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Abstract: Shallow water is a complex sound propagation medium, which is affected by the varying
spatial–temporal ocean environment. Taking this complexity into account, the classical processing
techniques of source localization and environmental inversion may be improved. In this work, a joint
tracking approach for the moving source and environmental parameters of the range-dependent
and time-evolving environment in shallow water is presented. The tracking scheme treats both
the source parameters (e.g., source depth, range, and speed) and the environmental parameters
(e.g., water column sound speed profile (SSP) and sediment parameters) at the source location as
unknown variables that evolve as the source moves. To counter sample impoverishment and robustly
characterize the evolution of the parameters, an improved particle filter (PF), which is an extension of
the standard PF, is proposed. Two examples with simulated data in a slowly changing environment
and experimental data collected during the ASIAEX experiment are utilized to demonstrate the
effectiveness of the joint approach. The results show that we were able to track the source and
environmental parameters simultaneously, and the uncertainties were evaluated in the form of
time-evolving posterior probability densities (PPDs). The performance comparison confirms that the
improved PF is superior to the standard PF, as it can reduce the parameter uncertainties. The tracking
capabilities of the improved PF were verified with high accuracy in real-time source localization and
well-estimated rapidly varying parameters. Moreover, the influence of different particle numbers on
the improved PF tracking performance is also illustrated.

Keywords: source localization; environmental inversion; improved PF; uncertainty estimate

1. Introduction

Both source localization and environmental inversion are crucial issues in underwater
acoustics [1–4]. Matched-field processing (MFP) combines ocean acoustics and signal
processing to solve the problem of passive source localization and/or environmental
inversion, yielding excellent results [5–7]. Despite its success, MFP is limited in certain
practical applications because of its sensitivity to the mismatch between model-predicted
replica fields and measurements [8]. Ideally, one class of environments can be categorized
as largely range-independent and time-invariant to mitigate the disparity [2], while an
environment is selected and replicas are calculated for the properties of the chosen medium.
However, there is uncertainty due to fluctuations in the ocean medium, which leads to the
environmental mismatch and seriously degrades the MFP performance. Typically, sound
waveguide propagation in shallow ocean areas is restricted and significantly influenced by
environmental parameters, such as water-column SSP [9] and seafloor parameters [10,11],
including sediment sound speed, density, and attenuation, etc. Inaccurate data concerning
these parameters may result in biased source localization errors.

This class of environment is significantly range-dependent and time-varying, mainly
due to oceanographic variabilities and dynamics that cause the environmental parameters
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to evolve in time and space [2,12]. Long-term observation and wide-scale sampling is not
realistic to observe all these evolving processes. For a moving source, however, the path
and the ocean environment between the source and receivers change with time. These
temporal variability characteristics can be merged into a tracking problem. Therefore,
developing a joint tracking approach allows the environment to be estimated in real time
and the source of our interest to be accurately located.

Once a tracking problem is defined as a state-space model with appropriate state
and measurement equations, a suitable filter must be identified. Tracking filters, for
example, the Kalman Filter family, PFs, and their extensions, have been successfully
used in various tasks, such as source localization and tracking [13–15], environmental
parameter estimation [4,16,17], geo-acoustic inversion [18–20], and spatial arrival time
tracking [21,22]. These sequential Bayesian filters combine information on the evolution
of parameters, functions that relate acoustic measurements to unknown quantities, and
statistical models of random perturbations in the measurements [19]. Practical applications
in ocean acoustics frequently involve complicated and fast-changing environments, the
probability densities of the parameters estimated in nonstationary dynamical systems are
usually non-Gaussian, and the measurement equation is thus highly nonlinear. Although
the PF is an ideal algorithm for handling nonlinear/non-Gaussian systems, the well-known
problem of sample impoverishment results in poor filter performance. To prevent sample
impoverishment, we propose an improved PF to ensure tracking effectiveness.

The main purpose of this work was to track both source and environmental parameters
simultaneously. Moreover, the goal was to both estimate the parameter values and to
determine their underlying uncertainty distributions. The variations in SSP and sediment
parameters were estimated jointly with source locations, rather than being calculated
separately as in the existing two-step approach. To verify the feasibility of the joint tracking
approach, two examples with slowly and fast-changing environments were employed.

