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Abstract: The covariance matrix estimated from the ensemble data assimilation always suffers
from filter collapse because of the spurious correlations induced by the finite ensemble size. The
localization technique is applied to ameliorate this issue, which has been suggested to be effective.
In this paper, an adaptive scheme for Schur product covariance localization is proposed, which is
easy and efficient to implement in the ensemble data assimilation frameworks. A Gaussian-shaped
taper function is selected as the localization taper function for the Schur product in the adaptive
localization scheme, and the localization radius is obtained adaptively through a certain criterion of
correlations with the background ensembles. An idealized Lorenz96 model with an ensemble Kalman
filter is firstly examined, showing that the adaptive localization scheme helps to significantly reduce
the spurious correlations in the small ensemble with low computational cost and provides accurate
covariances that are similar to those derived from a much larger ensemble. The investigations of
adaptive localization radius reveal that the optimal radius is model-parameter-dependent, vertical-
level-dependent and nearly flow-dependent with weather scenarios in a realistic model; for example,
the radius of model parameter zonal wind is generally larger than that of temperature. The adaptivity
of the localization scheme is also illustrated in the ensemble framework and shows that the adaptive
scheme has a positive effect on the assimilated analysis as the well-tuned localization.

Keywords: ensemble data assimilation; spurious correlations; adaptive covariance localization

1. Introduction

Background error covariances play an important role in determining the influence of
assimilated observations on the multivariate analysis of model states [1]. However, the
background error covariances are generally specified under the assumptions of homogene-
ity and isotropy at the beginning of the DA window in the four-dimensional variation
data assimilation system (4D-Var), and the characteristics of background error introduced
by 4D-Var are still limited by the linearity assumption and the usage of a static covari-
ance model at the beginning of each 4D-Var cycle in the mainstream numerical weather
prediction (NWP) centers [2–4].

Ensemble data assimilation has been widely employed for estimating the background
error covariances in numerical oceanographic and meteorological dynamic systems [5–7].
However, the ensemble data assimilation scheme suffers from a few problems in which
the covariance matrix is essentially replaced with the sample covariance matrix. For the
practical implementation in oceanic or atmospheric systems, the ensemble size is typically
many orders of magnitude smaller than the dimension of the model states, considering the
affordable computational load in the operational system. This phenomenon means that the
sample covariance matrix is rank-deficient due to the finite ensemble size, which can lead
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to the sampling error and the long-range spurious correlations in the sample covariance
matrix [8–10].

The consequence of the spurious correlations is that a state variable may be incorrectly
impacted by an observation that is physically remote, and filter divergence occurs when
the analysis adjusted by observation information is unable to more accurately represent the
true state. For this reason, the localization technique has been developed to overcome this
problem [11–14]. The most common localization scheme is Schur product covariance local-
ization, which attempts to mitigate spurious correlations by applying a weighting function
to cut off the spurious correlations at a long distance. While covariance localization has been
useful for ameliorating spurious correlations over long distances, they require exhaustive
tuning of the localization radius for determining at which point the spurious correlations
should be cut off [15,16]. More recently, to avoid the empirical tuning of the localization
parameters, several schemes of adaptive localization have been proposed and validated for
ensemble data assimilation depending on their specific implementations [17–22], e.g., using
an ensemble of ensembles to mitigate spurious correlations such as sampling error correction
and reducing correlation sampling for adaptive localization [23–26]; assuming the localiza-
tion function can be taken as a power of the background error correlation function [27–29];
proposing the theory of optimal linear filtering for adaptive localization [30]; proposing a
correlation-based adaptive localization method [31–33]; and considering machine learning
algorithms to capture the adaptive localization parameters [34–36]. The adaptive localization
technique has been developed in detail, but some of these methods make strong assumptions
or do not always work in ensemble data assimilation (EDA)-like frameworks.

In this paper, an adaptive localization scheme is proposed for Schur product covariance
localization. We focus on the implementation of the adaptive localization for the ensemble-
based background error covariances with two difficulties: which taper function is used for
determining the localization weighting coefficient and how the localization radius can be
updated with the weather scenario.

