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Abstract: Due to the model and sampling errors of the finite ensemble, the background ensemble
spread becomes small and the error covariance is underestimated during filtering for data assimila-
tion. Because of the constraint of computational resources, it is difficult to use a large ensemble size
to reduce sampling errors in high-dimensional real atmospheric and ocean models. Here, based on
Bayesian theory, we explore a new spatially and temporally varying adaptive covariance inflation
algorithm. To increase the statistical presentation of a finite background ensemble, the prior proba-
bility of inflation obeys the inverse chi-square distribution, and the likelihood function obeys the
t distribution, which are used to obtain prior or posterior covariance inflation schemes. Different
ensemble sizes are used to compare the assimilation quality with other inflation schemes within
both the perfect and biased model frameworks. With two simple coupled models, we examined the
performance of the new scheme. The results show that the new inflation scheme performed better
than existing schemes in some cases, with more stability and fewer assimilation errors, especially
when a small ensemble size was used in the biased model. Due to better computing performance
and relaxed demand for computational resources, the new scheme has more potential applications in
more comprehensive models for prediction initialization and reanalysis. In a word, the new inflation
scheme performs well for a small ensemble size, and it may be more suitable for large-scale models.

Keywords: ensemble Kalman filter; covariance inflation; coupled model; sampling and model errors

1. Introduction

Data assimilation (DA) incorporates observations into a climate model through back-
ground error covariances derived from model dynamics and then produces a continuous
time series of climate states [1–3]. In the ensemble Kalman filter (EnKF) [4], covariance
inflation [5] is often used to avoid underestimating the background error covariance caused
by a finite size of ensembles. It increases the state’s uncertainty by expanding its ensemble
spread and increases the confidence in the observations.

The covariance inflation scheme is mainly divided into multiplicative [6,7], additive [8]
and observation error variance [9] inflation. This paper focuses on multiplicative inflation,
which is further divided into prior and posterior inflation by applying the inflation fac-
tor to the background ensemble and the analysis ensemble, respectively. Prior inflation
was proposed earlier, and Anderson [10] used it in the ensemble adjusted Kalman filter
(EAKF) assimilation method. The inflation factor here requires manual tuning for each
assimilation. Consequently, it is often time consuming and computationally expensive,
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especially for complex geophysical models. Many studies have also pointed out that the
EnKF assimilation method is sensitive to the choice of the inflation factor [11,12]. Therefore,
Anderson [13] developed a time-adaptive covariance inflation algorithm based on hierar-
chical Bayesian estimation theory. He updated the inflation factor like a variable and got
results as satisfactory as those from manual tuning. By extending the Bayesian approach,
Anderson [14] proposed a spatial and temporal varying adaptive covariance inflation
algorithm in 2009 (A09). In addition, an online inflation factor estimation algorithm in the
ensemble transform Kalman filter (ETKF) framework was proposed by Wang et al. [15] and
extended by Li et al. [16] to simultaneously estimate covariance inflation and observation
errors online. Miyoshi [17] improved the ETKF framework by adaptively estimating the
inflation factor at each grid point, and the method has been applied to several geophysical
system studies [18–21]. Zheng [22] and Liang [9] used the maximum likelihood method to
estimate the inflation factor from the update vector at each time step. Zhang [23] proposed
a special posterior inflation (relaxation) scheme, the relaxation-to-prior-perturbation (RTPP)
approach. Based on it, Whitaker and Hamill [12] proposed the relaxation-to-prior-spread
(RTPS) method. The relaxation factors of these two methods are obtained by manual tuning.
Ying and Zhang [24] proposed an adaptive RTPS method, and Kotsuki et al. [25] proposed
an adaptive RTPP method to obtain varying optimal factors. Both methods are based on
the innovation statistics [8,26] in the observation space.

All the above methods assume that the inflation innovation is Gaussian, but it can
produce negative or minimal inflation values, and a long run of deflation may lead to filter
divergence. So, scholars have tried many other schemes. For example, Brankart [27] made
the initial prior obey the exponential distribution, but it is not suitable for small values. As
a conjugate distribution to the variance parameter of the Gaussian distribution, the inverse
chi-square (χ−2) (equivalent to the inverse-gamma) distribution may be a better choice. El
Gharamti made the prior probabilities of inflation obey the inverse-gamma distribution [28]
(E18) and applied it to the posterior inflation [29] (E19). Raanes [30] made the likelihood
function obey the χ2 distribution, and the prior and posterior probabilities obey the χ−2

distribution. However, all these advantages seem insufficient for small ensemble sizes.
In this paper, a new inflation scheme is proposed in the framework of Bayesian theory,

in which the prior probability still obeys the χ−2 distribution and the likelihood function
obeys the t distribution, which is more suitable for small sample sizes, and data assimilation
experiments are performed in two atmospheric-ocean-coupled model frameworks. In the
results of the comparison, the new scheme shows significant effects under high sampling
and model errors.

In addition to the explanation of abbreviations in this paper, we also list main ab-
breviations and definitions in the text in Appendix A to read more conveniently. The
abbreviations of inflation methods are explained as follows: AIb denotes the spatial and
temporal adaptive prior covariance inflation scheme in A09; AIa denotes the adaptive
inflation scheme that uses AIb into posterior inflation; EIb denotes the enhanced adaptive
prior inflation scheme in E18; EIa denotes the enhanced adaptive posterior inflation scheme
mAI-a in E19; tXb and tXa are the adaptive prior and posterior inflation schemes proposed
in this paper, respectively.

The paper is organized as follows: Section 2 introduces the assimilation method, the
basic theory of adaptive inflation and a new adaptive inflation scheme. Section 3 focuses on
a series of numerical experiments with a simple five-variable model and compares the new
method’s performance with other inflation schemes. Section 4 verifies the applicability and
effectiveness of the new inflation scheme in another coupled model. Finally, the discussion
and conclusion are given in Section 5.



J. Mar. Sci. Eng. 2021, 9, 1054 3 of 23

2. Methodology
2.1. EAKF Assimilation Method

To construct the assimilation frame, we used the ensemble adjustment Kalman filter
(EAKF) [3,10,31–33] assimilation method. The process involves two steps. First, the
observation increment ∆yo,i is calculated from the state ensemble x and the observation yo:

∆yo,i =
y

1 + r2(y, yo)
+

yo

1 + r−2(y, yo)
+

yi − y√
1 + r2(y, yo)

− yi (1)

where y is the projection of the state values on the observation space, y = h(x), h is the
projection operator; yi is the i-th member of the ensemble; y is the ensemble mean; and
r2(y, yo) is the ratio of the model ensemble variance in the observation space and the
observation error variance, i.e., σ2

y /σ2
yo .