The paper is organized as follows. In Section 2, the joint tracking approach, the
state-space model, and the improved PF algorithm are described in detail. In Section 3, the
standard and improved PFs source and environmental parameters tracking performance
and their evolving PPDs are described using two examples. The influence of different
particle numbers on the tracking performance of the improved PF is also explored. Finally,
Section 4 concludes this work.

2. Particle Filter for Joint Tracking

In this section, the theory behind the joint tracking approach is summarized. Moreover,
a state-space model is constructed, and the state and measurement equations are introduced.
Thereafter, the steps in the improved PF algorithm are described.

2.1. State-Space Modeling

Joint tracking of the moving source and environmental parameters requires two dy-
namic equations: a state equation that models both the movement of the source and the
evolution of the underwater environment, and a measurement equation that relates the
source location and the environmental parameters to the received acoustic data. Consider-
ing the frame k, two equations that define a state-space model are given as:

xk = f(xk−1) + vk−1 (1)

yk = h(xk) + wk (2)

where f(·) denotes the state transition function, and h(·) is the nonlinear function that
relates the source and environmental parameters xk to the acoustic measurement vector
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yk. vk and wk are the state and measurement noise vectors, respectively. The state and
measurement noise covariances Qk and Rk are:

E
{

vkvT
i
}
= Qkδki

E
{

wkwT
i
}
= Rkδki

E
{

vkwT
i
}
= 0 ∀i, k.

(3)

2.2. The State Equation: Moving Source and Environment Parameter Modeling

The state equation is merged from three blocks. The first is required for source tracking,
and is represented as sk It is formed by the three source parameters (i.e., the source depth,
the range, and the radial speed). Using a constant velocity (CV) track model for the moving
source, the first block in the state equation is given by:

sk =

 Zs
Rs
vs


k

=

 1 0 0
0 1 ∆t
0 0 1

 Zs
Rs
vs


k−1

+

 1 0
0 ∆t2/2
0 ∆t

[ vd
va

]
k−1

(4)

where ∆t is the update time increment (i.e., the time interval between two measurements);
the random variables, vd and va, represent variations in the source depth and acceleration,
respectively, which are taken as Gaussian.

The environmental parameter element is formed by SSP and sediment parameters.
To limit the degrees of freedom, the SSP is often represented in terms of the empiri-
cal orthogonal function (EOF) coefficients [9], which can be obtained from the multiple
conductivity–temperature–depth (CTD) measurements. As a multidimensional tracking
problem, the computational complexity and estimation accuracy often depend on the num-
ber of estimated variables. In practice, the number of EOF representations can be reduced.
In our previous work, it was shown that the first three EOFs are capable of representing
SSP [23]. The second block is given by:

ak =

 a1
a2
a3


k

=

 1 0 0
0 1 0
0 0 1

 a1
a2
a3


k−1

+ vk−1 (5)

The third block is the state equation for the sediment parameters, including the sound
speed csed, density ρsed, and attenuation αsed, and is given as:

bk =

 csed
ρsed
αsed


k

=

 1 0 0
0 1 0
0 0 1

 csed
ρsed
αsed


k−1

+ vk−1 (6)

The state vector in Equation (1) includes both the source and the environmental
parameters and is given by merging the three blocks mentioned above as xT

k =
[
sT

k aT
k bT

k

]
·s,

a, and b denote the parameters source, SSP, and sediment, respectively. v is the state noise
matrix.

2.3. The Measurement Equation: Normal Mode Propagation Model

Let yk be the acoustic pressure measured at the kth time frame. In Equation (2), the
measurement equation is used to characterize the signal of acoustic pressure, which is
received by a VLA. According to the normal mode theory, the synthetic acoustic pressure
can be expressed as a general nonlinear function of the depth Z, horizontal range R, sound
speed c in the water column, sediment parameters, and sea bottom boundary condition
(BCs).

yk = h(Z, R, c1, · · · ck, csed, ρsed, αsed, BCS) + wk (7)
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Considering the SSP is parameterized in terms of the first three EOFs, the resulting
measurement equation becomes:

yk = h(Z, R, α1, · · ·αk, csed, ρsed, αsed, BCS) + wk (8)

where α = [α1 α2 α3]
T , yk is the acoustic pressure measured at kth time frame, h is the

normal mode propagation model, and wk contains the measurement noise and receiver
signal-to-noise ratio (SNR) in the VLA.