The remainder of this paper is organized as follows: In Section 2, a brief introduc-
tion of the ensemble Kalman filter and traditional covariance localization approach is
given. Section 3 presents the new adaptive localization scheme and its implementation. In
Section 4, the adaptivity of this localization scheme is evaluated in the Lorenz96 model [37],
and we also demonstrate the numerical results of the adaptive localization scheme in the
Data Assimilation Research Testbed (DART) [38] and Weather Research and Forecasting
(WRF) system [39]. Finally, conclusions and remaining issues are discussed in Section 5.

2. Background Material

In this section, we recall the basics of the ensemble Kalman filter (EnKF) and the
localization technique. Table 1 describes some notations used in this paper.

Table 1. Glossary of each notation.

Notation Description

N The ensemble size
mx Model state dimension
my Observation dimension
E[·] Expectation

x Model state variables
y Observational data
r Euclidean distance between two points
c Cut-off radius

2.1. Ensemble Kalman Filter

The EnKF is one of the variations developed from the Kalman filter equations by
replacing the single forecast trajectory with an ensemble. The initial ensemble is a collection
of perturbed estimates of the background state, and these ensemble members approximate a
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random sample from the probability distribution of the background states and observations
by a Monte Carlo procedure. There are two steps involved in using the Kalman filter to
assimilate observations in the system: a forecast step and a Kalman-analysis step.

In the forecast step, the EnKF produces an ensemble of forecasts by propagating with
the full nonlinear numerical model to the time when observations become available. This
step can be performed over a long time period, and the background error covariance matrix
could be flow-dependent. The approximation of the evolved background error covariance
can be estimated in the ensemble data assimilation:

P f =
1

N− 1

N

∑
i=1

(
x f i −E

[
x f
])(

x f i −E
[
x f
])T

=
1

N− 1
SST (1)

In this expression, S indicates the matrix containing each forecast ensemble anomalies
as a column, S = (x f 1 −E[x f ], x f 2 −E[x f ], . . . , x f N −E[x f ]); the superscript T stands for
the matrix transpose, the superscript f represents the forecast.

In the Kalman-analysis step, a weighting value between the observation and back-
ground errors is calculated in the Kalman filter equations. This weighting determines the
degree to which the forecast trajectory can be adjusted towards the observational data, and
the update equations are commonly written as follows:

xa = x f + K
[
y−H

(
x f
)]

(2)

K = P f HT
(

HP f HT + R
)−1

, (3)

where x f and xa denote the forecast and analysis variables, respectively; H is the forward
operator that maps the model state to the observational space (my ×mx matrix); R is the
observational error covariance (my ×my matrix).

2.2. Traditional Covariance Localization

However, current NWP models have state spaces containing elements on the order
of 107, and a resource-limited ensemble size is far smaller than the dimension of the state
spaces. The undersampling may produce a reduced rank representation of the background
error covariance matrix and the development of spurious long-range correlations. Covari-
ance localization is the most commonly method used to mitigate these issues by modifying
the ensemble-based covariance (Equation (1)) with its element-wise product [40–42]:

Ploc = ρ ◦ P f , (4)

where ◦ indicates the Schur product. It is ordinarily achieved by a localization matrix ρ,
whose structure is a band of nonzero elements around the main diagonal, with ones on
the diagonal and falling to zero at the localization radius distance from the diagonal. The
covariance localization attempts to cut-off the spurious correlations in the error covari-
ances at a long distance, and effectively improves the estimates of the background error
covariance. Thus, the update equations with covariance localization can be written as:

xa = x f +
(

ρ ◦ P f
)

HT
(

H
(

ρ ◦ P f
)

HT + R
)−1[

y−H
(

x f
)]

(5)

For computational efficiency, the localization operations are implemented using the H
in the observational space, ρ ◦ (P f HT) and ρ ◦ (HP f HT), respectively.

