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Abstract: Environmental safety issues are of particular importance when we design and operate
underwater transport systems. To ensure the transport systems function safely, special systems
to monitor their condition are being created. Underwater pipeline monitoring systems should
continuously operate to detect and prevent emergency and pre-emergency situations in a timely
manner. The purpose of this article is to demonstrate the possibility of using a mathematical model
of a k-out-of-n system to support decision-making in the preventive maintenance of an unmanned
underwater vehicle to monitor the condition of a subsea pipeline. The novelty and feature of this
study are that we investigate a strategy of preventive maintenance for a model of a k-out-of-n system,
where failures depend not only on the number but also on the location of the failed components in the
system. The method to solve this problem, based on the distribution of the members of the variational
series of the failing components, is also new. Since the distributions of the system component lifetimes
are usually known with an accuracy of only one or two moments, we paid special attention to how
sensitive the decision making about preventive maintenance is to the shape of the distributions.
Numerical examples are conducted in order to support the theoretical investigations of the paper.
The results of the study are applied to specific equipment to monitor the state of the outer surface of
the pipeline.

Keywords: subsea pipeline monitoring; unmanned underwater vehicle; k-out-of-n system; preven-
tive maintenance; reliability function; lifetime distribution

1. Introduction, Motivation and an Example
1.1. Introduction

Environmental safety issues are one of the main problems of humanity in recent times.
Currently, with industrial development and the new challenges that appear in connection
with this, the issues of preventive environmental protection are gaining great importance.
Work in the field of underwater transportation of hazardous products (such as oil, gas,
etc.) draws special attention to these problems. In this regard, projects in the field of
construction and operation of underwater oil or gas transportation systems should be
accompanied by continuous monitoring of their condition. For such monitoring, special
systems and equipment have been developed. However, this equipment is also susceptible
to failures, and special preventive maintenance (PM) procedures must be provided to keep
it in proper operational condition.

This work is devoted to the development of a mathematical model to organize such
maintenance of pipeline transport underwater monitoring equipment based on the k-out-
of-n model. The novelty and features of this study are that the point of failure of the system
depends on where the system’s failing components are located, as well as in the study
of the sensitivity of decision making on the type of distribution of their lifetime. This
paper is to some extent related to the paper [1], also published in this issue, both of them
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focus on mathematical models that can contribute to safe, secure and sustainable pipeline
transport offshore. However, this paper deals with another problem that can be solved
with a k-out-of-n model—a reliability management problem—that is how to choose the
best PM mode. So, we develop and investigate new methodology and provide an example
of its real life application to subsea pipeline monitoring systems. Nevertheless, some parts
of the introduction about k-out-of-n systems and the notations coincide with those in [1].

A k-out-of-n system is a system that contains n components in parallel and may be
described in two ways, depending on the definition of the parameter k. The parameter k
may represent the number of components in the system that must function for the entire
system to work, referred to as a k-out-of-n : G system. On the other hand, parameter k may
represent the number of components in the system such that when the components fail, the
entire system fails, referred to as a k-out-of-n : F system [2]. Of course, these descriptions
are closely connected and each of them is dual to another. Since for our aims it is more
convenient to consider the subset of failed components of the system, in this paper we use
the second type of system description.

Study of k-out-of-n systems reliability is interesting both from theoretical and practical
points of view. From a theoretical point of view, it gives the wide possibility for new
mathematical methods and applications. From a practical point of view, there are many in-
vestigations devoted to the reliability-centric analysis of k-out-of-n systems. The application
of such models can be seen in many real-world phenomena, including telecommunication,
transmission, transportation, manufacturing, and service applications. A probabilistic
study of a real-world k-out-of-n system often helps to develop an optimal strategy to main-
tain high-level of system reliability. Thus, the theory of the k-out-of-n repairable systems is
quite developed, but it does not cease to attract attention of researchers. Models are being
developed taking into account various features of the systems. An important issue is to
investigate the practical aspects of the application of these models. One of the applications
of such kind of systems is described in the next subsection, where an automated system
for remote monitoring of underwater sections of the “Dzhubga-Lazarevskoye-Sochi” gas
pipeline is considered.

