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Abstract: In this study, the time-varying wind stress drag coefficient in the Ekman model was inverted
by the cubic spline interpolation scheme based on the adjoint method. Twin experiments were carried
out to investigate the influences of several factors on inversion results, and the conclusions were
(1) the inverted distributions with the cubic spline interpolation scheme were in good agreement with
the prescribed distributions of the wind stress drag coefficients, and the cubic spline interpolation
scheme was superior to direct inversion by the model scheme and Cressman interpolation scheme;
(2) the cubic spline interpolation scheme was more advantageous than the Cressman interpolation
scheme even if there is moderate noise in the observations. The cubic spline interpolation scheme
was further validated in practical experiments where Ekman currents and wind speed derived from
mooring data of ocean station Papa were assimilated. The results demonstrated that the variation
of the time-varying wind stress drag coefficient with time was similar to that of wind speed with
time, and a more accurate inversion result could be obtained by the cubic spline interpolation scheme
employing appropriate independent points. Overall, this study provides a potential way for efficient
estimation of time-varying wind stress drag coefficient.

Keywords: wind stress drag coefficient; time-varying; Ekman model; adjoint assimilation; cubic
spline interpolation

1. Introduction

Wind stress over the sea surface is a primary driving force of upper ocean circulation
and ocean surface waves and is an important mechanism by which the atmosphere conveys
momentum to the ocean. Therefore, the exact estimation of wind stress is important for the
simulation and forecasting of atmospheric and oceanic processes [1]. Meanwhile, wind
stress is a key parameter for understanding physical processes in both the atmosphere and
ocean, whose determination is important for coupled ocean–atmosphere modeling [2].

Usually, wind stress is parameterized by the wind stress drag coefficient (WSDC). It
has long been recognized that the drag coefficient of the sea surface does not depend on
wind speed alone, while it has been highlighted that the wind drag coefficient strongly
depends on the sea roughness [3,4]. In previous studies, the WSDC was usually assumed to
be a constant [5], considered as a linear function with respect to wind speed [6], or further
believed to be a nonlinear function with respect to wind speed [7,8]. At present, it is widely
accepted that wind stress coefficients vary nonlinearly with wind speed (and thus with
time)—especially at high wind speeds [9,10]. Some scholars have found that spatially and
temporally varying WSDC fields are needed in a variety of climate and air–sea interaction
studies [11,12]. In particular, with the improvement of the time resolution of the model, it
is meaningful to study the WSDC with daily variations. The determination of the WSDC
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is a difficult problem in the field of marine science and atmospheric science because of
the interaction between air and sea; this difficulty stems from the problem of turbulence.
The turbulence problem is difficult to solve because of its variability in time and space.
Ocean observations at near-inertial frequencies show that the turbulent closure model is
better at predicting wind speed than the plate model [13]. There are a variety of options for
turbulent closure models, such as models depending on Richardson number, k-εmodel,
M-Y model, Prandtl mixed-length model, KPP model, etc., which play important roles in
different regions and different events [14–18]. However, as the ocean environment often
changes with space and time, and the observation data are insufficient, the applications
of various turbulence models are easily limited. Specifically, the parameters calculated by
different models vary greatly, and few models can be accurately applied to all sea areas or
problems in the world.

During recent decades, data assimilation has played an important role in the de-
termination of unknown parameters. The process that the parameters are estimated
by—assimilating observations with a data assimilation method—is known as parameter
estimation. The adjoint method is a powerful tool for parameter estimation, which has been
widely used by many scholars. Zhang et al. [19] successfully explored how eddy viscosity
is developed with varying wind fields, but did not consider the WSDC. Cao et al. [20]
proposed an estimation scheme to evaluate the eddy viscosity profile (EVP) at the bottom
of the Ekman boundary layer based on the adjoint method. Zhang et al. [21] successfully
inverted the time-varying vertical eddy viscosity coefficients in the Ekman model and
also found that the inversion results were much more sensitive to the observations in the
upper layers.

In order to improve the computational efficiency and accuracy of parameter estimation,
independent point (IP) schemes were used by some scholars in the adjoint method [22–24].
The so-called IP scheme is where the WSDCs at some selected IPs are taken as control
variables and those at other points are calculated by interpolating values at IPs. There
are many interpolation schemes, such as the Cressman interpolation based on linear
interpolation. However, the Cressman that was interpolation traditionally used in the
IP scheme can result in unsmooth curves. Meanwhile, we found that the cubic spline
interpolation (CSI) scheme was often used in practice because of its favorable smoothness
and continuity [25–28]. Therefore, we try to use the CSI instead of linear interpolation to
invert the time-varying WSDC in an Ekman model. We aim to improve the simulation
capability of the model and provide a reference for the selection of WSDCs in other ocean
models. In order to verify the feasibility and accuracy of the CSI scheme, twin experiments
and practical experiments are conducted.