3. An Adaptive Localization Scheme

In this section, the adaptive localization scheme will be introduced in detail with
the localization taper function and adaptive radius. The implementation of the adaptive
scheme in the ensemble framework is also illustrated.
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3.1. Localization Taper Function

The covariance localization scheme cuts off the long-range spurious correlations with
its element-wise product like a weighting function. There are different ways of choosing
the localization weighting function in localization schemes, such as taper functions [43],
the fifth-order polynomial correlation function [44], and the distance-based localization
functions for multiphase flows [45].

In the previous section, it was shown that the flow-dependent background error
covariance estimated by the ensemble members is an mx ×mx real symmetric matrix. For
any nonzero column vector u of mx real numbers, the scalar uTP f u is strictly positive:

P f = E
((

x f i −E
[
x f
])(

x f i −E
[
x f
])T

)
(6)

uTP f u = uTE
((

x f i −E
[
x f
])(

x f i −E
[
x f
])T

)
u

= E
(

uT
(

x f i −E
[
x f
])(

x f i −E
[
x f
])T

u
)

= E
(∥∥∥u

(
x f i −E

[
x f
])∥∥∥2

)
≥ 0

(7)

Therefore, the sample covariance matrix estimated from the ensembles is a positive
semi-definite matrix, and the localized covariance ρ ◦ P f is also positive semi-definite since
it is the Schur product of two positive semi-definite matrices [46,47]. Another advantage
of the Schur product is that it increases the rank of the covariance matrix by cutting off
all long-range spurious covariances to zero, and the increasing rank would introduce the
extra degrees of freedom to the dimension of the model states and the observations.

The Gaspari–Cohn function is very popularly used as localization taper function in
ensemble frameworks because it is a compactly supported 5th-order piecewise rational
function and its Gaussian-shaped is similar to the probability density function of a normal
distribution [44,48]; thus the Gaspari–Cohn function is selected as the taper function for
the adaptive localization scheme. The Gaspari–Cohn function has a value decreasing from
one to zero in an approximation of a Gaussian distribution between zero and a 2× cutoff
distance, shown in Figure 1, that will be transformed and constructed into a localization
matrix with the same dimensions as the covariance matrix.

f =


− 1

4 (
|r|
c )

5 + 1
2 (
|r|
c )

4 + 5
8 (
|r|
c )

3 − 5
3 (
|r|
c )

2 + 1, 0 ≤ |r| ≤ c
1

12 (
|r|
c )

5 − 1
2 (
|r|
c )

4 + 5
8 (
|r|
c )

3 + 5
3 (
|r|
c )

2 − 5( |r|c ) + 4− 2
3 (

c
|r| ), c ≤ |r| ≤ 2c

0, |r| ≥ 2c

(8)

Figure 1. The Gaspari–Cohn function.

3.2. The Threshold Value of the Localization Radius

At present, defining the localization radius is a heuristic process (i.e., it is based on
experience), which is computationally expensive and often needs to be redone whenever
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the weather situation changes or the ensemble system is modified. If the threshold value
is larger, then there is a larger localization radius such that the long-range spurious corre-
lations will not be eliminated and more observational data are used for the model state
update in Equation (5). Similarly, If the threshold value is small, then the physical dynamic
correlations are excessively damped, and more observational data will be excluded. The
root mean square error (RMSE) indicates how closely the estimation matches the reference
field and is defined as

RMSE =

√√√√Σ
(

x̄− xre f

)2

Ntotal
(9)

where x̄ corresponds to the mean of the updated fields in the ensemble, xre f represents the
reference field, and Ntotal is the number of model parameters.

The Lorenz96 model is a dynamic system formulated by Edward Lorenz in 1996 [37].
It is defined as follows. For i = 1, ..., mx,

dxi
dt

= (xi+1 − xi−2)× xi−1 − xi + F, (10)

where it is assumed that x−1 = xmx−1, x0 = xmx and xmx+1 = x1. Here, xi is the state of the
system, mx = 40, F is a forcing constant, and F = 8 is a common value known to cause
chaotic behavior.

Figure 2. The RMSE of the ensemble mean analysis averaged over the points for different localization
radii. Loc1, loc2, loc3, and loc4 represent 0.05, 2, 4, and 6 localization scales, respectively.