The paper is organized as follows. In the next subsection, an example of a real
monitoring system, where we have to justify our choice of PM strategy, is presented.
Further, this example will be used to demonstrate our theoretical research and proposed
algorithms with the results of numerical calculations. A short literature review is given
in Section 1.3. Section 2 contains the state of the problem and some notations. Section 3
presents general procedure of the PM quality calculation and gives an algorithm to solve
the problem. Further, in Section 4, we consider the conditions to make PM efficient for the
homogeneous system, where system failure does not depend on the failed components
location. A model of PM organization for a system, where system failure depends on
the location of its failed components is presented in Section 5. In the conclusion, further
directions for research are proposed.

1.2. An Automated System for Remote Monitoring of Underwater Pipeline as an Example of
k-out-of-n:F System

As an example of such kind of systems,we consider an automated system for remote
monitoring of underwater sections of the “Dzhubga-Lazarevskoye -Sochi” gas pipeline [3].
The annual capacity of the pipeline is up to 3.78 billion cubic meters of gas. Estimated
service life is 50 years. Total length is 171.6 km, where the offshore part of the gas pipeline
accounts for some 90 per cent of the whole route length. The route runs some 4.5 km off
the coast where the sea depth reaches 80 m. Linepipe diameter is 530 mm, wall thickness—
15 mm for the offshore and 11.3 mm for the onshore part of the gas pipeline, material—high
strength steel.

Figure 1 shows the general concept of an automated system to remotely inspect of the
offshore section of the gas pipeline using an unmanned underwater vehicle (UUV).
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Figure 1. “Dzhubga-Lazarevskoye-Sochi” gas pipeline.

The purpose of the survey is to remotely conduct an automated set of measures
to collect diagnostic data on the external state and the surroundings of an offshore gas
pipeline. The monitoring systems can detect defects (such as damage) to the external
coating, indentations and cracks on the pipe joints, erosion of the seabed, the presence of
suspicious objects near the pipeline, and more. The functional diagram of the proposed
automated remote survey system assumes there is an accompanying surface vessel (SV) [4],
floating on the surface along the gas pipeline; the vessel also carries the UUV. The remotely
controlled unmanned underwater vehicle “Vodyanoy-1” (our custom development) with
the following functional modules (see Figure 2) is used as the UUV.

Figure 2. An unmanned multi-functional underwater vehicle.
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In Figure 2 the numbers indicate parts of the UUV as given below: 1–6 are the Motor
drivers and T200 Thruster, 7 is the LiPo Battery, 8 is the Matek PDB-xt60, 9 is the Raspberry
Pi, 10 is the Atmega328P, 11 is the Gripper, 12 is the Front NoIR Camera, for example, Basler
camera acA1920-40gc (GigE interface, Sony IMX249 CMOS sensor, 42 fps @ 2.3 Mpix), 13
is the Wi-Fi Beacon, 14 is the IMU 9dof, 15 is the MPX5700. In addition, the UUV has
the following attachable functional modules: overview sonar BlueView (to reconstruct
3D underwater scenes, avoid collisions, improve navigation accuracy), miniSVP sound
velocity profile meter (to correct calculations). Various technical means and equipment for
underwater robotic systems are given on site [5].

The paper [6] introduces a remotely operated underwater smart vehicle. The article
demonstrates that smart features can be added to a dumb analogue remotely operated
underwater drone by a small team of engineers on tight budget. This UUV maintains
compass and depth headings, records video to an onshore terminal. In addition, vehicle
has a remotely operated arm with 3 degrees of freedom. UUV “Malakhit” won the first
prize on AquaRoboTech 2018 and remotely operated UUV “Vodyanoy-1” won the first
AquaRoboTech 2020 competition and has a potential to be upgraded with advanced
machine vision algorithms [7].

The article [8] examines the main stages of visual odometry in order to identify the
factors that affect the quality of motion assessment, and establish the degree of their impor-
tance.

The main functionality of the software simulator developed of the visual odometry
system are described. The paper presents the results of experiments conducted on the
simulator, and infer certain conclusions out of them.

The functions between the SV (unmanned catamaran OceanAlpha M40 [7]) and the
UUV are distributed as follows.

The SV provides:

• power supply for all equipment;
• scanning the bottom topography using the hydroecholocation system;
• global positioning receiver GNSS-H;
• local underwater positioning system (PS);
• wire communication via cable (CC) on an electric winch;
• wireless communication of the module via radio channel with the base station (BS)

with Directional antenna, Network hardware;
• receiving and processing control commands.