The organization of this paper is as follows: In Section 2, the numerical model and
CSI scheme are introduced. In Section 3, a series of twin experiments are carried out to
verify the feasibility of the CSI scheme. In Section 4, practical experiments are carried out
to verify the inverted effect of the CSI scheme. Finally, conclusions are given in Section 5.

2. Numerical Model
2.1. Governing Equations (Forward Model)

In this paper, the Ekman model [29] with time-varying WSDC on the sea surface is
used, and its governing equations are:

∂u
∂t − f v = ∂

∂z

(
A ∂u

∂z

)
,

∂v
∂t + f u = ∂

∂z

(
A ∂v

∂z

)
.

(1)

The boundary conditions are

∂u
∂z

∣∣∣∣
z=0

=
Cd
A
· ρa

ρw

√
u2

a + v2
aua,

∂v
∂z
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z=0

=
Cd
A
· ρa

ρw

√
u2

a + v2
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A
∂u
∂z

∣∣∣∣
z=−H0

= 0, A
∂v
∂z

∣∣∣∣
z=−H0

= 0. (3)

The initial conditions are:

u|t=0 = u0, v|t=0 = v0. (4)

where t is the time; z is the water depth, and the vertically upward direction of the z-axis
is positive, with z = 0 at the ocean surface; u (positive to the east) and v (positive to the
north) are the horizontal velocity components; f is the Coriolis parameter, which is set as a
constant in this model; A is the eddy viscosity coefficient; Cd is the time-varying WSDC; ρa
and ρw are densities of air and seawater, respectively; ua and va are horizontal components
of wind speed at 10 m altitude; H0 is the depth of the Ekman layer.

2.2. Adjoint Equations (Inverse Model)

The adjoint model, which is derived by the Lagrangian multiplier method and the
adjoint operator in functional analysis, plays an important role in the estimation of model
parameters. The cost function, which quantifies the difference between the model output
and observations, is defined as:

J(u, v, A, Cd) =
1
2

Km

∫
t

∫
z
((u− û)2 + (v− v̂)2)dzdt, (5)

where û and v̂ denote the observed velocities, and Km is a weight coefficient. In particular,
it is equal to 1 in this study [30]. According to the Lagrangian multiplier method, the
Lagrange functional is constructed as:

L(u, v, A, Cd, λ, µ) = J+∫
t

∫
z [λ(

∂u
∂t − f v− ∂

∂z (A ∂u
∂z )) + µ( ∂v

∂t + f u− ∂
∂z (A ∂v

∂z )]dzdt,
(6)

where λ and µ are Lagrange multipliers for u and v, respectively. The problem of minimiz-
ing the cost Function (5) is equivalent to finding the stationary point with respect to u, v,
Cd, λ and µ under the condition that the gradients of the Lagrange functional are 0. Then,
the following equation can be obtained:

∂L(u, v, A, Cd, λ, µ)

∂λ
= 0,

∂L(u, v, A, Cd, λ, µ)

∂µ
= 0. (7)

∂L(u, v, A, Cd, λ, µ)

∂u
= 0,

∂L(u, v, A, Cd, λ, µ)

∂v
= 0. (8)

∂L(u, v, A, Cd, λ, µ)

∂Cd
= 0. (9)

Equation (7) recover the original governing equations, while the Equation (8) result in
the adjoint equations, which are formulated as follows:

∂λ
∂t − f µ + ∂

∂z (A ∂λ
∂z ) = Km(u− û),

∂µ
∂t + f λ + ∂

∂z (A ∂µ
∂z ) = Km(v− v̂).

(10)

The corresponding boundary conditions and initial conditions are:

∂λ

∂z
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z=0

= 0,
∂µ

∂z
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z=0

= 0. (11)

∂λ

∂z

∣∣∣∣
z=−H0

= 0,
∂µ

∂z
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z=−H0

= 0. (12)

λ|t=T = 0, µ|t=T = 0. (13)
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where T is the total time of integration.
From Equation (9), we can obtain the gradient of cost function with respect to time-

varying WSDC:

∂J
∂Cd

= − ρa

ρw

√
(ua)

2 + (va)
2 × (uaλz=0 + vaµz=0). (14)

The detailed finite-difference scheme for the above equations is given in Appendix A.