Second, the state increment ∆xi is calculated from the observation increment:

∆xi =
cov(x, y)

σ2
y

∆yo,i (2)

where cov(x, y) is the error covariance of the state ensemble x and the ensemble y in the
observation space. The assimilated analysis ensemble is obtained by adding the state
increments to each corresponding member of the state ensemble.

2.2. Adaptive Inflation Algorithm
2.2.1. Basic Inflation Theory

This section focuses on the basic inflation scheme to be compared in this paper, and
all the equations can be found in A09, E18 and E19. To compensate for the error covariance
lost in the ensemble assimilation process and prevent filter divergence, the error covariance
needs to be inflated, i.e., Pin f = λP, where λ is the inflation factor, which is generally
slightly greater than 1. In practice, the inflation of error covariance is generally achieved by
inflating the state ensemble spread, as shown in Equation (3). For simplicity, we assume
that all equations are at the same time step, so the time subscripts are omitted:

xin f
j,i =

√
λ
(
xj,i − xj

)
+ xj (3)

where xj,i denotes the i-th member state value of the j-th variable and xj denotes the
ensemble mean of the j-th variable. A larger ensemble size corresponds to a smaller
inflation factor and vice versa [6]. In the background state framework, considering only
scalar systems (which can be extended to vector systems), the background ensemble mean
xb and sample variance σ̂2

b are expressed as follows:

xb =
1
N

N

∑
i=1

xb,i (4)

σ̂2
b =

1
N − 1

N

∑
i=1

(xb,i − xb)
2 =

1
N − 1

N

∑
i=1

x′b,i
2 (5)

where b (background) denotes the prior inflation. This can be replaced by a (analysis) de-
noting the posterior inflation, to represent the statistical analysis of the posterior ensemble.
x′b,i denotes the ensemble perturbation of the background ensemble, and N is the ensemble
size. Theoretically, the background ensemble member xb,i ∼ N

(
µ, σ2

b
)
, but the background

variance σ̂2
b calculated from the sample is an underestimated variance due to reasons such

as the finite ensembles:
σ2

b = λσ̂2
b (6)
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That is, the underestimated variance is inflated to obtain the true or near-true variance.
Assuming that the true state of the model is xt, the observation yo can be obtained by the
following equation:

yo = h(xt) + εo (7)

where the operator h is used to project the state space variables into the observation space
(both are consistent by default in this paper, so h is the unit matrix and is omitted after
here). εo is the observation error, which is set to obey a Gaussian distribution with mean 0
and variance σ2

o . Similarly, we can obtain:

xb = xt + εb (8)

xa = xt + εa (9)

where the background error εb and the analysis error εa obey a Gaussian distribution with
mean 0 and variance σ2

b , σ2
a , respectively. The analysis ensemble is calculated from the

background ensemble and the observation correction as follows:

xa,i = xb,i + f (xb,i, yo) (10)

where the correction term f (xb,i, yo) is a function of xb,i, yo.
According to the definition of the innovation statistic, the background distance db is

given by Equation (11):

db = yo − xb = εo + xt − xb = εo − εb (11)

The innovation statistics respond to the difference between the observation and the
ensemble mean, which is used later in Bayesian theory to calculate the likelihood of inflation.
In addition, since the background ensemble is formed by adding random perturbations
directly to the initial field, we can assume that the background error εb is not related to the
observation error εo. However, the analysis ensemble is calculated from the background
ensemble and observations, so the analysis error εa is considered related to the observation
error εo.

With the development of inflation theory, prior inflation has been widely studied and
applied, as described in Section 1. It inflates the prior ensemble of states using Equation (3)
before the assimilation step. A09 proposed a classical spatial–temporal adaptive inflation
algorithm, which is called AI-b in this paper. Similar to the estimation of state variables,
the inflation factor as a parameter also requires prior inflation and observations through
Bayesian theory to compute the posterior inflation:

p(λ|db) = p(dbλ)p(λ)/norm ∝ p(dbλ)p(λ) (12)

where p(λ|db) is the posterior probability of λ. Equation (12) is used to calculate the value
of λ when the posterior probability is the maximum. p(λ) is the prior probability of λ with
a model function of 1, i.e., the posterior inflation factor is the prior factor the next time.
Anderson considered the prior probability to obey a Gaussian distribution with mean λb and
variance σ2

λ,b. Here, norm is a standardized constant. p(db|λ) is the likelihood, which is also
considered to obey a Gaussian distribution, and its mean and variance of the background
innovation statistic on the prior λ are given by the following equations, respectively:

E(db) = E(εo − εb) = 0 (13)

D(db) = E
(

db
2
)
= E

(
εo

2 + εb
2 − 2εoεb

)
= σ2

o + σ2
b (14)

Since εo is not related to εb, the expectation of its product is 0. The variance of
the likelihood is denoted as θ2 = σ2

o + λσ̂2
b by matching Equation (6) and a determined
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observation error variance. Further, the inflation posterior probability density function
(pdf) can be obtained as follows:

p(λ|db) =
(√

2πθ
)−1

e−
d2

b
2θ2 ·

(√
2πσλ,b

)−1
e
− (λb−λb)

2

2σ2
λ,b (15)

To calculate λ when the posterior probability is maximized, the above equation is
derived, and its final form is for a cubic equation [13]. However, if there is non-exact
correspondence between the observation space and the state space, the influence of the
correlation coefficient between the observation and the prior state or localization factor
should be considered [14]. The inflation factor in the observation space should be a function
related to it in the state space:

λo =
[
1 + γ

(√
λb − 1

)]2
(16)

where γ = ρr, ρ is the localization factor, and r is the correlation coefficient between
observation and state. If γ 6= 1, the result based on Equation (15) is a sixth-order equation,
which is generally insoluble. Thus, based on Equation (15), A09 performed a Taylor
expansion on the likelihood function, the linear term was retained, and finally a quadratic
equation concerning λ was obtained, giving a solution close to λb.

Ideally, λ should be greater than 1 to push the ensemble state away from its mean
and increase the error covariance. When λ = 1, no inflation is performed. If θ2 − σ2

o < σ̂b
2

or θ2 < σ2
o , λ will be less than 1 or even less than 0, which will not inflate. Similarly, λ

much larger than 1 is also infeasible, which would lead to over-inflation of the ensemble.
Therefore, λ should be a reasonable range of variation.