The underwater vehicle can film underwater objects. Based on the data from the
transponder (S), the positioning system calculates the vehicle’s coordinates and transmits
them via a cable to the surface vehicle to provide autonomous underwater navigation. To
improve the navigation accuracy of the underwater vehicle and to perform work on the 3D
reconstruction of underwater scenes, in addition to a video camera, it is necessary to install
an overview sonar.

The mobile operator station consists of a radio system, an operator’s workstation, and
a server for recording and processing database data.

The inspection procedure is as follows.
The system receives control commands from the operator to launch certain scenarios.

The scenarios are followed automatically, while the operator controls the process and
only intervenes when anomalies are detected in the inspected object, or in the event of
emergency situations in the system.

Let us highlight the following two basic scenarios to conduct surveys.

1. Continuous. The underwater vehicle dives at the starting point. The SV begins to
continuously move along the survey vector, scanning the bottom relief and the gas
pipeline, while the UUV is simultaneously sailing behind it and filming the situation.
Having reached the endpoint, the UUV ascends.
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2. Localized. The SV stops at a given fix. The UUV begins to sequentially dive, survey
the surroundings, and ascend. Then the SV continues to move to the next checkpoint.

The operator’s mobile station can be additionally equipped with a software analytic
system to automatically process the received data in real time to promptly adjust the survey
control process.

The UUV carries out a set of measures to externally inspect the offshore section of the
gas pipeline to determine its technical condition to detect defects and provide data to subse-
quently analyze the causes of defects and assess the technical condition of the gas pipeline
and its surroundings. This procedure places high demands on the quality, reliability and
uninterrupted operation of all components of the integrated automated system.

These requirements are especially stringent to one of the vulnerable components of
the complex technology, namely for a remotely operated UUV. Therefore, an important and
urgent problem is to assess the reliability characteristics of the underwater vehicle using
advanced mathematical models.

The UUV can perform its functions as long as at least two engines located on opposite
sides or any three engines are operational. Therefore, based on our agreement, the UUV
can be considered as a k-out-of-n : F system. The system consists of n = 6 components,its
failure depends on the position of its failed components, thus, it could be considered as a
combination of 3 + 1-out-of-6 : F and 5-out-of-6 : F systems. For such a system we will
use special notation such as (5, 3 + 1)-out-of-6 : F system.

1.3. Literature Review

Due to the wide practical application area, a lot of papers are devoted to the study of
k-out-of-n– systems. The literature on such studies is vast and has been reviewed in [1]
that is published in this issue. Thus, we will not repeat the review here, and because the
paper is devoted to the problems of PM organization for the k-out-of-n models, we focus
only on some works devoted to PM problems.

The idea to increase the system reliability by organizing the PM has a long story. A
fairly detailed review of PM methods one can find in the monograph of Gertsbakh [9].
Some investigations of the k-out-of-n repairable systems with different strategies of repair
and additional services have been considered in a series of work of Dudin, Krishnamurthy,
and all [10–15]. Some recent developments on optimal maintenance policies can be found
in [16–20].

Since detailed initial information about the reliability of system components is usually
not available, it is fundamentally important to study the sensitivity of the system reliability
indicators to the shape of system components lifetime distributions. Some research in this
direction one can find in [21], in chapter 9 of [22], as well as in [23,24].

In this paper, we study and compare the effectiveness of different PM strategies for
k-out-of-n : F systems based on observation for their states. A feature of the model under
consideration is the dependence of the system failure on the location of its failing compo-
nents.

2. The Problem Set and Notations
2.1. The Notations and Assumptions

Consider a heterogeneous k-out-of-n:F system that is described in the Introduction.
Denote by Ai : i = 1, 2, . . . the sequence of the system components random lifetimes.
Suppose that they are independent identically distribute (i.i.d.) random variables (r.v.’s)
with the cumulative distribution function (c.d.f) A(t) = P{Ai ≤ t} the same for all of them.
After any system failure it is repaired with a single facility and the repair times are i.i.d.
r.v.’s B(0)

i : i = 1, 2, . . . with common c.d.f. B0(t) = P{B(0)
i ≤ t} and mean value

b0 = E[B0] =
∫ ∞

0
(1− B0(t))dt.
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To increase the reliability of the system, the possibility of PM, based on the system
states observation, is assumed. Let L = {0, 1, . . . , L} be a set of possible PM strategies
including running to the system failure for l = 0. For the l-th strategy denote by El the
system “pre-failure” subset of states, where l-th type of maintenance begins. The times of
PM are i.i.d. r.v.’s B(l)

i with c.d.f. Bl(t) = P{B(l)
i ≤ t} and mean value

bl = E[Bl ] =
∫ ∞

0
(1− Bl(t))dt.