2.3. Independent Points Scheme and Cubic Spline Interpolation

The basic idea of the IP scheme is simple. For example, the WSDCs are assumed to
be varying in time and I = {x1, x2, . . . , x10} are the time index. First, the indexes of the
IPs L = {x1, x4, x7, x10} are a subset of I. For convenience, these IPs are selected uniformly.
Second, the WSDCs at all IPs can be inverted by the adjoint method. Finally, the WSDCs at
the other points (i.e., x2, x3, x5, x6, x8, and x9) can be interpolated from those at the IPs.

The CSI scheme is used for interpolations in this study and the cubic spline function
is employed in this scheme.

Given a series of IPs within the interval [a b], where a = x0 < x1 < · · · xn = b,
and the corresponding function values are y0, y1, · · · , yn, a cubic polynomial S(x) can be
constructed in any interval [xi, xi+1] to satisfy S(xi) = yi, which is expressed as:

S(x) = ai + bix + cix2 + dix3(xi ≤ x ≤ xi+1), (15)

where ai, bi, ci, and di are the spline interpolation coefficients, and the above Equation (15)
must satisfy the condition of smooth continuity:

S(x+i ) = S(x−i ),

S′(x+i ) = S′(x−i ), (i = 1, 2, · · · , n− 1)

S′′ (x+i ) = S′′ (x−i ).

(16)

Meanwhile, Equation (15) must satisfy the boundary condition. In this study, the
natural boundary condition is taken, which can be formulated as:

S′′ (x0) = S′′ (xn) = 0. (17)

The selection and calculation of spline functions are presented in Appendix B. The
calculation process of spline interpolation coefficients of S(x) can be found in Pan et al. [31].

3. Twin Experiments and Results
3.1. Estimation of WSDCs with Different Distributions

As mentioned in the introduction, the WSDC and wind speed are time-varying. In
addition, the variation of wind speed over time above the ocean is complex, and the
specific distribution of the WSDC over time is unknown. Thus, we designed a group
of twin experiments to verify the performance of the CSI scheme in the inversion of
different prescribed WSDC distributions. Five cases of temporal WSDCs and wind speed
are as follows:

Case1 :

{
Cd(t) = 0.00024 + 0.00192 cos(πt/2T),

ua(t) = 10 cos(πt/2T) + 25.

Case2 :

{
Cd(t) = 0.0012 + 0.00096 cos(πt/T),

ua(t) = 10 cos(πt/T) + 25.

Case3 :

{
Cd(t) = 0.0012 + 0.00096 cos(2πt/T),

ua(t) = 10 cos(2πt/T) + 25.
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Case4 :

{
Cd(t) = 0.0012 + 0.00096 cos(4πt/T),

ua(t) = 10 cos(4πt/T) + 25.

Case5 :

{
Cd(t) = 0.0012 + 0.00096 cos(8πt/T),

ua(t) = 10 cos(8πt/T) + 25.

where T is the same as in the inverse model.
It can be inferred that the prescribed WSDC is increasingly more complex from Case

1 to Case 5. Note that the WSDC of Case 1 is set as 0.00024 in order to keep its variation
range the same as that of Cases 2–5, and wind speed only exists in the east–west direction
(i.e., va = 0).

In order to further highlight the effectiveness of the CSI scheme, experiments with
direct inversion by the model (DIM, in which the WSDC at each point is independently
inverted) and with Cressman interpolation (CI) schemes are also designed for compari-
son. The calculation formulas of the three schemes are shown in Appendix B. The num-
ber of selected IPs with different inversion schemes for each case is shown in Table 1.
Model parameters are set in Table 2. The main purpose of this is to estimate time-varying
WSDCs in this study. As mentioned above, the time-varying eddy viscosity has been
studied in previous studies, such as Zhang et al. [21]. Therefore, we set the eddy vis-
cosity as a variable that only varies with depth. The classical distribution of the eddy
viscosity coefficient (A) can be found in the experimental results of Yu and O’Brien [29]
(A = 3.9× 10−6·h2 − 8.3× 10−4·h + 0.0524(0 ≤ h ≤ 100), where h is depth), which has
been widely used in ocean models [32–34]. The initial guess value of WSDC is set as
1.2 × 10−3 in all cases. Considering that the observation data are only available at some
depths (5 m and 35 m), two layers (i.e., the first and the seventh layers) of observation data
are assimilated in this section. The abbreviations of some variables are shown in Table 3.

Table 1. The IPs with different inversion schemes in the first group of experiments.

Scheme DIM CI CSI

group1

Case 1 \ 5 5
Case 2 \ 7 7
Case 3 \ 7 7
Case 4 \ 9 9
Case 5 \ 17 17

DIM for a scheme of direct inversion by the model, CI for Cressman interpolation scheme, and CSI for cubic
spline interpolation scheme.

Table 2. Model parameters.