Unlike A09, in the enhanced prior scheme (EIb) in E18, El Gharamti got the innovation
statistic d in the likelihood function by each member of the prior ensemble:

db,i = yo − xb,i (17)

By calculation, the expectation of d remains the same and the variance is added to the
original with a correction term related to the ensemble size. The modified variance of the
likelihood function is:

θ2 = σ2
o +

{[
1 + γ

(√
λb − 1

)]2
− 1

N

}
σ̂2

b (18)

Meanwhile, the prior probability in E18 obey the inverse-gamma distribution, as
shown in the following equation:

p(λ) =
βα

Γ(α)
λ−α−1 exp

(
− β

λ

)
(19)

where α is the shape parameter, β is the rate parameter, Γ is the gamma function and
Γ(x) =

∫ +∞
0 tx−1e−tdt, (x > 0). If the prior mean (mode) and variance of the Gaussian

distribution are available, the two unknown parameters can be found by making them equal
to the mode and variance of the inverse-gamma distribution, respectively. Compared with
the Gaussian distribution, the inverse-gamma distribution features of this scheme avoid some
negative or small inflation values and reduce the impact on the assimilation quality.

Different from the prior inflation, in the enhanced posterior inflation scheme (EIa) in
E19, in addition to the inflation factor is acting on the analysis ensemble, the following
treatment is applied to the analysis state and variance.

εo is related to εa, the likelihood variance is not the same as the results of
Equations (14) and (18), but a function of the posterior variance σ2

a,j, the posterior vari-

ance of the previous assimilation step σ2
a,j−1 and the observation variance σ2

o,j, where j
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denotes the j-th observation of the assimilation [29]. To reduce the computational cost in
the high-dimensional complex model, El Gharamti decorrelated them as follows:

σ̃2
a =

1
1

σ2
a
− 1

σ2
o

(20)

x̃a = σ̃2
a

(
xa

σ2
a
− yo

σ2
o

)
(21)

where σ̃2
a and x̃a are not correlated with observations and the innovation statistic becomes

da,i = yo − x̃a,i. To ensure that the variance σ̃2
a is not less than 0, several methods are

designed to restrict it. A comparison of the experimental effects shows that σ̃2
a = σ2

a when
σ2

a > σ2
o .

2.2.2. The New Inflation Scheme

The classical adaptive inflation is computed based on Bayesian theory with a Gaussian
framework. However, as described in Section 1, many studies have shown that a framework
with a Gaussian distribution is not the only choice and different distributions have some
advantages in some aspects. In this paper, we used alternative distributions to obtain new
inflation schemes.

Prior Probability

Raanes showed that the inverse-gamma or inverse chi-square distribution is a better
choice for the prior pdf of inflation, which is also better than the assimilation effect in the
Gaussian framework (note that the gamma and chi-square distributions are equivalent
and can be converted into each other [30]). Therefore, this scheme uses the inverse-gamma
distribution as in E18 to describe the prior pdf of inflation, as in Equation (19).

Likelihood Function

When the degree of freedom is large enough, the t distribution is believed to become
the same as the Gaussian distribution. However, when the sample size is small, the
t distribution shows the feature of “heavy-tailed.” It is influenced by the sample and
deviates significantly from the Gaussian distribution. Large ensemble sizes cannot be
used in actual large-scale climate models, so the t distribution is more suitable than the
Gaussian distribution for estimating the overall population. For the above reasons, the
inflation scheme makes the likelihood function obey the t distribution, where the pdf of
the t-distribution is derived from Table A1 in the paper by Raanes [30]:

p(d|λ) = ct|B|−
1
2

(
1 +

1
v
(d− b)2

B

)− v+M
2

, ct =
Γ
(

v+M
2

)
(πv)

M
2 Γ
( v

2
) (22)

where v is the degree of freedom, which is equal to the ensemble size; M is the number of
state variables; and b and B are the parameters in the t distribution pdf. The t distribution
has mean b and variance v/(v− 2)B. To find the required parameters, suppose the prior
mean and variance of the Gaussian distribution are available so that both means and
variances are equal:

b = 0,
v

v− 2
B = θ2 (23)

Bringing them into Equation (22), the likelihood function can be obtained as follows:

p(d|λ) = ct

∣∣∣∣v− 2
v

θ2
∣∣∣∣− 1

2
[

1 +
d2

(v− 2)θ2

]− v+M
2

, ct =
Γ
(

v+M
2

)
(πv)

M
2 Γ
( v

2
) (24)
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To enhance the relationship between the innovation statistic d and each state ensemble
member, the method proposed in E18 can be used. So, the variance of the likelihood
function in the scheme is shown as Equation (18).

Posterior Probability

According to Bayesian theory (Equation (12)), multiplying the likelihood function
with the prior probability gives the posterior probability of inflation:

p(λ|d) = ct

∣∣∣∣v− 2
v

θ2
∣∣∣∣− 1

2
[

1 +
d2

(v− 2)θ2

]− v+M
2 βα

Γ(α)
λ−α−1 exp

(
− β

λ

)
(25)

where θ is a function of λ and α and β are functions of λb and σ2
λ. Therefore, finding

the updated posterior inflation is equivalent to finding the value of λ when the posterior
probability is maximized.

Let the derivative of the posterior probability be 0. Eventually, the same quadratic
equation as Equation (38) in E18 [28] can be obtained:(

1− λb
β

)
λ2 +

(
l
l′
− 2λb

)
λ +

(
λ2

b −
l
l′

λb

)
= 0 (26)

However, l and l′ are not same with them in E18, the detailed procedure can be found
in Appendix B. The root close to λb is the updated inflation factor. In the posterior inflation
scheme, we also use the scheme in E19 for decorrelation, as shown in the previous section.

Since the inflation method is obtained from the likelihood function obeying the t
distribution and the prior probability obeying the χ−2 distribution, they can be used for
the background state to obtain the prior inflation (tXb) and the analysis state to obtain the
posterior inflation (tXa), respectively. The updated inflation variance calculation is not
given here because a fixed variance is more appropriate [13] in terms of the calculation’s
cost and effectiveness. It is proved that even the adaptive varying covariance decreases to
a stable value over time [28].

Algorithm Implementation

The computing process and characteristics of the new adaptive inflation algorithm in
the sea-air coupled assimilation model based on EAKF are as follows:

• Without abandoning the Gaussian framework, the t distribution of the likelihood
function and the χ−2 distribution of the prior probabilities are used, assuming that
their Gaussian distributions are available, and their product outputs are Gaussian
priors when assimilating the next observation.

• The prior inflation factor is used before each variable assimilation step, and the
posterior inflation factor is used after it.