The mean PM time bl is supposed to be less than the mean repair time b0, bl ≤ b0, but
may depend or not on the type of maintenance.

For investigation of reliability of the complex system, where failure depends not only
on the number of its failed components but also on their position in the system, let us
denote the system state by j = (j1, j2, . . . jn), where ji = 1, if the i-th component is in
“DOWN” state, and ji = 0, if the i-th component is in “UP” state. Thus, j = j1 + · · ·+ jn
means number of failed components of the system. Let’s denote also

E = {j = (j1, j2, . . . jn) : (ji ∈ (0, 1))}

to be the system set of states and by E0 and Ē0 subsets of its “DOWN”‘and ‘UP” states
accordingly. Note that the description of these sets is a special problem of concrete applica-
tions and should be considered for any special case.

It is supposed that

• in the very beginning the system is absolutely reliable, i.e. it is in zero state j =
(0, . . . , 0);

• all sequences of r.v.’s (components lifetimes, repair, and PM times) are i.i.d. for each
type of r.v.’s;

• after any repair and PM completion the system becomes “as a new one”, i.e., goes to
the zero state1.

2.2. The Problem Set

The paper’s aim is to compare different PM strategies l ∈ L ( including running to the
system failure for l = 0) with respect to some criterion. As a criterion of the PM quality the
system availability Kav.,l for different PM strategies l ∈ L is considered2,

Kav.,l = lim
t→∞

1
t
{the system working time during time t under strategy l }.

For the stated problem solution, let us define a random process J = {J(t) : t ≥ 0}
with the set of space E by the relation

J(t) = j, if at time t system is in the state j ∈ E

and denote by Sl (l ∈ L) time to the subset El destination,

Sl = inf{t : J(t) ∈ El}.

Thus, the value S0 represents lifetime of the system and Sl (l = 1, L)—the time till
the l-th type maintenance beginning.

In the paper, we are interested to calculate different characteristics of the system,
such as

1 The assumption that the system returns to its original state is simplifying, it does not fully correspond to the real situation, however, most studies of
real systems are based on this assumption.

2 Another quality criteria also possible, such as productivity of the system and/or system service cost under different maintenance strategies etc.
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• the system reliability function

R(t) = P{S0 > t} and its mean value M0 =

∞∫
0

R(t)dt. (1)

• distributions of time before starting different maintenance and their mean values

Fl(t) = P{Sl ≤ t}, Ml =

∞∫
0

(1− Fl(t))dt. (2)

• the system availability Kav.,l for different PM strategies l ∈ L.

Because the initial information about system components lifetime is usually very
limited and available only up to one or two moments, we focus on the study of how
sensitive is a decision on the PM quality to the shape of their distributions.

3. Process J and the General Procedure of the PM Quality Calculation
3.1. Process J

Note first of all that due to our assumptions under any PM strategy, including running
to the system failure, the process J is a regenerative one, where regenerative epochs are
the times of maintenance or repair ends. Denote by Π0 and Πl the process regeneration
periods for the cases of the system working up to failure (for l = 0) or under the l-th type
l = 1, L of maintenance. Thus, the system availability is

Kav.,0 =
E[S0]

E[Π0]
, Kav.,l =

E[Sl ]

E[Πl ]
. (3)

Therefore due to the properties of regenerative processes for availability Kav.,l calcula-
tion, we need only the mean value E[Πl ] of the regeneration period Πl and the mean value
Ml = E[Sl ] of the working time Sl in it. Since for any PM strategy l ∈ L, the regeneration
period equals to

Πl = Sl + Bl ,

and the mean repair and PM times bl = E[Bl ] are supposed to be known and measured in
the same scale, for the problem solution we need only to calculate the distributions (or
only the mean values) of the system working times Sl for the case when it works to failure
(for l = 0) and for a system that operates under the l-th maintenance strategy.