Parameters Symbol Value Units

Total integration time T 10 day
Time step ∆t 0.5 hour

Vertical space step ∆z 5.0 m
Ekman depth H0 100 m

Initial zonal velocity u0 0 m·s−1

Initial meridional
velocity v0 0 m·s−1

Coriolis parameter f 10−4 s−1

Sea-water density pw 1.025 × 103 kg·m−3

Air density pa 1.2 kg·m−3
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Table 3. A list of abbreviations and variables.

Name Abbreviation

Wind stress drag coefficient WSDC
Cubic spline interpolation CSI

Direct inversion by the model DIM
Cressman interpolation CI

Independent point IP
Mean absolute error MAE
Mean absolute error MRE

The experimental steps are as follows:

(1) Run the forward model with prescribed WSDCs, and the calculated velocities are
regarded as pseudo “observations”.

(2) Run the forward model with the initial guess value of WSDC (Cd0 = 1.2 × 10−3) to
obtain the simulated values of velocity.

(3) Run the inverse model with the difference between the “observations” and simula-
tions by the model. The gradients of the cost function with respect to WSDCs can be
calculated according to Equation (14). By employing an optimization algorithm, the
WSDC can be optimized.

(4) By repeating steps (2) and (3) until the inversion results meet a convergence criterion,
the final inversion values of WSDC are obtained. Since the cost functions are almost
no longer declining after 500 iterations, we finally selected 500-step iteration for
all experiments.

The prescribed and inverted WSDCs are shown in Figure 1. It can be seen that the
prescribed distributions of WSDCs (Case 1–5) can be successfully inverted by the CI scheme
and the CSI scheme, while they are partially inverted by the DIM scheme. As the distribu-
tions become increasingly more complex from Case 3 to Case 5, the consistencies between
the inverted distributions obtained by the CI scheme and the prescribed distributions are
getting weaker, while the inversions obtained by the CSI scheme are still in good agreement
with the prescribed distributions, even at the wave peak and trough.

Figure 1. The prescribed distributions of WSDCs and inversion distributions of WSDCs obtained by
the adjoint assimilation of different schemes. Panels (a–e) correspond to Cases 1–5, respectively.
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The mean absolute errors (MAEs) and mean relative errors (MREs) between prescribed
and inverted WSDCs after assimilation are shown in Table 4. The magnitude orders of
MAEs for the DIM scheme were all 10−4, while those for the CI scheme and CSI scheme
were about 10−5–10−6. In Case 1, the MRE for the DIM scheme was slightly larger than 25%,
and furthermore, the MREs of Case 2–5 were more than 70%, indicating that the results
of the DIM scheme were poor. When the distributions were relatively simple (Case 1–3),
the MREs of the CI scheme and CSI scheme were less than 6%. Thus, the reliability of the
inversion results was high. In addition, the MREs of the CI scheme increased to 17.73% and
20.00% for the two complex distributions (Case 4–5), but the MREs using the CSI scheme
remained at a low level (4.48% and 6.34%), which shows that the inversion results of the
CSI scheme were more reliable.

Table 4. The mean absolute error (MAE) and mean relative error (MRE) between the prescribed and inverted WSDCs with
different schemes in different cases.

DIM CI CSI

MAEs MREs MAEs MREs MAEs MREs

Case 1 1.79 × 10−4 25.01% 7.89 × 10−6 6.00% 2.77 × 10−6 0.18%
Case 2 3.27 × 10−4 78.25% 7.65 × 10−6 1.07% 3.33 × 10−6 0.61%
Case 3 3.23 × 10−4 76.66% 5.34 × 10−5 5.66% 1.29 × 10−5 1.25%
Case 4 3.62 × 10−4 80.45% 9.78 × 10−5 17.73% 3.34 × 10−5 4.48%
Case 5 3.43 × 10−4 79.25% 1.06 × 10−4 20.00% 3.83 × 10−5 6.34%

We further analyzed the curves of the normalized cost function, which are shown
in Figure 2. It is shown that the cost functions for the DIM scheme were only decreased
by 1–2 orders of magnitude. On the contrary, those with the CI scheme and CSI were
scheme generally decreased by 2–4 orders of magnitude. The results indicate that the latter
two schemes can achieve better simulation results, demonstrating better inverted WSDCs.
Although the cost functions of the CSI scheme decreased more slowly than those of the
CI scheme during the several early iterations, they were lower after a certain amount of
iterations, indicating that the inversion effect of the CSI scheme was more advantageous.