As mentioned above, a state–space model is formulated to track the evolving parameters.

2.4. Steps of the Improved Particle Filter Algorithm

As a result of the high nonlinearity of the measurement equation and the non-Gaussian
underlying PPDs in our problem, the KF family is not feasible. As a numerical sequential
Monte Carlo (MC) method, PF is suitable for tracking desired parameters and is capable
of characterizing their PPDs as they evolve in time and space. Sequential importance
resampling (SIR) is the most commonly used type of PF. The popularity of the SIR lies in the
simplicity of the selection of transition prior as the sampling density, i.e., p(xk|xk−1, yk ) =
p(xk|xk−1 ). Although resampling has the ability to reduce degeneracy, it causes sample
impoverishment, which can be a problem for the standard SIR PF algorithm and results in
poor filter performance, especially for low process noise systems. Because the resampling
stage creates many exact replicas of high likelihood particles, it is possible to lose sample
diversity and validity as the filter progresses [24].

To prevent sample impoverishment, an improved SIR PF is proposed. The algorithm
uses the likelihood optimization function to guide the importance sampling particles to the
high likelihood regions, which ensures resampling diversity. Hence, the key step of the
improved algorithm is the likelihood calculation.

Following Equation (2), i.e., the additive complex Gaussian noise for step k, the
likelihood function is of the form:

L(xk) = eL′0(xk)−maxL′0(xk)

L0(xk) = ln 1
(πwj)

nh −
‖yk−h(xk)‖2

wj

(9)

where nh is the hydrophone number of VLA and wj is the noise variance.
A single iteration at step k of the SIR has three stages:

Prediction: starting with a set of particles from the previous state
{

xi
k−1

}np

i=1
, where

np is the particle number, a new set of predictions
{

xi
k
}np

i=1 is created by sampling from the
transitional density p(xk|xk−1 ). This is achieved by propagating each particle through the
state Equation (1) together with the random state noise vk.

Updating: the predictions in the previous step are updated using the acoustic pressure
data yk at the current step k, and the normalized weight wi

k of each particle is computed
via:

wi
k = L

(
xi

k

)
/∑ Np

j=1L
(

xj
k

)
(10)

where the likelihood function L(xk) is calculated by Equation (9). Let the set of particles
and their weights

{
xi

k, wi
k
}Np

i=1 characterize the posterior density, and we have:

p(xk|y1 · · · yk ) ≈
np

∑
i=1

wi
kδ
(

xk − xi
k

)
(11)

Resampling: this stage redistributes samples so that the number of samples in a region
of state space is proportional to the posterior density of that region. Resampling generates
particles according to the weights of the parent particles wi

k, with more particles generated
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from high probability particles than low ones. All particle weights are now equal to 1/Np.
The PPD is given by:

p(xk|yk ) =
1

Np

np

∑
i=1

δ
(

xk − xi
k

)
(12)

The minimum mean square error (MMSE) estimate that calculates the expected value
of the state vector is given as:

x̂k =
1

Np

Np

∑
i=1

xi
k (13)

More details can be found in [24]. The improved SIR PF algorithm is used throughout
this work. Hereafter, “the improved PF” refers to the improved SIR PF.

3. Examples and Discussion

This section is composed of two examples. The first is a synthetic tracking simulation
in a slowly changing shallow water environment with small variations in environmental
parameters. In the simulation, the standard and improved PFs are not only compared
with each other, but ways to track parameter uncertainties as PPDs are also demonstrated.
The second tracking example analyzes data collected during the ASIAEX experiment. In
this example, both the source and environmental parameters in various time intervals
changed fast, which was used to test the performance of the improved PF in the case of a
fast-changing environment.

3.1. Simulated Data in a Slowly Changing Environment

To synthesize the acoustic pressure data used in the measurement equation, a forward
propagation model was used, as is shown in Figure 1. It consisted of 106 m deep water,
a 3 m thick sediment layer, and a bottom layer. The bottom was assumed to be a homoge-
nous half space with a constant sound speed of 1887 m/s, a density of 2.17 g/cm3, and an
attenuation of 0.05 dB per wavelength. The simulation was set up with a fixed VLA and
a moving source in the range-dependent shallow water. The VLA was configured with
16 elements deployed from 15 to 75 m in depth, paced 4 m apart. The initial position of
the source was at 40 m in depth and 1 km in range. A frequency of 400 Hz was selected.
The source was towed and had a 90-step (k = 1, 2 . . . , 91) movement at a speed of 2.5 m/s,
resulting in a total track length of 30 min. The SSP and sediment parameters changed with
time as the source moved, representing the changing average values of SSP and sediment
parameters between VLA and the new source position.