Figure 2 shows the RMSE corresponding to different radii in the Lorenz96 model with
a 20-member ensemble. It can be noticed that different localization radii have different
RMSE in the ensemble assimilation. A well-tuned radius will appropriately remove the
unphysical spurious correlations and make the data match well, such as loc2 and loc3
in Figure 2. However, a larger radius, such as the label “loc4”, will weaken the effect of
removing the spurious correlation and have a poor data match with larger RMSE. And
when the localization radius is adjusted to an excessively small value, the specified dynamic
correlations will be deteriorated and a smaller radius will exclude many useful neighboring
observations.

The tuned radius cannot reflect the real-time characteristics of the ensemble system.
The adaptive radius needs to correspond adaptively to the correlation coefficient of the
ensemble system since the localization technique is used for ameliorating the spurious
correlations.

We define the xi are the ensemble members, x̄(x̄ = E[x]) is the estimate of the mean
µx. Since ensemble members x are the random sampling using the Monte Carlo method in
the EnKF, independent and uncorrelated. According to the Strong Law of Large Numbers,
when the sample is infinite (N → ∞) that we can get the estimate from the ensemble is
exact:
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P
{

lim
N→∞

〈x̄〉 = µx

}
= 1 (11)

The estimate error is ε = x− µx, we can get the estimation is unbiased with:

E[ε] = 1
N − 1

N

∑
i=1

(xi − µx) =
1

N − 1

(
N

∑
i=1

xi − Nµx

)
= 0 (12)

The variance Var[x](Var[x] = 1
N−1 ∑N

i=1(xi − x̄)2) is the estimate of the true variance
σ2

x . According to the Central Limit Theorem, the estimate values are normally distributed
around the true, and the samples are independent, thus:

Var

[
1

N − 1

N

∑
i=1

xi

]
=

1
(N − 1)2

N

∑
i=1

Var[xi] =
N

(N − 1)2 σx
2 (13)

The standard error of the ensemble estimates approximates the square root of the
ensemble size 1√

N−1
(N → ∞). The role of covariance localization is to cut-off spurious cor-

relation between state variables that are spatially distant or not physically correlated. Since
the estimation error of the ensemble members based on Monte Carlo sampling is 1√

N−1
,

the spurious correlation in the correlation coefficient has seriously affected the accuracy
of the estimated value when the correlation coefficient is less than 1√

N−1
. Therefore, it is

considered that the corresponding distance at which the correlation coefficient is less than
1√

N−1
is the radius of influence of the localization taper function that most of the spurious

correlation can be cut-off with such radius. To avoid the effect of negative correlation
coefficients, we use the square of the correlation coefficient for the determination of the
localization radius E

[
C(r)2] ≥ 1

N−1 .
Some studies have shown that there are strong links between localization and corre-

lation, when the ensemble distribution is gaussian with the assumption of the sampling
error is unbiased [49,50]:

ρ̃ij ≈
(N − 1)

(N − 2)(N + 1)

(N − 1)− 1

E
[
C̃2

ij

]
 (14)

where ρ̃ij is the first-order approximation of the localization coefficient ρij and C̃ij is the
element of sample correlation. The threshold value of the localization radius for the
Gaspari-Cohn function should make ρ ≥ 0 in the adaptive localization scheme, so that
spurious correlations can be accurately eliminated. Thus, the Equation (14) can be written
as E

[
C̃2

ij

]
≥ 1

N−1 .
The taper coefficient of the localization weighting function should be zero when

E
[
C(r)2] is less than 1

N−1 , in which the corresponding distance r is the localization radius
threshold value. The localization radius can be computed adaptively with known statis-
tical properties of sample covariances and updated with the real-time characteristics in
the ensemble system. Figure 3a–d shows the square of the correlation coefficient in the
Lorenz96 model with different ensemble members, and the dashed line corresponds to the
position of the localization radius calculated by the adaptive localization scheme. It can be
noticed that the spurious correlation weakens significantly with the increase of ensemble
members (Figure 3e–h), and the adaptive radius reflects the range of spurious correlation
well and gives a reasonable radius threshold. The larger ensemble has a larger radius than
that of the small ensemble size, which can be explained that the accuracy of the estimated
correlations of the small ensemble have been severely contaminated, but it is still accurate
at the same distance in a larger ensemble.
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Figure 3. The square of the correlation coefficient in the Lorenz96 model with (a) 50 members, (b) 100
members, (c) 200 members and (d) 400 members. (e–h) represent the spurious correlation squares,
respectively.