3.2. The General Procedure of the PM Quality Calculation

For the solution of the declared problem, we need to calculate system availability Kav.,l
for different preventive maintenance strategies l ∈ L, including running to the system
failure (for l = 0). To do that we have to calculate c.d.f.’s (1, 2) of the subsets El (l ∈ L)
destination times. Note that the time Sl (l ∈ L) of the subsets El destinations coincides
with the corresponding member of the variation series of the failure epochs of the system
components. Therefore, for the solution of the stated problem, the following general
algorithm should be used.

Remark 1. The Algorithm 1 can also be used to solve other different problems, for example,
to analyze if the preference of one strategy over another is sensitive to the shape of the system
components lifetime distributions.

Further, the Algorithm 1 will be applied to several examples.
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4. Homogeneous System Preventive Maintenance
4.1. Preliminary

Consider firstly a homogeneous k-out-of-n:F system, where failure does not depend
on the configuration of its failed components. The subsets of UP and DOWN states of the
system in this case are:

Ē0 = {0, 1, 2, . . . , k− 1} E0 = {k, k + 1, . . . , n}.

Let us define the subset El for the PM l ∈ L beginning as a single state El = {l} with
l ≤ k − 1. Thus, in this case we can investigate k strategies l = {0, 1, . . . , k − 1}, where
0-strategy means allow the system to operate up to its failure.

In this case, the general Algorithm 1 gets essentially simpler because the time to the
subset El destination coincides with respective member A(l) of the variation series of the
times to the system components failures Ai : (i = 1, n).

The analytical expressions for mean values Ml are not always accessible. However,
their numerical calculation in accordance with the Algorithm 1 is not too difficult and it will
be proposed in the next subsection for the case of a k-out-of-n : F system for k = 4, n = 6.

4.2. Numerical Results

To obtain the concrete results apply our Algorithm 1 to the 4-out-of-6 : F-system that
can be considered as a model for the example of the Section 1.2. In this case, only four
strategies of system control are possible.

• Strategy 0 is that the system operates up to its failure.
• Strategy l (l = 1, 2, 3) is to begin the PM when the system occurs in the state l.

In order to compare Strategy l with the Strategy 0 (to work without any PM up to
the system failure), we need to know the ratio bl

b0
. It is supposed that the values of mean

repair and PM times b0, bl as well as their ratios are known to a DM. Therefore, to make a
decision about the preference of one strategy over the other, one only needs to know the
ratios of the mean working time of the system Ml

M0
for them. Let’s consider the respective

ratios for an exponential distribution and compare different strategies of PM l = 1, L with
the strategy to work up to full system failure l = 0 for different distributions and variations.

To conduct a numerical experiment, the program code on the MATLAB platform
is generated. This computing environment is chosen due to a wide range of built-in
functions, covering cdf functions and numerically evaluation of the integrals, including
improper integrals. MATLAB additional advantage are simple plotting functions and
friendly interface. The figures and the tables shown below in the article are the output of
the developed program.

In order to investigate the sensitivity of the PM quality to the shape of the distribution
of system components lifetime in numerical experiments, four types of distributions:
exponential with parameter α, Exp(α), Gamma distribution, Γ(Θ, k), Gnedenko-Weibull
distribution, GW(λ, k) and log-normal distribution LN(µ, σ2) are considered.

The parameters of all distributions in experiments are chosen such that their expec-
tations coincide for different distributions and equal to 1 (it means that we scaled it with
respect to mean components lifetime), while the coefficient of variation c = σ

µ is varied in
the interval c ∈ [0.3, 5.0].

The results of the experiments are presented in Figure 3 and Tables 1 and 2. In
Figure 3 the ratios of mean working times Ml under different PM strategies l = 1, 2, 3
to mean working time M0 for the system operating up to its failure (l = 0) for different
distributions of components lifetime versus the coefficient of variation are shown. Bold
dashed horizontal lines correspond to the ratios of the mean PM time bl for any strategy
l to mean repair time b0. Intersections of these lines with the curves Ml/M0 for different
distributions determine the boundary values c∗ of the coefficient of variation, where the
preference of appropriate strategy l is changed to the preference for “the system working
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up to the failure”. If the coefficient of variation exceeds the boundary value c > c∗ “the
system working up to the failure” strategy (l = 0) is preferable for given distribution,
otherwise the appropriate PM strategy should be used.