In this tracking simulation, the sediment parameters did not vary much. The largest
variation came from the water column SSP, which is known to fluctuate significantly
with time. As mentioned in Section 2.3, the SSP was tracked by three tracking EOFs.
All the simulation parameters, constants, nine state variables, and their start values x0

(prior standard deviations P1/2
0 and state noise deviations Qk

1/2) are given in Table 1.
For the convenience of calculation, we assumed that both additive noise terms Qk and
Rk were represented by the Gaussian PDFs. The adiabatic normal mode propagation
model was selected to adequately compute the acoustic field by inputting the source and
environmental parameters into KRAKENC [25].
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Table 1. Environmental and simulation parameters for Example 1.

Environmental Parameters

State Variables
Constants x x0 P1/2

0 Q1/2
k

Dw 106 m
Source

zs (m) 40 0.1 0.1
hsed 3 m rs (m) 1000 2 0.0134
cbot 1887 m/s vs (m/s) 2.5 0.2 0.0024
ρbot 2.17 g/cm3

Water
EOF1 15 1.5 1.5

αbot 0.05 dB/λ EOF2 −5 0.9 0.9
EOF3 1 0.6 0.6

Sediment
csed (m/s) 1630 0.2 0.2

ρsed
(g/cm3) 1.6 0.005 0.005

αsed
(dB/λ) 0.2 0.005 0.005

Simulation parameters

Source frequency 400 Hz SNR 29 dB
Receiver type 16-VLA Tracking length 30 min (k = 91)

First/last hydrophone depth 15/75 m Sampling interval ∆ t 20 s

According to the state–space model formulated in Section 2, the state consisted of
nine variables (including source depth, range, and speed), three EOFs of the water column
SSP, and sediment sound speed, density, and attenuation coefficient. Two PFs were used
to simultaneously track these nine parameters. It is known that a higher approximation
accuracy can be obtained for the posterior distribution with a larger number of particles. To
ensure the tracking accuracy, the number of particles was set to np = 500. All particles were
propagated through the state equation, updated via the measurement equation, resampled,
and then the evolution of state variables was estimated.

First, the standard PF was used for tracking. The evolution of the 1-D marginal posterior
densities for the nine parameters is given in Figure 2. The evolving PPDs were obtained in terms
of the normalized histograms of particles; hence, they contained information about uncertainty
in the estimation of the source and environmental parameters. Here, using the same settings,
the improved PF was implemented, and the tracking results are shown in Figure 3.
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The plots in the first row belong to the source parameters. Along the 30 min trajectory,
the source depth oscillated between 39 and 42 m, while the source moved from 1 to 5.5 km
in the horizontal range. For all three source parameters, the 1-D marginal PPDs followed
the true trajectories. The depth and range of the source were tracked accurately with small
deviations. The variation in the radial speed was also well tracked. Both PFs were able to
track the source parameters successfully.

The environmental parameter tracks are in rows 2–3. The SSP and sediment parameters
were taken as range-dependent and they changed with time as the source moved. For the
three EOFs, PF roughly tracked the evolution of the true trajectories. However, the sample
impoverishment and blind prediction of PF resulted in large tracking errors in certain rapidly
changing regions. Although SSPs in the water column were expected to evolve slowly
in general, there were rapid perturbations in sound speed in certain regions of the true
environment. The perturbations resulted in larger variations in the EOFs, which exceeded
the statistical values assumed for the random walk, and resulted in a model mismatch. As a
result of the combination of a large state variation and inadequate particle number, a sample
impoverishment problem may have occurred in several iterations. Along with the tracking
in the third row, the sediment sound speed remained between 1628–1636 m/s, a density of
1.59–1.65 g/cm3, and an attenuation of 0.16–0.22 dB/λ. The PPDs became non-Gaussian, and
the plots csed, ρsed, and αsed were less well-tracked than other parameters. The main reason
for the tracking results was the lower sensitivity of the sediment parameters to the acoustic
field. This is in agreement with the sensitivity analysis in [14].