• Localization is not considered in this paper, and since the state space and the observa-
tion space are consistent, γ = 1.

• The rate parameter β is calculated by the mean λb and variance σ2
λ,b of the prior

inflation factor.
• The innovation statistic d as well as its variance θ

2
are calculated. Then, the ratio of

the gamma function is calculated by the special method proposed in this paper to
obtain the values of l and l′.

• Finally, the quadratic equation containing β, l, l′ and λb is solved to obtain the updated
inflation factor λu. The new λu,j is the prior inflation factor λb,j+1 when assimilating
the next observation.
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3. 5VCCM Experiments
3.1. The Model

We first used a five-variable coupled climate model (5VCCM), a decadal pycnocline
prediction model, proposed by Zhang [34,35] and widely used in many studies [3,36],
to conduct a series of experiments and analyze the experimental results. The 5VCCM is
a simple version of the coupled general circulation model (CGCM), with some similar
features, avoiding the enormous costs of using complex models. The 5VCCM consists
of five variables: three variables from the Lorenz63 chaotic atmosphere model [37], one
variable from the slab ocean model, and one variable from the deep-ocean pycnocline
model [38]. The fast atmosphere drives the slower ocean, resulting in sea-air interactions.
The governing equations are as follows:

.
x1= −σx1 + σx2
.
x2= −x1x3 + (1 + c1ω)κx1 − x2
.
x3= x1x2 − bx3

Om
.

ω= c2x2 + c3η + c4ωη −Odω + Sm + Sscos
(

2πt/Spd

)
Γ

.
η= c5ω + c6ωη −Odη

(27)

where all quantities are given in non-dimensional units. x1, x2 and x3 are atmospheric vari-
ables, where x1 is the flip rate of convection, x2 is the temperature difference proportional
between the up-flow and down-flow fluids and x3 is the temperature gradient in the vertical
direction. ω and η are ocean variables, where ω denotes the slab-ocean and η denotes the
deep-ocean pycnocline. A dot above a variable denotes the time tendency. The above five
formulas constitute a system of nonlinear differential equations and contain 15 parameters.
σ, κ and b are the original parameters in the Lorenz63 model with standard values of 9.95,
28 and 8/3, respectively. c1 denotes the parameter of atmospheric forcing by the ocean; c2
denotes the atmospheric forcing on the upper ocean; c3 and c4 denote the linear forcing by
the deep ocean on the upper ocean and the interaction between them, respectively; and c5
and c6 denote the linear forcing by the upper ocean on the deep ocean and their interaction,
respectively. Without the interaction between different media, the upper ocean would con-
sist of only the damping term Odω and the external forcing S(t) = Sm + Sscos

(
2πt/Spd

)
,

where Od is the damping coefficient; Sm and Ss define the magnitude of the annual mean
and seasonal cycle, respectively, and Spd defines the timescale of the seasonal cycle. Since
the timescale of ω is much slower than that of the atmosphere, the heat capacity Om is
much larger than the damping coefficient Od, which means that the timescale of the ocean
is Om/Od times that of the atmosphere. In the deep-ocean pycnocline model, η denotes
the anomaly of the ocean pycnocline depth, and its equation is derived from the two-term
balance model of the zonal-time mean pycnocline [38]; Γ is the constant of proportionality.

Following Zhang [34] on the set of parameters, the values of 15 parame-
ters were set in this paper as

(
σ, κ, b, c1, c2, c3, c4, c5, c6, Om, Od, Sm, Ss, Spd, Γ

)
=(

9.95, 28, 8/3, 10−1, 1, 10−2, 10−2, 1, 10−2, 10, 1, 10, 1, 10, 100
)
, where σ, κ and b are still

selected as the standard values in the Lorenz63 model.

3.2. Experiment Design

The experiments were designed to compare the performances of new inflation schemes
with those of other inflation schemes with different ensemble sizes. Before starting the
assimilation experiments, we needed to construct perfect and imperfect assimilation models.
We selected the leapfrog time difference scheme as the perfect model scheme [34] and used
the Robert-Asselin time filter [39,40] with a time filter coefficient of 0.125. The fourth-
order Runge-Kutta (RK4) time difference scheme was used in the imperfect model for
comparison [36]. The experimental time step was ∆t = 0.01, and all 15 parameters were
considered as standard values in Section 3.1. We assumed that the only source of the model
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error is from the different time difference schemes. The initial values and the observation
of the experiment are generated with reference [36], and the true and observation field
required for the experiment can be obtained from the initial values and the model of the
input parameters together, as follows.

The five variables (x1, x2, x3, ω, η) of the coupled model were spun up from the initial
values (0, 1, 0, 0, 0) for 1000 time units (TUs; 1 TU is 100 time steps) in the perfect and
imperfect models, respectively, to obtain true and biased initial fields. Then running the
true initial field for 10,000 TUs using the perfect model, we obtained the true values of
the five variables about the time series. The observation field was obtained by adding
Gaussian white noise with a standard deviation of 2 every 5 steps for x1, x2 and x3, and
a standard deviation of 0.2 every 20 steps for ω. This observation frequency was based
on the actual climate observation system, where the atmosphere has a higher frequency
of observations than the ocean. The deep-ocean variable η had no observations, so no
inflation was performed on it.

The initial ensembles of perfect and imperfect model assimilations were obtained from
true and biased initial fields, respectively, adding only Gaussian white noise consistent with
the observed standard deviation on x2. The ensembles were used as the initial condition to
run 10,000 TUs corresponding to their time difference methods, respectively, and different
inflation schemes were used for comparison. The assimilation effect was judged by the root-
mean-square error (RMSE). The RMSE (Equation (28)) time series of x2 in the last 100 TUs,
ω in the last 1000 TUs, and η in the 10,000 TUs were selected for analyses and comparison.
The mean RMSE (Equation (29)) of the stable last 5000 TUs was also represented.

RMSE1 =

√
(x− xt)

2 (28)

RMSE2 =

√
1
n

n

∑
i=1

(xi − xt,i)
2 (29)

where the subscript denoting the state is omitted, x is the mean of the state ensemble, and
n is the number of steps for analysis.

The initial inflation factor was 1.0. The standard deviation of the inflation factor took
a fixed value such that σλb = 0.1 when using the perfect model and σλb = 1.0 when using
the imperfect model [14].

The other two experiments were conducted as a reference to the assimilation results.
The first was a control (CTRL) experiment that did not introduce any observations, i.e.,
only model integration was performed. The second was an assimilation experiment with
state estimation only (SEO), without introducing covariance inflation or localization.