Figure 2. The variation curves of cost functions with different inversion schemes in Group 1. (a–e)
correspond to Case 1–Case 5, respectively.
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The above results indicate that the CSI scheme showed good inversion ability for
WSDCs of different complexities. Here, the simulation ability of current velocity was also
assessed. The variations of the MAEs of the horizontal current velocity components (u and
v) with the iterations are shown in Figure 3. It can be seen that the MAEs of the CI scheme
and the CSI scheme in Cases 1–5 were obviously smaller than those of the DIM scheme.
In cases 1–3, the MAEs of the CI scheme decreased more rapidly with increased iteration
steps, but the final values of the MAEs were at the same level as those of the CSI scheme.
However, for the relatively complex distributions (cases 4–5), the MAEs of the CSI scheme
were still smaller than those of the CI scheme.

Figure 3. The MAEs between the observed and inverted velocity components (u and v) in Cases 1–5
(the figure shows the result after taking logarithm log10).

In conclusion, the prescribed distributions of WSDCs can successfully be inverted by
the adjoint method with CI or CSI schemes even if only two layers of data are assimilated.
As the WSDCs from Case 1 to Case 5 were increasingly more complex, the CSI scheme
obtained the best inversion result, and the CI scheme followed. At the same time, the DIM
scheme obtained the worst inversion, again indicating that the IP scheme is an effective
tool in parameter estimation based on the adjoint method.

3.2. Estimation of WSDCs under Different Observation Noise

In all the above cases, the perfect observations without any noise were directly pro-
duced by the forward model. However, there was noise in the actual observations of
current velocity and wind speed, which might have affected the inversion results. Zhang
and Lu [35] indicated that the average difference between the inversion results and true
values would increase abnormally, so long as observation errors increased to a certain level.
Therefore, we designed another group of experiments to investigate the potential effect
of different data noise on WSDC estimation. Considering the distribution complexity, the
WSDC in Case 5 was adopted in this group. Gaussian white noise was added to obser-
vations of current velocity u(i, j), v(i, j) and wind speed ua(i), respectively, representing
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the observation errors in the real ocean. Specifically, errors with different ratios to each
observation value were added to the perfect observations (shown in Table 5). Since group 1
showed that the CI and the CSI schemes were significantly better than the DIM scheme,
the former two schemes were used in this group.

Table 5. The experiment setting in the second group of experiments.

Noise

Group 2

Case 5–1 3%
Case 5–2 5%
Case 5–3 10%
Case 5–4 15%

The prescribed and inverted WSDCs for different observation noise are shown in
Figure 4, and the correlation coefficients between them are shown in Table 6. It is clear that
the prescribed distributions could be inverted successfully by the CI and CSI schemes in
Case 5–1 and Case 5–2. However, in Case 5–3 and Case 5–4, the curves inverted with the
CI scheme oscillated more violently than those with the CSI scheme, indicating that the
inversion accuracy of the CSI scheme was higher than that of the CI scheme. Combining
these results with Figure 4 and Table 6, it could be found that the CSI scheme was more
advantageous, especially in Case 5–3 and Case 5–4. Moreover, the distortions of both
schemes began to increase significantly with increasing noise level.

Figure 4. The prescribed and inverted distributions of WSDCs after adding 3%, 5%, 10%, and 15% er-
rors. Subfigures (a), (b), (c) and (d) represent the addition of 3%, 5%, 10% and 15% errors, respectively.

Table 6. The correlation coefficients between the prescribed and inverted WSDCs with different
schemes in different cases.

Scheme CI CSI

Case 5–1 0.9741 0.9935
Case 5–2 0.9801 0.9936
Case 5–3 0.9212 0.9402
Case 5–4 0.9152 0.9287

Additionally, it can be found in Figure 5 that the normalized cost functions decline
greatly with the iterations. Specifically, at most iterations, the cost functions of the CSI
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scheme are smaller than those of the CI scheme, indicating that the current velocities simu-
lated by the CSI scheme are closer to the observation. This further reveals the superiority
of the CSI scheme.

Figure 5. The variation curves of cost functions of the CI scheme and the CSI scheme in Group 2.
(a–d) correspond to Case 5-1–Case 5-4, respectively.

Additionally, the MAEs for the horizontal velocity are shown in Figure 6. It can be
seen that, after 200 iterations, the MAEs of the CSI scheme in Case 5-1 were notably smaller
than those of the CSI scheme, suggesting that the CSI scheme was more advantageous than
the CI scheme.

Figure 6. The MAEs of the horizontal velocity component (u, v) with the assimilation steps after
adding 3%, 5%, 10%, and 15% errors (the figure shows the result after taking logarithm log10).
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To sum up, the prescribed distributions of the WSDCs could still be well inverted by
the CSI scheme even there were moderate noises in the observations. With the increase in
observation errors, the performance of the CSI scheme became worse. Still, the CSI scheme
showed a more stable tolerance of observation noise than the CI scheme.