As expected, the improved PF is superior to standard PF in terms of joint tracking
performance. For the improved PF, the parameters were tracked accurately with small
deviations from the true values. This is especially obvious from the tracking trajectories
when the state variables change rapidly.

The joint tracking errors can be evaluated by the root mean square error (RMSE)
metric, which essentially calculates the difference between the true values and the estimated
parameters from the PFs. To quantify the average tracking performance and integrate
across these errors to provide a single number, the following time-averaged RMSE is
defined as:

TARMSE =
1

k2 − k1 + 1

[
k2

∑
k=k1

(x̂k − xk)
2

k2 − k1 + 1

]1/2

(14)

where t is the time interval; x̂k and xk denote the true and estimated parameters at time index k,
respectively; and TARMSE is the time-averaged RMSE calculated for the time interval (k1, k2).
The total track length was 30 min, and the time interval was set as (1, 91) for computations.
Equation (15) was used to calculate the performance improvement of the improved PF with
respect to the PF, and to compare the performance metrics in Table 2. It was confirmed
that the improved PF did well in terms of error variance reduction in terms of tracking all
nine parameters. It exhibited an average of a 28.3% improvement over the PF. Note that
the sediment parameters exhibited more than a 40% improvement and were closer to the
evolution of the true values than the PF tracking results.

Impro. =
TARMSEPF−TARMSEimproved−PF

TARMSEPF
(15)

Table 2. Performance comparison for Example 1.

Parameter zs
(m)

rs
(m)

vs
(m/s) EOF1 EOF2 EOF3 csed

(m/s)
ρsed

(g/cm3)
αsed

(dB/λ)

TARMSEPF 0.0091 0.1994 0.0029 0.244 0.1537 0.2123 0.3490 0.0035 0.0020
TARMSEimpro.-PF 0.0076 0.1378 0.0026 0.2076 0.116 0.1558 0.2042 0.0018 0.0012

% Impro. 16 31 10 15 25 27 42 49 40
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In the above simulations, the standard and improved PFs simultaneously tracked the
source and environmental parameters and their uncertainties were evaluated in the form
of time-evolving marginal PPDs. This ability enabled the moving source to be located in
real time.

For moving source localization, we investigated the performance of the filters by
computing and plotting the posterior source depth-range probabilities. Both PFs tracked
the source depth and range for all t. The evolutions of the 2-D PPD of the source at three
time steps are shown in Figure 4. The source localization results at 3.3, 13.3, and 28 min are
given in Table 3.
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Table 3. Source localization results.

t (min) Method zs (m) rs (m) vs (m/s)

3.3
True value 40.03 1492.8 2.45

PF 40.19 1493.4 2.44
Improve-PF 40 1492.2 2.46

13.3
True value 40.79 2933.2 2.42

PF 40.55 2934.2 2.40
Improve-PF 40.72 2933.4 2.41

28
True value 41.35 4997.5 2.32

PF 41.37 5001.0 2.28
Improve-PF 41.33 4999.2 2.31

It was clearly observed that the improved PF enabled the source to be tracked accu-
rately in terms of range and depth with reduced errors. The improved PF only exhibited
errors of 0.02–0.07 m, 0.2–1.7 m, and 0.01 m/s in the three mid-tracks for the source depth,
range, and speed, respectively. Even after the full track length of 30 min, the error terms
remained at 0.07 m, 1.4 m, and 0.004 m/s. Therefore, the real-time location was realized at
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any given t, and, thus, the improved PF is a significant improvement over the standard PF
in terms of source localization accuracy.