3.3. Result Analysis

Based on the above experimental setup, this section compares and analyzes the
performance of the new inflation scheme used in the prior and posterior ensembles in the
perfect and imperfect models and shows the effect of the traditional assimilation method
with the new adaptive inflation scheme.

3.3.1. Inflation Scheme Comparison
Imperfect Model

• Prior inflation scheme

The initial bias ensemble was integrated using the RK4 difference method with different
inflation schemes. The time series of RMSEs compared with SEO and CTRL are shown in
Figure 1. The manually tuned inflation factor was almost unavailable in the complex model,
so it was not compared in this paper. The black line is the control experiment CTRL, the
magenta line is the SEO, the red line is the spatial-temporal adaptive prior inflation method
proposed by A09, the green line is the enhanced adaptive prior inflation method proposed by
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E18, and the blue line is the new prior inflation scheme proposed. The inset in each graph in
Figure 1 shows its partial enlargement for a clear comparison of all inflation schemes.

Figure 1. Time series of RMSEs of the atmospheric variable x2 in the last 100 TUs, the upper-sea variable ω in the last
1000 TUs, and the deep-sea variable η in 10,000 TUs in the imperfect model with CTRL (black line), SEO (magenta line),
AIb (red line), EIb (green line) and tXb (blue line), with an ensemble size of 5 for (a) and 20 for (b). The inset in each graph
shows its partial enlargement to show the time series of RMSEs of x2 in 50 TUs, ω in 400 TUs and η in the last 5000 TUs.

Figure 1a shows the experimental results for an ensemble size of 5. The RMSEs of
CTRL and SEO were much larger than those on adding the inflation scheme. In addition,
we compared the effects with the three inflation schemes. There was no apparent difference
between the three schemes for x2. For the variable ω, AIb performed poorly and often had
RMSEs above the observational standard deviation. Both EIb and tXb worked better due
to the χ−2 distribution of the inflation prior probability. tXb was a bit better because its
likelihood function obeyed the t distribution, which is more suitable for small ensemble
sizes. For the variable η without observation, AIb produced unstable results but was better
than EIb and tXb. Compared with EIb, tXb produced more stable and better assimilation
results. AIb produced poor assimilation results for ω and better but unstable results for η
in the sea-air coupled model. The conflict between these two variables was alleviated by
EIb, which substantially improved the assimilation effect of ω and stabilized η at the same
time. Moreover, the new inflation scheme tXb improved the assimilation quality of these
two variables again and reduced their RMSEs.
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Figure 1b shows the experimental results for an ensemble size of 20. Although the
sampling error was reduced, the same assimilation schemes with the inflation factors were
still significantly better than the RMSEs of CTRL and SEO, which shows that covariance
inflation significantly improves data assimilation quality. To compare the differences
between the inflation schemes clearly, we did not compare these two schemes in subsequent
experiments. When the ensemble size increased to 20, there was no longer a significant
difference between EIb and tXb for ω. The reason is that the larger ensemble size makes
the t distribution gradually approach the Gaussian distribution and produces a similar
effect. For updated η by the action of other variables only, consistent with the ensemble
size of 5, tXb still had a better performance than EIb and was better than AIb here.

To intuitively compare the performance of different inflation methods for different
ensemble sizes and to explore the implementation of the new inflation scheme between
various sampling errors, we calculated the mean RMSEs of the last 5000 TUs for x2, ω and η,
and the results are displayed in Figure 2. The blue bar is the AIb scheme of A09, the orange
bar is the EIb scheme of E18 and the yellow bar is the tXb prior inflation scheme. The
results in Figure 1 show that the different inflation schemes have insignificant effects on the
RMSE of x2. However, the first subplot of Figure 2 shows that the new inflation scheme has
some advantages over the other two for x2 when the ensemble size is small, while the three
schemes show comparable levels when the ensemble size exceeds 20. The advantage of the
new scheme is more evident than the advantages of the others for ω. When the sampling
error was large, i.e., the ensemble size was 5, the effect of tXb improved by 48.6% relative
to the classical AIb scheme. When the ensemble size was less than or equal to 20, tXb was
better than EIb, which further indicated that the t distribution of the likelihood function
plays a major role for small samples. When the ensemble size was 5, EIb did not show
any advantage for η. In contrast, except for a further reduction in RMSEs for x2 and ω, the
effect of tXb improved by 45.9% for the unobserved variable η, reaching a similar level
as AIb and showing a better effect than EIb. Throughout, tXb showed promising results
when the ensemble size was small (Figure 2). tXb also offered comparable levels to EIb
due to the gradual convergence of the t distribution and the Gaussian distribution at larger
ensemble sizes. This result indicates that tXb has better results than the other two prior
inflation methods for most cases in the imperfect model, and the larger the sampling error,
the more pronounced the effect.

In the simple sea-air coupled model, the variables x1, x2, x3 and ω provided observa-
tions on general characteristics similar to those by most models. The variable η, which
changed only under the influence of other variables, had more unique features and reflected
the characteristics of the unobserved variables to some extent. So, the results of x2 and ω
showed that 20 ensemble members are enough to significantly reduce the sampling error
in the imperfect simple sea-air coupled model. Due to the short integration time of the
model, there is not enough capacity to respond to the changes due to the ensemble size, so
an excessive ensemble size does not always give better results.

Also in this model, the computation times of different inflation schemes with different
ensemble sizes were compared, as shown in Table 1. Due to the unstable computer power,
the following values are the average results of three times of experiments. The time taken
for the three schemes is close when using the same ensemble size, while the computation
time will be significantly higher when the ensemble size increases. Therefore, using a small
ensemble size can save more time cost.
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Figure 2. RMSEs of different ensemble sizes in the imperfect model with AIb (blue bar), EIb (orange
bar) and tXb (yellow bar) for variable x2, ω, η. It is the time mean of the RMSEs in the last 5000 TUs.

Table 1. Comparison of calculation time for different inflation schemes.

Ensemble Size AIb EIb tXb

5 1.6875 s 1.9531 s 1.9218 s
20 5.2031 s 5.4218 s 5.4531 s

100 23.4531 s 23.6875 s 23.9218 s

• Posterior inflation scheme

The posterior inflation results for the three schemes are shown in Figure 3, where the
ensemble size is 5 for (a) and 20 for (b). Similar to the results of the prior inflation schemes
in Figure 1, the difference in the inflation schemes had no pronounced effect for x2. For ω,
tXa was better than the other two schemes, especially AIa. For η, AIa showed better results
when the ensemble size was 5, but tXa exhibited lower RMSEs when the ensemble size
increased. In any case, tXa showed better results than EIa, indicating that the new inflation
scheme is superior to the enhanced inflation schemes of E18 and E19 in some aspects.
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Figure 3. Time series of RMSEs of x2 in the last 100 TUs, ω in the last 1000 TUs and η in 10,000 TUs in the imperfect model
with AIa (red line), EIa (green line) and tXa (blue line), with an ensemble size of 5 for (a) and 20 for (b).

