been employed
to guarantee stability by designing an appropriate terminal cost function based on the
Lyapunov theorem. The simulation results have shown that the follower can move along
with the leader ship automatically from different initial points under disturbances, and the
synchronization of velocities can be achieved; then, the key parameter of the MPC has
been investigated. Additionally, the contrastive research has illustrated the superiorities
of the presented method in dealing with input constraints and computational intensity.
Nevertheless, the presented method is limited to underway replenishment between the
homogeneous ship model. In future, the further research will concentrate on applying
the presented synchronization control method to achieve the underway replenishment
between the heterogeneous ship model.
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