As the tracking time progresses, the PFs utilize both current data and the estimated
previous parameter results to update the parameter in the next step. This enabled us to
obtain histograms of particles that represent the marginal PPDs of the parameters estimated
in any period of time. Although the environmental parameters change gradually between
the source and receiver, there are sudden jumps in certain periods. A representative 6-min
tracking duration was selected, in which the parameters changed rapidly. The results from
18 to 24 min are given in Figures 5 and 6 for the standard PF and improved PF, respectively.
The marginal PPDs with six-time-step increments are plotted at every 1-min interval on
the right.
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The PPDs of the standard PF demonstrate a larger uncertainty as compared to the
improved PF. Furthermore, the EOFs and sediment parameters had non-Gaussian PPDs,
and the peak values did not coincide with the true trajectories at the corresponding time
intervals. For the improved PF, all the estimated parameters generally followed the true
trajectories. The variations in three EOFs were captured throughout the track, and each
has a sharp PPD with a high probability of the true value. The estimations of sediment
sound speed, density, and attenuation were similarly improved, closely following the true
values. Therefore, the comparison results again show that the improved PF outperformed
the standard PF, especially in the rapidly varying environment.
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3.2. ASIAEX Experiment Data in the Fast-Changing Environment

As mentioned above, the improved PF is illustrated to capture the rapid variation in
environmental parameters. To test the performance of the improved PF in the case of a
fast-changing environment, the data obtained from the core measurements of the ASIAEX
2001 Experiment were used [26]. The ASIAEX consisted of two major experiments; in this
work, we concentrate on the ECS part, which helps contribute to a deeper understanding
of ocean acoustic propagation and geo-acoustic inversion in shallow water. A key phase in
the experiment was from 2–6 June 2001. During this phase, variation caused by the fast-
changing waves was evident, and high winds resulted in increased water column mixing.
In view of this variability, the measurements were specifically designed to capture the
acoustic effects of changing sea state conditions. The experimental site is depicted in [26].
The EOFs were calculated from the measured SSPs. Within a 30-km radius, sediment
cores were collected. The seabed was relatively flat, with an approximate depth of 105 m.
Since the acoustic field has little sensitivity to bottom parameters, their influence on the
measured field was negligible; therefore, herein, the seabed was modeled as a fluid. The
source was initially placed at a depth of 50 m and a range of 1 km, and then moved away
from the VLA at a rough speed of 2.5 m/s. Unlike the towed source in the first example,
the source used here could also move in the depth plane. A signal frequency of 400 Hz and
a lower SNR of 22 dB were used to calculate the acoustic field. The environmental model
given in Figure 1 was adopted here, with the same VLA configuration.

Before implementing joint tracking, the signal at time index k = 0 was used to carry
out matched-field inversion to obtain prior information about the environmental parame-
ters, and the results were used as initial vectors in joint tracking [6]. The prior standard
deviations P1/2

0 and state noise deviations Qk
1/2 of these parameters are given in Table 4.

The selection of suitable noise covariances is essential in order to tune the PF performance.
It can be seen from [14] that the selection of Qk is a trade-off between how much we trust
the evolution model given in the state equation and how noisy an estimate we want. Note
that the greater the prior and state noise deviation, the more likely the filter is qualified
for tracking rapid changes in the state parameters, and, the greater the risk of divergence.
Therefore, in this example, the initial parameters were selected to have a larger Qk and a
relatively broad Gaussian distribution with P0. The improved PF was used throughout
the following work. To simplify the expression, all the PFs mentioned below refer to the
improved PF. The initial default number of particles was still 500.

Table 4. ASIAEX: improved-PF initiation.

x P1/2
0 Q1/2

k

zs (m) 2 0.5
rs (m) 50 2

vs (m/s) 0.8 0.2
EOF1 4 2
EOF2 2.4 1.2
EOF3 1.6 0.8

csed (m/s) 2 1
ρsed (g/cm3) 0.02 0.02
αsed (dB/λ) 0.02 0.02

The tracking results of the ASIAEX experiment are shown in Figure 7. Although
the evolution of the source changed rapidly, it was accurately captured. However, the
divergence phenomenon inevitably occurred, especially for the evolutions of EOFs and
three sediment parameters. As the parameters started to evolve rapidly, the PF was unable
to follow, and larger errors began to appear in the corresponding PPDs. There are many
causes of tracking divergence, such as filter limitations, errors in the forward model, and
incorrect assumptions about the state and measurement noise [18]. The rapidly varying
environment is an important factor, as the parameter values of the current measurement
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may change significantly from the previous values. A large Qk can capture sudden changes
in the state, but a large noise term will make the tracking diverge. A PF of 500 particles
performs poorly due to the insufficient number of particles used in tracking. Therefore,
the number of particles needs to be increased; if more sampling particles cover the high-
likelihood area of parameters, a more accurate PPD characterization can be obtained.
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(g) sound speed, (h) density, and (i) attenuation. The solid line represents the true trajectory.