4. Practical Experiments and Results

The twin experiments proved that WSDC can be inverted successfully by the ad-
joint method and that the CSI scheme is an advantageous scheme compared with other
two schemes. However, its performance still needs to be testified with real observation
data. To that end, this section conducted practical experiments to invert the WSDCs with
the CSI scheme.

4.1. Data and Experimental Design

Current velocity and wind speed data were obtained from the ocean mooring station
(Papa, 50.1◦ N,144.9◦ W) in the mooring system of the Ocean Climate Station Project
(OCS) of NOAA, which has been instrumented with upper ocean and surface sensors since
June 2007. The current velocity data were measured by an acoustic Doppler current profiler
at 5 m and 35 m below the sea surface. The wind speed at an altitude of 4 m measured by
the anemorumbometer located at the buoy tower of the sea surface was the average value
per hour.

The current velocity and wind speed data of 10 days from 0:00 on 3 July 2007 to 0:00 on
13 July 2007 were selected. As the wind speed was measured at 4 m above the sea surface, it
needed to be transformed to the value at 10 m (U10 for short) by a bulk formula [36,37]. The
time resolution was transformed from 1 h to 0.5 h by interpolation to meet the demands of
the model. The original wind speed (U4 for short) and U10 are shown in Figure 7a. The
time series of current velocity are given in Figure 7b,c.

Figure 7. (a) The time series of the original wind speed U4 and the standard wind speed U10, and the
time series of total current velocity u and v for (b) 5 m, and (c) 35 m.

Considering the significant influence of the number of IPs on inversion results, the IP
numbers were set at 21, 41, and 97 (i.e., the intervals of 12 h, 6 h, and 2.5 h, respectively),
and the corresponding numerical experiments were named as Cases 6–8, respectively, as
shown in Table 7. The other parameters were set the same as in the twin experiments.
Although there was a gap between the zero initial conditions and the real scenarios, the
model simulations were gradually adjusted towards the real scenarios by assimilating the
observations made.
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Table 7. The experimental setting in the practical experiments.

IPs

Case 6 21
Case 7 41
Case 8 97

4.2. Results Analysis

The normalized cost function is shown in Figure 8. After assimilation, the cost function
in Case 6 decreased by around 30%, and cost functions in Cases 7–8 decreased significantly
by about 50%, which indicates that the CSI scheme is effective in reducing the difference
between observed and modeled Ekman velocities. In addition, the parameter optimization
effect could be improved by increasing the number of IPs, but not significantly if the
number of IPs is further increased.

Figure 8. The cost functions of Cases 6–8.

The MAEs between the inverted and observed velocities could also demonstrate the
effectiveness of the CSI scheme, as shown in Figure 9. It could be found that the MAEs
in the three cases all showed a declining trend. The MAEs of U (V) in Cases 7–8 were
decreased significantly, from 0.065 (0.07) m·s−1 to about 0.05 (0.05) m·s−1, indicating that
the distributions of the WSDCs could be inverted by the CSI scheme competently.

Figure 9. The MAEs of the current velocity components (U and V) between inversion results and
observations. (a) is U direction, and (b) is V direction.

The time-series of WSDCs and standard wind speed (U10) are shown in Figure 10. It
was shown that the temporal variation of the WSDCs was closely related to the variations of
wind speed. This consistency becomes more obvious with the increasing IPs. The WSDCs
had a peak during 7–8 July 2007, which agreed well with the wind speed. After 11 July, the
time-varying curve of wind speed had two relatively deep troughs and one sharp peak,
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and there were similar variations in the distributions of the WSDCs. But there was a certain
phase difference between them. This may have been due to defects in the dynamic process
of the model and in the observation data, that was available only at 5 m and 35 m depths.

Figure 10. Practical experimental results; (a) is the time series distribution of wind speed U10, and
(b) is the time series distributions of WSDCs of Case 6–8 using the CSI scheme, respectively.

We also compared the time series of observed and inverted current velocities at 5 m
and 35 m depth, as shown in Figure 11. For the inverted current velocity at 5 m depth,
both the amplitude and phase coincided with observations well, especially in Case 7 and
Case 8. However, there were some discrepancies between the modeled results and the
observations at 35 m depth. The comparison was also consistent with previous conclusions
that the model is more sensitive to upper current velocity.

Figure 11. The time series of observed and inverted (left) eastward and (right) northward velocity at (a,b) 5 m depth;
(c,d) 35 m depth in Cases 6–8.