The results of the prior and posterior inflation schemes of E19 and our schemes are
compared in the same figure. We selected the variable η with more stable RMSE results
for comparison. The RMSEs of η in the last 5000 TUs are shown in Figure 4, along with a
high sampling error with an ensemble size of 5 for (a) and a low sampling error with an
ensemble size of 20 for (b). The magenta line is the enhanced prior inflation scheme EIb,
the red line is the new prior inflation tXb, the green line is the enhanced posterior inflation
scheme EIa and the blue line is the new posterior inflation tXa. Irrespective of whether it
is the prior or posterior inflation scheme, the result shows that the new inflation method
outperforms the enhanced inflation scheme when the ensemble size is small (Figure 4a).
Furthermore, all the inflation schemes were more stable for η when the ensemble size
increased to 20 (Figure 4b). The prior inflation was better than the posterior inflation for
each scheme with an imperfect model and a small sampling error, which is consistent with
the conclusion of E19. Moreover, the enhanced prior inflation scheme EIb had the same
effect as our posterior inflation scheme tXa, indicating that the new inflation scheme is
better than the enhanced scheme overall.
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Figure 4. Time series of RMSEs of η in the last 5000 TUs in the imperfect model with EIb (magenta line), tXb (red line), EIa
(green line) and tXa (blue line), with an ensemble size of 5 for (a) and 20 for (b).

Perfect Model

In the assimilation framework with different inflation schemes, the unbiased model
was integrated using the leapfrog scheme. As an example, the time series of RMSEs of
η obtained by using three prior inflation schemes are shown in Figure 5. The red line
indicates the AIb scheme, the green line indicates the EIb scheme and the blue line indicates
the tXb scheme. The results of an ensemble size of 5 are shown in Figure 5a and of 20 in
Figure 5b. The RMSEs of η in the perfect model showed a significant reduction compared
to those in the imperfect model, and they were often close to 0. When the ensemble size
was 5, the RMSEs of tXb were stable at a lower level, but the other two schemes increased
much more suddenly at some moments and showed unstable results. When the sampling
error reduced, the results of the three inflation schemes improved to some extent, but the
new prior inflation scheme was still more stable for η.

Figure 5. Time series of RMSEs of η in the last 5000 TUs in the perfect model with AIb (red line), EIb
(green line) and tXb (blue line), with an ensemble size of 5 for (a) and 20 for (b).
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To better understand the influence of different sampling errors on the assimilation
effect of the variable η in the perfect model, the mean RMSEs of the variable η in the last
5000 TUs with different inflation schemes are shown in Figure 6. tXb showed better or
comparable levels compared with the other schemes in the perfect model regardless of the
sampling error. However, similar to the result in the imperfect model, the special variable η
did not show the familiar regularity, but the RMSE decreased when the ensemble size was
100. The RMSE reached a low level because of the smaller sampling error and no model
error, and the difference between the schemes was minimal. Such a slight difference is
likely to occur by chance, and even different random noises may change.

Figure 6. Mean RMSE of η in the last 5000 TUs of different ensemble sizes in the perfect model with
AIb (blue bar), EIb (orange bar) and tXb (yellow bar).

3.3.2. The Inflation Effect

To clearly show the advantage of adaptive covariance inflation, we compared the
mean RMSE in the last 5000 TUs of tXb (blue) with that of SEO (orange) for different
ensemble sizes in the imperfect model (Figure 7a) and the perfect model (Figure 7b). When
the model error was large, tXb showed a significant advantage and a large ensemble size
for SEO was still challenging to reach an equivalent effect. The RMSE of SEO significantly
decreased without a model error, but tXb still performed better at high sampling errors.
When the ensemble size increased and the sampling error gradually lowered, SEO had a
similar effect to tXb, but it did not exist in the actual model. In the perfect model, the effect
of tXb at an ensemble size of 5 was the same as that of SEO at 100 for x2 and the effect of
tXb at 5 was the same as that of SEO at 10 for ω. The above results show that the scheme
with the adaptive covariance inflation can effectively reduce the ensemble size, decrease
the cost and speed up the computation.
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Figure 7. Mean RMSE in the last 5000 TUs of x2, ω and η for tXb (blue bar) and SEO (orange bar) with different ensemble
sizes, using the imperfect model for (a) and the perfect model for (b).

4. MOCBM Experiments
4.1. The Model

After verifying the effect of the new adaptive inflation scheme by 5VCCM experi-
ments, we also conducted experiments using another sea-air coupled model with a better
physical basis [41]. The North Atlantic Meridional Overturning Circulation Box Model
(MOCBM) [42,43] is a low-order model of the North Atlantic climate system consisting of
an atmospheric model and an oceanic thermohaline circulation model. The former adds
high- and low-latitude temperature variables to the three tropospheric variables in the
low-order atmospheric circulation model proposed by Lorenz [44,45], which is different
from the Lorenz63 convective model. The latter is a three-box ocean thermohaline circula-
tion model, including the subtropical upper ocean, the subpolar upper ocean and the deep
ocean. It evolved from the original two-box model [46], providing a basic understanding of
the dynamics of the thermohaline circulation. In addition to the diffusion of temperature
and salinity between each box, the upper ocean also exchanges energy with the atmosphere.
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The two models are coupled through some variables and coefficients of the upper ocean
and atmosphere, and the governing equations are:

.
X = −

(
Y2 + Z2)− aX + aF

.
Y = XY− bXZ−Y + G
.
Z = XZ + bXY− Z

(30)

where the dots above the variables denote the derivatives of the variables concerning time.
X denotes the zonal wind and Y and Z denote the amplitudes of cosine and sine phases of
the large-scale eddies, respectively. F denotes the diabatic heating contrasts between the
low- and high-latitude ocean and G represents the varying zonal heating zonal difference
between land and ocean, both directly related to the upper-ocean temperature. The other
terms and some of the meanings in the following equation are not described in detail here,
and a detailed explanation can be found in the work of Tardif et al. [43]

The evolutionary governing equations for temperature and salinity for the three boxes
are as follows:

V1
.
T1 = 1

2 q(T2 − T3) + KT(TA1 − T1)− KZ(T1 − T3)