Each of these nine parameters was tracked by the PFs using 500, 1000, and 2000 particles
designated by PF-500, PF-1000, and PF-2000, respectively. The PFs tracking results are
given in Figure 8 along with the true trajectories. Increasing the number of particles
initially provided a large PF performance improvement. Although the tracking results of
PF-1000 improved, the divergence still existed. The third filtering strategy was performed
using a PF-2000. It was confirmed that PF-2000 outperformed the PF-500 and PF-1000
over the whole tracking period. However, no matter which kind of PF was used, the
source parameter tracking results were always robust. Since the acoustic field was not
that sensitive to the sediment sound speed, density, or attenuation, the PF-500 failed to
track them, and they were relatively poorly estimated. The PF-2000 was able to maintain
tracking, albeit with some errors.

After the quantitative comparison, PF-2000 outperformed the two other PFs in terms
of TARMSEs for all the parameters (see Table 5). The desired accuracy in tracking results
is one of the major factors in selecting the number of particles. However, for a tracking
algorithm, it is necessary to take the computational cost into account. An upper limit
for the particle number is determined by the maximum number that can be processed
with limited computational resources, which is especially important for real-time filtering
algorithms. Although not given here, the influence of different particle numbers on PF
tracking accuracy and computational cost is demonstrated and evaluated in our previous
work [27].
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Table 5. TARMSE of improved-PFs for ASIAEX tracking results.

Filter zs
(m)

rs
(m)

vs
(m/s) EOF1 EOF2 EOF3 csed

(m/s)
ρsed

(g/cm3)
αsed

(dB/λ)

PF-500 0.0534 0.5956 0.0204 0.589 0.2707 0.4218 0.8018 0.0082 0.0119
PF-1000 0.0304 0.2608 0.0171 0.4217 0.1867 0.4027 0.2874 0.0055 0.0098
PF-2000 0.0244 0.1838 0.0161 0.263 0.171 0.3374 0.2722 0.0045 0.0028

In practice, sea state conditions are complicated and changeable. This causes the state
variable to vary in a way that is not consistent with the state model, with rapid changes
occurring. Under such circumstances, successful tracking requires a filtering algorithm
to be able to capture the state variations in time. The state noise, particle number, and
computational cost need to be carefully selected. These tradeoffs can make selection a
practical challenge.

4. Conclusions

In this paper, a joint tracking approach for a moving source and environmental
parameters in shallow water is presented. The source (e.g., source depth, range, and speed)
and environmental (e.g., water column SSP and sediment parameters) parameters were
simultaneously tracked by assimilating the measurements of the acoustic field on a VLA
into standard and improved PFs. The simulated slowly changing environment and the
ASIAEX ECS 2001 experiment were used to test the efficiency of the tracking schemes.

Both PFs were able to provide real-time, continuously updated tracking of the pa-
rameters and their underlying probability densities in the form of a time-evolving PPD.
A comparison of the simulation results confirmed that the improved PF was superior to
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the PF. The tracking capabilities of the improved PF are demonstrated in its higher source
localization accuracy and robust environment tracks in the period when the parameters
changed rapidly.

The influence of different particle numbers on the improved PF tracking performance
was also illustrated. It should be noted that increasing the particle number provides a large
tracking improvement, whereas the computational cost is greatly increased. Additionally,
larger state noise improves sample diversity to enable the filtering to capture state variables
in a fast-changing environment, but this increases the risk of divergence. Therefore, the
selection of state noise, particle number, and computational cost is always a tradeoff and
should be further explored.

Our approach has practical value in ocean acoustic applications. It enables spatial–
temporal tracking of parameters and their underlying uncertainties, making the approach
a natural extension of target localization and geo-acoustic inversion techniques. For signal
processing in complex and variable sea states, the introduction of the improved PF may be
a promising technique for nonlinear, non-Gaussian, and nonstationary problems.

Additionally, the sea bottom was modeled as fluid in this work. In reality, the sea
bottom is elastic and supports not only compressional waves but also shear waves and
surface waves. Wave scattering and interaction processes will affect the acoustic field
distribution. Therefore, the treatment of an elastic bottom should be considered in the
follow-up research.
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