3.3. Implementation

The adaptive covariance localization scheme can be implemented directly as an inde-
pendent module in the ensemble framework, and the flowchart is shown in Figure 4. The
practical implementation in the ensemble framework can be summarized by the following
steps:

1. Integrate all ensemble members forward to the assimilation time step;
2. Estimate the sample covariance for the forecast ensemble members;
3. Calculate the correlation coefficient with the background ensembles;
4. Update the adaptive localization radius and transform the localization matrix;
5. Update the analysis field with the observation data, operator and error information;
6. Integrate the ensemble members forward to the next time step;
7. Repeat steps 2–6 until the assimilation process is completed.
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4. Results and Analysis

In this section, experimental studies of the adaptive scheme application on ensemble
framework are examined in Lorenz96 model and WRF model.

4.1. Preliminary Evaluation in Lorenz96 Model

The effects of the adaptive scheme on eliminating the spurious correlations is firstly
examined with the Lorenz96 model in the EnKF. A perfect model scenario is simulated by
a fourth-order Runge–Kutta scheme(RK4) for model integration with time step t = 1/40,
which is used to guarantee stability with RK4. We perform a free run of the model from an
initial condition, and this integration is considered to be the true state. The observations are
created from the true state by adding uncorrelated random noise, and only one observation
is available at two model grid points.

Figure 5. Representations of the covariance matrix estimated by (a) 20 members, (b) 100 members,
(c) 20 members with localization. And (d) the localization matrix.

The representations’ covariance matrices of the Lorenz96 model calculated from
background ensembles using Equation (1) are shown in Figure 5. Each pixel in the grid
represents the covariance between two state variables, and the pixels are colored according
to the covariance value. Figure 5a shows the sample background error covariance estimated
from the 20-member ensemble, and there are still large undesirable correlations in the
covariance matrix far from the leading diagonal, and most of them are contributed by the
spurious correlations. Accordingly, observations at one location may have an improper
impact on state variables that are far away from the observation location, and the weighting
placed on the forecasted state and the observations is inferior in the Kalman gain (Equation (3)),
which will greatly damage the quality of the analysis.

Figure 5c shows the representation background error covariance matrix in Figure 5a
after it has been localized. A striking feature is that the localization technique is like
a weighting function to cut off long-range spurious correlations and the correlations
close to the diagonal are maintained. The accuracy of the localized covariance matrix
from the 20-member ensemble is almost the same as that from the 100-member ensemble
(Figure 5b). Figure 6 shows the rank histogram of Lorenz96 model variables with different
localization scheme 20 ensemble members. The statistical frequencies of each interval
are more uniformly distributed with the adaptive localization scheme, reflecting a more
reasonable distribution of ensemble members in the assimilation process, which can well
suppress the filtering divergence.
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Figure 6. Rank histogram with adaptive localization (line 1) and no localization (line 2), the three
columns represent the 1st, 20th and 40th model variables, respectively.

The signal-to-noise ratios (SNR) of the raw and localized covariance matrix are 1.282
and 6.102, respectively, and a larger SNR of localized covariance strongly supports the
fact that the adaptive localization effectively ameliorates most of the spurious correlations.
Another benefit of the localization technique is that the covariance matrix becomes sparse
after applying the Schur product (Equation (4)), which can lead to important computational
savings in the calculations.

Table 2. Adaptive localization radii during the last 10 steps of the assimilation cycle.

Steps of Assimilation Cycle . . . 71 72 73 74 75 76 77 78 79 80

Adaptive Radius . . . 6 6 12 7 11 6 13 19 15 18

Figure 7. RMSE and spread with the (a) adaptive scheme and (b) fixed scheme tuned manually.