V2
.
T2 = 1

2 q(T3 − T1) + KT(TA2 − T2)− KZ(T2 − T3)

V3
.
T3 = 1

2 q(T1 − T2) + KZ(T1 − T3) + KZ(T2 − T3)

V1
.
S1 = 1

2 q(S2 − S3)− KZ(S1 − S3)−QS

V2
.
S2 = 1

2 q(S3 − S1)− KZ(S2 − S3) + QS

V3
.
S3 = 1

2 q(S1 − S2) + KZ(S1 − S3) + KZ(S2 − S3)

(31)

where T and S denote the temperature and salinity in the ocean, respectively; V denotes
the volume of each box; and subscripts 1, 2 and 3 denote the high-latitude box, the low-
latitude box and the deep-ocean box, respectively. TA1 is the high-latitude air temperature,
which is correlated with X, and TA2 is the low-latitude air temperature, which is a constant
25 ◦C/298.15 K. QS is the volume-averaged equivalent salt flux, which is linearly related
to the eddy energy

(
Y2 + Z2) [47]. The meridional overturning circulation (MOC) q has a

positive value in the thermal circulation [43] and presents a negative value in the reverse
salt circulation, which is obtained from the temperature and salinity of the upper ocean
as follows:

q = µ[α(T2 − T1)− β(S2 − S1)] (32)

where α is the thermal expansion coefficient of seawater, β is the salt expansion coefficient
and µ is the proportionality constant. The unit of q is Sv, with 1 Sv = 106m3s−1. Other
parameters are no longer listed for explanation, and the standard values of all parameters in
MOCBM are set as (a, b, F0, F1, F2, G0, G1, G2, V1, V2, V3, µ, α, β, KT , KZ, TA2, γ, c1, c2, T0)
= 0.25, 4.00, 6.65, 2.0, 47.9,−3.6, 1.24, 3.81, 0.832× 1016 m3, 2.592× 1016 m3, 10.30×1016

m3, 4.0× 1010 m3s−1, 9.622× 10−5 K−1, 7.755× 10−4 psu−1, 3.5× 106 m3s−1, 5.276×105

m3s−1, 298.15 K, 0.06364, 0.72× 106 m3s−1, 0.015× 106 m3s−1, 298.15 K).

4.2. The Build-Biased Model

The next assimilation experiment required establishing an imperfect model. Given
that this is achieved in the 5VCCM using different difference schemes, the MOCBM shows
biased models using incorrect physical parameters. Since q is directly related to the ocean
state, we performed a sensitivity analysis of the physical parameters in the ocean and
selected the most sensitive parameter to add bias to the experiment.

We used q to test the sensitivity of parameters, following Zhao et al. [41]. The tested
parameters were formed into an ensemble of 20 by adding Gaussian white noise with a
standard deviation of 10% of its standard value, while the other parameters retained their
standard values. The results were integrated freely for 250 years with the same initial field,
and the last 200 years were taken to calculate the time-averaged spread. The sensitivity
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percentage was obtained from the ratio of the sensitivity of a single parameter to the sum
of the sensitivities of all parameters, as shown in Figure 8.

Figure 8. Sensitivity percentage of the MOC in parameter space. The spread of q is obtained by the
time average of the last 200 years.

Figure 8 gives the sensitivity percentages of all 11 physical parameters in the oceanic
part of the model. Moreover, the MOC is most sensitive to the parameter γ, i.e., a change in
γ causes the most different values of q. Therefore, we added a 20% deviation to γ to form a
biased model with the wrong parameter, taking a standard value of 0.06364 for γ in the
perfect model and 0.076368 in the imperfect model.

4.3. Experimental Design

After comparing the similarities and differences between the new and other in-
flation schemes in the 5VCCM experiment, the main purpose of the MOCBM experi-
ment was to verify the feasibility and effect of the new inflation scheme in this coupled
model. The parameters in Section 4.1 and the values of the initial state in this section
are from reference [48]. The perfect model uses the standard values of all parameters,
and the imperfect model modifies the value of γ. We assumed that the only source
of model error in this experiment is the incorrect physical parameters. Both perfect
and imperfect models use a fourth-order Runge-Kutta time difference scheme with a
time step of 3 h. Starting with the initial state field (X, Y, Z, T1, T2, T3, S1, S2, S3) =
(1.7, 0.0, 0.0, 288.15K, 298.15 K, 283.15 K, 34.21875 psu, 35.0 psu, 34.6 psu), the model
runs 2920 steps per year. Since the MOC has long timescale variables, it runs for 5000 years
in this paper. The time series obtained by the perfect model is the true state. Following the
feature of the existing observing system, observations are generated for only atmospheric
and upper-ocean variables. In this study, the standard deviation of the atmospheric vari-
ables X, Y and Z were 0.1; T1 and T2 were 0.5 K; S1 and S2 were 0.1 psu; and the Gaussian
white noise corresponding to the standard deviation was added to the true value with the
observation frequency of 1 year to obtain the observation field of the model.

The MOCBM experiment also used the EAKF method for data assimilation, with
20 initial ensembles generated by adding white noise with standard deviation to the
atmospheric variables X, Y and Z in the initial field. Two experiments were set up for
comparison using imperfect models: the control (CTRL) experiment with free integration
and the state estimation only (SEO) experiment.

A change in the ensemble size had little effect on the assimilation results in this model,
showing that the model is not sensitive to the size of the sampling error, so this experiment
selected an ensemble size of 20 for the investigation. In the perfect model experiment, the
assimilation effect of SEO was excellent and the impact of adding the inflation factor was
not apparent. The ideal model does not exist in practice; thus, the experiment of the perfect
model was not conducted.
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4.4. Result Analysis

In the imperfect model, comparison and assimilation experiments were performed
with the same initial ensemble of the above parameter values and states. The average of
20 costumes was taken at each step and compared with the actual values to obtain the state
time series, as shown in Figure 9.

Figure 9. Time series of state means of the MOC q. CTRL (blue line), SEO (orange line) and tXb (green line) are compared
with the true values (red line) for 5000 years running in the imperfect model, and the black dashed line indicating that q
equals 0 is the dividing line between the two equilibrium states.