Algorithm 1: General algorithm to choose a PM strategy
Start. Determine: Integers n, k, distribution A(t) of components lifetime, subsets El (l ∈ L) for the PM beginnings
or of the system failure for l = 0, mean PM and system repair times bl (l ∈ L).
Step 1. Describe the duration of the subsets El (l ∈ L) destinations in terms of members of the variation series,

A(1), . . . , A(j), . . . , A(n)

of the system components failure times (i.i.d r.v.) A1, . . . , Aj, . . . , An that bring the system to the subset El .
Step 2. Calculate distributions of the respective members of the variation series

A(j)(t) = P{A(j) ≤ t} = ∑
j≤i≤n

(
n
i

)
Ai(t)(1− A(t))n−i. (4)

Step 3. Calculate the distributions Fl(t) of the subsets El destination times in terms of distributions of respective
series members and their expectations,

Ml = E[Sl ] =

∞∫
0

(1− F(l)(t))dt.

Step 4. Compare different PM strategies with respect to maximizing the system availability given by (3). We
know that in terms of mean times to the destination of the respective subsets, the system availability can be
represented as

Kav.,l =
Ml

Ml + bl

and because the l-th PM strategy is preferred over the j-th one if Kav.,l > Kav.,j from the inequality

Ml
Ml + bl

>
Mj

Mj + bj

it follows that the l-th strategy is preferred over the j-th one (l < j) if and only if

Mlbj > Mjbl , or in terms of dimensionless indexes
bl
bj

<
Ml
Mj

. (5)

Step 5. Print results in terms of mean operational times Ml (l ∈ L) and their ratio
Mj
Ml

as advice to a Decision
Maker (DM) in order to choose the best strategy accordingly to inequality (5).
Stop.

The boundary values c∗ of the coefficient of variation when the PM strategy l = 1, 2, 3
is preferable to strategy l = 0 (running to the system failure) for two values of the ratios
mean PM duration bl to mean repair time bl/b0 = 0.5 (upper horizontal line in Figure 3)
and bl/b0 = 0.2 (lower horizontal line in Figure 3) for different distributions of system
components lifetime are represented in the Table 1.

The Figure 3 demonstrates an almost evident fact that the highest value of the ratios
Ml
M0

is achieved for l = 3, which means that the strategy l = 3 is preferable over other
strategies in the case when all mean PM times are equal, bl = b for l = 1, 2, 3. Moreover
this strategy will be better than the strategy l = 0 “the system runs to failure” until the
coefficient of variation is less than the boundary value c∗ for any specified ratio b

b0
. If the

coefficient of variation c > c∗ strategy l = 0 will be preferable to all others.
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Table 1. Boundary values for the coefficient of variation c∗ for 4-out-of-6 : F system.

Distribution
bl /b0 = 0.5 bl /b0 = 0.2

l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

Γ- distribution 0.44 0.76 1.51 0.93 1.57 3.30
GW-distribution 0.38 0.71 1.76 0.91 1.96 > 5

Log-normal
distribution 0.51 0.99 4.08 1.66 > 5 > 5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
4−out−of−6 : F − system 

Coefficient of variation

 

 

M1/M0

M2/M0

M3/M0

bi/b0=0.5

bi/b0=0.2

Figure 3. The dependence of the ratios Ml/M0 for different distributions of system components life-
time versus their coefficient of variation for 4-out-of-6 : F system. Solid lines—Γ-distribution, dashed
lines—GW-distribution, dotted lines—log-normal distribution, circles—exponential distribution.

However, depending on the coefficient of variation, the decision about the choice of
the PM is sensitive to the distribution of system components lifetime. With an increase
in the coefficient of variation, the ratio Ml/M0 decreases, but the difference between
distributions grows.

Suppose the repair time is twice longer than PM time (the violet line in Figure 3).
Assuming an exponential distribution of components lifetime, l = 3 is preferable for 4-out-
of-6 : F system. The decision for other distributions of components lifetime depends on
the coefficient of variation. If c > 1.51 for Γ-distribution or c > 1.76 for GW-distribution,
the strategy l = 0 should be chosen. In case components lifetime follows a log-normal
distribution, the strategy l = 0 should be chosen if c > 4.08.