In summary, the above results had a significant downward trend, indicating that the
inverted results were stable. As the IP number increased, the temporal variation of inverted
WSDC was more similar to that of wind speed U10. This phenomenon is consistent with
physical oceanography in the light of there being a positive correlation between WSDC
and wind speed.
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5. Conclusions

Based on the adjoint assimilation technique, the CSI scheme was used to invert the
time-varying WSDC in the Ekman model. Two groups of twin experiments and one
group of practical experiments were carried out. The effectiveness of the CSI scheme was
successfully verified by the above experiments. The main conclusions are as follows:

(1) The first group of experiments showed that the prescribed distributions of WSDCs
were successfully inverted by the CI scheme and the CSI scheme, even if only the
observations in the first and seventh layers were assimilated—while the prescribed
distributions were partially inverted by the DIM scheme. The CSI scheme was more
advantageous than the CI and the DIM schemes as the complexity of WSDC increased.

(2) In the second group, even if there was some noise in the observations, the CSI scheme
could invert the distribution of WSDCs successfully. With the observation error
increasing, the stability of the CSI scheme was higher than that of the CI scheme, and
the results of the CSI scheme were smoother.

(3) In the practical experiment, the temporal distribution of WSDC inverted by the CSI
scheme had a similar variation trend to that of wind speed U10, and a more accurate
inverted result could be obtained by the CSI scheme with appropriate IPs.

Overall, this work extends our understanding of the Ekman model and provides an
effective method to estimate the time-series of WSDC. However, in the inversion process,
some influencing factors are simplified (e.g., the temporal eddy viscosity). Further work,
in which the time-varying WSDCs and eddy viscosity are simultaneously estimated, will
be the focus.
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Appendix A. Finite-Difference Scheme

Based on the Crank-Nicolson method (α = 0.5), the numerical model is built by using
the finite-difference discretization of spatial increment ∆z and time increment ∆t. The finite
difference schemes corresponding to the governing Equation (1) are:

ui+1
j −ui

j
∆t − f

vi+1
j +vi

j
2

= α ∗ ( Aj+1+Aj
2

ui+1
j+1−ui+1

j
∆z2 − Aj+Aj−1

2
ui+1

j −ui+1
j−1

∆z2 )

+ (1− α) ∗ ( Aj+1+Aj
2

ui
j+1−ui

j
∆z2 − Aj+Aj−1

2
ui

j−ui
j−1

∆z2 ),

(A1)

http://www.pmel.noaa.gov/ocs/


J. Mar. Sci. Eng. 2021, 9, 1220 15 of 19

vi+1
j −vi
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j+1−vi+1
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∆z2 − Aj+Aj−1

2
vi+1

j −vi+1
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∆z2 ) (i = 1, 2, . . . , 480)

+ (1− α) ∗ ( Aj+1+Aj
2
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j+1−vi

j
∆z2 − Aj+Aj−1

2
vi

j−vi
j−1

∆z2 ). (j = 1, 2, . . . , 20)

(A2)

With boundary conditions (3) and (4), the recursive relation was obtained to solve the
initial boundary value problem (1)–(4):

MWi + M0Wi−1 + Fi = 0. (A3)

where

W = (u1, u2, · · · , u20; v1, v2, · · · , v20)
T ,

Fi = (2a ∗ q1(i + 1) + 2b ∗ q1(i), 0, · · · 0; 2a ∗ q21(i + 1) + 2b ∗ q21(i), 0, · · · 0)T ,

q1(i) = Cd∆z
√

u2
a(i∆t) + v2

a(i∆t)ua(i∆t),

q21(i) = Cd∆z
√

u2
a(i∆t) + v2

a(i∆t)va(i∆t).

(A4)

where a = α•∆t/(2∆z2), b = (1− α)•∆t/(2∆z2).
The matrices M and M0 are respectively

M =

(
B C
−C B

)
, M0=

(
D C
−C D

)
. (A5)

Similarly, the recursive relation was obtained to solve the initial boundary value
problem (10)–(13):

MaWλi + Ma
0Wλi+1 − Fa

i = 0. (A6)

where
Wλ = (λ1, λ2, . . . , λ20; µ1, µ2, . . . , µ20)

T ,

Fa
i = (qa

1(i), qa
2(i), . . . , qa

20(i); qa
21(i), qa

22(i), . . . , qa
40(i))

T ,

qa
j (i) = ∆tKm(u(i, j)− û(i, j)),

qa
j (i) = ∆tKm(v(i, j)− v̂(i, j)). (j = 1, . . . , 20)

(A7)

The matrices Ma and Ma
0 are respectively:

Ma=
(

B -C
C B

)
, Ma

0=
(

D -C
C D

)
. (A8)

where

B =



−1− a(A1 + A2) a(A1 + A2) 0 · · · 0

a(A1 + A2) −1− a(A1 + 2A2 + A3) a(A2 + A3)
. . .

...

0
. . .