The spread is a direct measurement that qualifies the uncertainty contained in the
ensemble members. If the spread of the ensemble members is small, then all the members
are in a similar state, and there is a high confidence in the background. In contrast, if
the spread of the ensemble members is large, then the ensemble members are widely
spaced. After the assimilation of observational data, the RMSE and spread of the ensemble
members are reduced, and the spread should ideally match the RMSE if the ensembles
estimate the uncertainty of the model states correctly.

Figure 7 shows the RMSE and spread of the analysis field with adaptive scheme and
the localization tuned manually. The RMSE and spreads of the well-tuned localization
scheme and the adaptive scheme descended stably and continuously. At the stable stage,
the RMSE and spread of the two experiments are close to each other. The RMSE and the
spread of the adaptive scheme reach 0.3604 and 0.4267, respectively, which implies that the
ensembles work well on data assimilation. The localization radii during the last 10 steps of
the assimilation cycle of the adaptive scheme are represented in Table 2. The localization
radius is not constant in the cycle, and the adaptive scheme works well in updating the
radius values. These results indicate that the adaptive localization radius is efficient in
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suppressing the inferior effect of spurious correlations and has positive effects in the data
assimilation.

4.2. Application in an Atmospheric Model

The performance of the adaptive localization scheme will be investigated in the
Weather Research and Forecasting (WRF) model [39] and the Data Assimilation Research
Testbed (DART) framework [38]. We select Typhoon Dujuan (2015) as a numerical example,
which was generated in the Northwest Pacific on 20 September 2015 and weakened to
a cyclone on 30 September. The center’s maximum wind speed was about 79 m/s, and
its pressure was about 925 hPa. The center of the simulation area is 23.0◦ N, 130.0◦ E at
1800 UTC 26 September 2015, which is shown in Figure 8; the grid size of the assimilation
region is 500× 400; the horizontal resolution is 10 km. The initial and lateral boundary
conditions for the WRF simulation were derived from the National Centers for Environ-
mental Prediction (NCEP) operational Global Forecast System analysis data. A pair of
40-member ensembles is generated by the random perturbations based on the initial condi-
tions. For a more realistic environment, the observations (PREPBUFR files) from the NCEP
are assimilated using the ensemble adjustment Kalman filter in DART [51].

Figure 8. Weather situation on 1800 UTC 26 September 2015.

The expectations of correlation coefficients at different distances are calculated from
the ensemble states by random sampling in the simulation area, which is shown in Figure 9
that the point pair connected by the lime solid line is used to calculate the correlation
coefficients at distances of 200 km. The adaptive scheme is easy to implement online in the
frameworks of the traditional covariance localization and has a low computational cost
that the realizations of random sampling for expectations is roughly in the order of 102.
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Figure 9. Shows the random sampling for calculating the correlation coefficients.

Figure 10a shows the expectations of the correlation coefficient calculated from random
sampling. It is obvious that the characteristics of the correlation coefficient vary with the
model parameter, which is illustrated by the temperature and zonal wind correlation
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at the surface. The correlation coefficient gradually decreases with increasing distance,
drops from one to approximately zero at first within a certain distance, and then starts to
oscillate around zero with increasing distance. In addition, the correlation coefficients of
different model parameters have different trends; for example, the correlation coefficient
of temperature gradually decreases from one to approximately zero, while the correlation
coefficient of zonal wind first decreases below zero, then increases to approximately zero,
and then oscillates around zero.

The localization radii of zonal wind and temperature on the vertical levels calculated
by the adaptive scheme are illustrated in Figure 10b. There is a striking feature that
the optimal localization radius is variable on the model vertical levels; for instance, the
localization radius of temperature around the surface is 550 km, which is smaller than 930
km at 500 hPa. The trend of the radius varying with model levels is different with model
parameters where the radius of zonal wind is generally larger than that of temperature at
the same levels. The optimal radius of the localization function is not fixed for the model
parameters, which is flow-dependent with the background ensemble weather scenario. A
uniform localization radius tuned manually on the observational data of different variables
may reduce the effect of localization on the spurious correlations issue and deteriorate the
balance relationship between the model parameters [52].