Figure 9 shows the 5000-year state time series of q from different comparison exper-
iments. All the values were positive, which indicates that all the 5000 model years have
heat-driven circulation, i.e., the ocean flows from the sea surface to the poles, sinks at high
latitudes, returns from the deep ocean to the equator and upwells to the upper ocean at
low latitudes [43]. All the experiments were compared using their ensemble mean values,
and the results of both the CTRL (blue line) and the SEO (orange line) differed significantly
from the actual state (red line) due to significant model errors. They did not even match
the period of change. The tXb scheme with the new adaptive prior inflation factor (green
line) fit the true value better and had the same period of variation, which benefits from the
“observed” restrictions on the states and the adjustment of the various inflation factors.
Therefore, the new inflation scheme is also applicable to the MOCBM with more obvious
physical characteristics, and the adaptive inflation method described in this paper for the
sea-air coupled model is feasible.

5. Discussion and Conclusions

A new adaptive covariance inflation algorithm was designed in this paper, including
prior and posterior schemes. Based on Bayesian theory, the prior pdf of inflation obeyed
the χ−2 distribution and the likelihood function obeyed the t distribution suitable for small
samples. At the same time, the enhancement of the innovation statistic d presented in E18
was used, i.e., a correction was added to the inflation factor and the new adaptive prior
inflation tXb was finally obtained. Based on the prior inflation scheme, the decorrelation
in E19 was used for the posterior inflation scheme. In the first experiment, the adaptive
prior inflation scheme in A09 was first used for the posterior ensemble and was compared
with our proposed new scheme and the enhanced method in E18 in the framework of a
simple sea-air coupled model. The parameters in the model were not changed, and the
model errors only originated from different time difference schemes in the first experiment.
The true state field was obtained by the leapfrog scheme, adding Gaussian white noise to
generate observations, while the same technique was used for the perfect model integration.
Furthermore, the RK4 scheme was used for the imperfect model. A series of experimental
results were obtained by changing the ensemble size in the prior or posterior inflation
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scheme. The second experiment added a model error using incorrect parameters to verify
the new inflation scheme’s feasibility for other coupled models.

The results show that the new prior inflation tXb has good performance in terms of
some parameters compared with the other two schemes in the imperfect model. When the
ensemble size was large, the effect of tXb was close to that of EIb because the t distribution
tended to be Gaussian. For the posterior inflation scheme, the effect of tXa was still
better in most cases. Whether it was the prior or the posterior inflation, the new inflation
scheme outperformed the enhanced scheme when the ensemble size was small and had no
significant difference for a larger ensemble size.

In conclusion, the new inflation scheme in the imperfect model performs well for a
small ensemble size, and it may be more suitable for high-dimensional, large-scale models.
In the perfect model (although rare in reality), the new inflation scheme shows more stable
results than the other two schemes. However, the results of the experiments are more
affected by random errors due to minor sampling errors. Compared to SEO, tXb shows
better results, especially in the imperfect model and tXb with a small ensemble size achieves
the same effect as SEO with a large ensemble size in the perfect model.

The new inflation scheme also has some positive effects on the simple coupled model.
However, there are still some limitations in this study, and the possible future research
directions as follows.

1. The method has not been used in a real model, so further testing of the inflation
scheme in real atmospheric and ocean models is needed.

2. We have assumed that the state variables are consistent with the observations, i.e.,
the projection operator h is a unitary matrix, so further verification is needed when h is not
a unitary matrix or the observations are not perfect.

3. Due to computer performance limitations, we only performed a small number of
iterations for the two simple models. In fact, a longer computation is necessary to reflect
the physical processes of the models more clearly.
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Appendix A

In addition to the explanation of abbreviations in the text, all abbreviations and
definitions are listed in alphabetical order in Table A1 to read more conveniently.
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Table A1. Abbreviations and definitions used in this paper.

Abbreviation Definition

AIa Adaptive posterior inflation
AIb Adaptive prior inflation

CTRL Control experiment
CGCM Coupled general circulation model
EAKF Ensemble adjustment Kalman filter

EIa Enhanced posterior inflation
EIb Enhanced prior inflation

EnKF Ensemble Kalman filter
ETKF Ensemble transform Kalman filter

MOCBM North Atlantic meridional overturning circulation box model
RTPP Relaxation-to-prior-perturbation
RTPS Relaxation-to-prior-spread
SEO State estimation only experiment
tXa t− χ−2 posterior inflation
tXb t− χ−2 prior inflation

5VCCM Five-variable coupled climate model

Appendix B

We approximated the Taylor expansion of the likelihood function as A09, leaving only
the linear terms of a lower order:

p(d|λ) = p(d|λb)︸ ︷︷ ︸
l

+
∂p(d|λ)

∂λ

∣∣∣∣
λb︸ ︷︷ ︸

l′

(λ− λb) + R(λ) (A1)

where the last term is the residual term. l and l′ are represented as:

l =
Γ
(

v+M
2

)
(πv)

M
2 Γ
( v

2
) ∣∣∣∣v− 2

v
θ

2
∣∣∣∣− 1

2
[

1 +
d2

(v− 2)θ
2

]− v+M
2

(A2)

l′ = l

[
(v + M− 1)d2 − (v− 2)θ

2

(v− 2)θ
2
+ d2

]
θ
−1 ∂θ

∂λ

∣∣∣∣
λb

(A3)
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However, in the actual calculation of Equation (A2), because of the larger degrees of
freedom, the gamma function can produce results of huge orders of magnitude, out of the
calculation range of a typical computer, even though the ratio of the two gamma functions
is not large. To simplify the calculation of l, the properties of the gamma function need to
be used:

Γ
(

v+M
2

)
Γ
( v

2
) =

Γ
(

v+M−1
2 + 1

2

)
Γ
(

v−1
2 + 1

2

) =

(v+M−2)!!

2
v+M−1

2

√
π

(v−2)!!

2
v−1

2

√
π

=
(v + M− 2)!!

(v− 2)!!
2−

M
2 (A6)

To avoid calculating the double factorial with large magnitude in the numerator or
denominator, the product of the quotient should be calculated by expanding the numerator
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and denominator instead of calculating the quotient of double factorials. Specifically, when
M is an even number:

(v + M− 2)!!
(v− 2)!!

= v · (v + 2) · · · · · (v + M− 2) (A7)

When M is odd and v is odd:

(v + M− 2)!!
(v− 2)!!

=
2
1
· 4

3
· 6

5
· · · · · v− 1

v− 2
· (v + 1) · · · · · (v + M− 2) (A8)

When M is odd and v is even:

(v + M− 2)!!
(v− 2)!!

=
1
2
· 3

4
· 5

6
· · · · · v− 3

v− 2
· (v− 1) · (v + 1) · · · · · (v + M− 2) (A9)

The above method avoids direct calculation but uses another way to obtain the value
of the gamma function without exceeding the range of computer calculations. Thus, the
value of l can be obtained for a large ensemble size.
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