. . .
. . . 0

...
. . . a(A18 + A19) −1− a(A18 + 2A19 + A20) a(A19 + A20)

0 · · · 0 a(A19 + A20) −1− a(A19 + A20)


, (A9)

C =

 0.5 f ∆t · · · 0
...

. . .
...

0 · · · 0.5 f ∆t


20×20

, (A10)
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D =



1− b(A1 + A2) b(A1 + A2) 0 · · · 0

b(A1 + A2) 1− b(A1 + 2A2 + A3) b(A2 + A3)
. . .

...

0
. . .

. . .
. . . 0

...
. . . b(A18 + A19) 1− b(A18 + 2A19 + A20) b(A19 + A20)

0 · · · 0 b(A19 + A20) 1− b(A19 + A20)


. (A11)

Appendix B. Inverted Schemes

1. The DIM scheme

Based on Equation (14), the WSDCs can be optimized as:

Ce+1
d (i) = Ce

d + β
∂J

∂Ce
d(i)

, (i = 1, 2, · · · 481) (A12)

where β is step-lengths which are used to adjust the parameters preferably. e is the number
of iterations.

2. Cressman interpolation scheme

The scheme selects several IPs evenly in the time interval. The interpolation scheme is
as follows:

Ck
d =

n

∑
j=1

WjC
j
d

n
∑

j=1
Wj

, (A13)

where Ck
d is WSDC at an unknown time point; Cj

d represents WSDC at a given time point,
which can be calculated through the adjoint method; n is the number of known grid points;
and Wj is a weighting function, whose general form is:

Wj =
R2 − rk

2

R2 + rk
2 , (r ≤ R ) (A14)

where R is the interpolation radius, and rk is the distance from the unknown time point to
the known time point.

3. Computation of Cubic Spline Interpolation Weights

The cubic spline S(x) in the interval [xi, xi+1] between two IPs was constructed as:

S(x) = (
x−xi+1

hi
)

2
(1 + 2 x−xi

hi
)yi + ( x−xi

hi
)

2
(1− 2 x−xi+1

hi
)yi+1

+(
x−xi+1

hi
)

2
(x− xi)pi + ( x−xi

hi
)

2
(x− xi+1)pi+1.

(A15)

where hi = xi+1 − xi, xi ≤ x ≤ xi+1. i is the ith IP.{
S(xi) = yi, S(xi+1) = yi+1,

S′(xi) = pi, S′(xi+1) = pi+1.
(i = 1, 2, · · · , n− 1) (A16)

Continuity of the second derivative of S(x) at point xi requires that:

S′′ (x+i ) = S′′ (x−i )(i = 1, 2, · · · , n− 1). (A17)

That is:

hi
hi−1+hi

pi−1 + 2pi +
hi−1

hi−1+hi
pi+1 =

3
[

hi
(hi−1+hi)hi−1

(yi − yi−1) +
hi−1

(hi−1+hi)hi
(yi+1 − yi)

]
.

(A18)
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In this paper, IPs are uniformly distributed, namely hi = hi+1 = h. Therefore, Equation
(A17) can be simplified as:

1
2

pi−1 + 2pi +
1
2

pi+1 =
3

2h
(yi+1 − yi−1)(i = 2, 3, · · · , n− 1). (A19)

Natural boundary conditions are selected in this study, namely S′′ (x0) = S′′ (xn) = 0.
That is: {

p0 +
1
2 p1 = 3

2h (y1 − y0),
1
2 pn−1 + pn = 3

2h (yn − yn−1).
(A20)

We can get from Equations (A19) and (A20) that:

AP =
3

2h
Ly. (A21)

So, the matrix P is:

P =
3

2h
A−1Ly. (A22)

By substituting Equation (A21) into Equation (A15), it is concluded that:

S(x) = my, (A23)

where m is the weight coefficient.

A =



1 0.5 0 0 · · · 0 0 0 0
0.5 2 0.5 0 · · · 0 0 0 0
0 0.5 2 0.5 · · · 0 0 0 0
0 0 0.5 2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 2 0.5 0 0
0 0 0 0 · · · 0.5 2 0.5 0
0 0 0 0 · · · 0 0.5 2 0.5
0 0 0 0 · · · 0 0 0.5 1


n×(n+1)

, (A24)

P =
[

p0 p1 · · · pn−1 pn
]>, (A25)

y =
[

y0 y1 · · · yn−1 yn
]>, (A26)

L =



−1 1 0 · · · 0 0
−1 0 1 · · · 0 0

0 −1
. . . . . .

...
...

...
...

. . . 0 1 0
0 0 · · · −1 0 1
0 0 · · · 0 −1 1


n×(n+1)

. (A27)
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