Figure 10. (a) Temperature (solid) and zonal wind (dashed) correlations at the surface, (b) the
corresponding localization radius on the model vertical levels.

Single observational data simulations with the adaptive scheme are implemented in
the DART-WRF system. The spatiotemporal elution of the observational data increment
of different model parameters and its link with the meteorological flow are investigated
through Figure 11, from 18:00 UTC on 26 September to 00:00 UTC on 27 September 2015.
An overview of Figure 11 outlines the general features of the adaptive localization scheme,
where the adaptive localization based on the correlations is changed in accordance with
the meteorological flow in the background without tuning the localization radius manually.
The temporal evolution of the adaptive localization function is examined in Figure 12a for
temperatures in which the localization radius at 00:00 UTC is shorter than that at 18:00
UTC.
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Figure 11. The wind pressure field and increments of signal observations for zonal wind (a) and
temperature (c) near the surface at 18:00 UTC on 26 September 2015 (left column). The right column
show the same at 00:00 UTC on 27 September.

Figure 12. The adaptive localization function of temperature at different times, and of temperature
and zonal wind at 18:00 UTC on 26 September 2015.

It can be observed that the range of the zonal wind increments is greater than the
range of temperature at the same time (Figure 11) and the different increments of the
different model parameters indicate that the optimal localization radius vary across the
parameters, which is in agreement with the localization radius shown in Figure 12b that
the localization radius of zonal wind obtained by the adaptive method is larger than that
of temperature. A more detailed examination shows that the observation increment of
temperature has almost no negative increment and zonal wind has a large amount of
negative increment information, which corresponds to the correlations in Figure 10a that
the correlation coefficient of temperature drops directly from one to near zero, while the
correlation coefficient of zonal wind drops from one to below zero and then oscillates near
zero. The characteristics of different variable observations with different radii are reflected
reasonably by the adaptive localization scheme.

5. Discussion and Conclusions

The ensemble-based covariances estimated from the short-term forecast ensembles
are a reduced rank representation of the background error covariance and always suffer
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from spurious correlation problems. In order to ameliorate the spurious correlations in the
ensemble-based covariances, an adaptive localization scheme is presented in this study.

The theoretical part of the ensemble-based covariance shows that the estimated matrix
from the ensembles is a positive semi-definite matrix. In addition, this supports the claim
that the positive semi-definite feature of the covariance matrix should be maintained after
covariance localization. For that purpose, a Gaussian-shaped taper function is used for
determining the localization weighting coefficient. The investigation of the threshold
value of the localization radius reveals that the adaptive radius has a strong quantitative
relationship with the correlation and ensemble size. The spurious correlations generated
by the finite ensembles have the same scale as the true correlation coefficient at a long
distance and become weaker in the larger ensemble. Note that the accuracy of the estimated
correlations of the small ensemble have been severely contaminated, but it is still accurate
at the same distance in a larger ensemble, which means that the localization radius of the
large ensemble size is larger than that of the small ensemble size. In a real NWP context,
the localization radius obtained by the background ensemble is model parameter- and
vertical level-dependent, which is reflected in the variation of observational increments.
The interesting properties are also closely consistent with the change characteristics of the
corresponding correlation coefficient.

Experimental studies of the adaptive scheme application on the ensemble framework
present that the adaptive scheme has a positive impact on the RMSE in the analysis
compared with the well-tuned localization scheme. The spurious correlations in the
ensemble-based covariance matrix have been significantly suppressed, and the assimilation
effect is improved with the localization radius is updated adaptively. In addition, it is easy
to implement the adaptive scheme in the traditional covariance localization procedure
when running an ensemble assimilations.

However, the homogeneous and uniform type of the localization taper function may
weaken the anisotropic characteristics of the increment. In the next step, combining the
adaptive localization and a wavelet approach may be worth considering. Second, further
adaptive applications are currently being explored for the multiple domain according to
the weather situation.
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