If the repair time is five times longer than PM time (the cyan line in Figure 3) and the
coefficient of variation is no greater than 3.3, the strategy l = 3 will be the best regardless
of the type of components lifetime distribution. However, as it is possible to see from
Figure 3, for c > 3.3 the choice of the strategy significantly depends on the components
lifetime distribution.

In case of different mean PM times bl , strategies l = 1, 2, 3 can be compared one with
another. We compare the strategies l = 2 and l = 3 for the studied distributions, and
present the results in Table 2. The table provides the boundary values for the coefficient of
variation c∗∗, where the preference for the strategy l = 2 is changed to the preference for
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the strategy l = 3 for b2/b3 = 0.5 or b2/b3 = 0.2. If the coefficient of variation exceeds the
boundary value c > c∗∗ the strategy l = 3 “to start PM after 3 components failure” for given
distribution is preferable. Otherwise the strategy l = 2 “to start PM after 2 components
failure” should be used. So according to the Table 2 if the PM time for l = 3 is twice as
much as the PM time for l = 2 and Γ-distribution with the coefficient of variation c > 1.275
is taken, the strategy l = 3 is better than the strategy l = 2. The same conclusion can be
made if components lifetime follows GW-distribution and c > 1.427, and for log-normal
distribution if c > 3.771. If the PM time for l = 3 is five times longer than the PM time
for l = 2 assuming GW- or log-normal distribution, the strategy l = 2 is preferable for the
whole interval c ∈ [0.3, 5.0], and for a Γ- distribution it will be the best choice if c < 2.749.

Table 2. Boundary values for the coefficient of variation c∗∗ to compare strategies l = 2 and l = 3 for
4-out-of-6 : F system.

Distribution bl /b0 = 0.5 bl /b0 = 0.2

Γ-distribution 1.275 2.749

GW-distribution 1.427 >5

Log-normal distribution 3.771 >5

Thus, the conducted study allows us to draw the following conclusions regarding the
sensitivity of the decision on the choice of a PM strategy to the type of distributions of the
system components lifetime and the coefficient of variation.

At low values of the coefficient of variation, strategies with PM gain an advantage over
the strategy of working until complete system failure and repair (in terms of a higher value
of the availability factor). It is possible to distinguish intervals of values of the coefficient
of variation where the conclusion about the use of the certain strategy will be the same for
any of the considered distributions.

Γ-distribution and GW-distribution have insignificant differences in Ml/M0 when
the coefficient of variation is in the interval c ∈ [0.3, 1.1], the log-normal distribution tends
to widen the range of the coefficient of variation values when the strategy l = 3 can be
adopted as the preferred strategy in comparison to l = 0.

Calculated with Matlab, the system mean working times under different PM strategies
and the mean system operational time until its failure (for l = 0) for the special case of
the exponential distribution of components lifetime with parameter α = 1 are: M1 =
0.1667, M2 = 0.3667, M3 = 0.6167, M0 = M4 = 0.95. Corresponding ratios are

M1

M0
= 0.1754,

M2

M0
= 0.386,

M3

M0
= 0.649.

These values, calculated for the exponential distribution, are marked with circles in
Figure 3. Consequently, the strategy l = 2 is better than l = 0 if the system repair time
b0 is 1

0.386 ≈ 2.6 or more times longer than the mean PM time b2. The ratios to compare
strategies l = 1 and l = 2 or l = 2 and l = 3 are also shown below

M1

M2
= 0.454,

M2

M3
= 0.595.

The strategy l = 2 is better than l = 1 if the mean PM time b1 is not less than 45.4% of
the mean PM time b2.

However, due to the properties of an exponential distribution, this case can be studied
analytically, as it is shown in the next subsection.
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4.3. Special Case: Exponential Distribution of Components Lifetime

Under the assumption about an exponential distribution of the lifetimes of the system
components Ai,

A(t) = P{Ai ≤ x} = 1− e−αt,

due to the independence of the residual lifetimes of all other components on the failure
time of any one of them, another approach is possible. In this case, the intervals Ti between
the i− 1-th and the i-th failures are

Ti = min{A1, A2, . . . A6−(i−1)},

and therefore

Fi(t) = P{Ti ≤ t} = 1− P{Ti > t} = 1− (1− A(x))6−i = 1− e(6−(i−1))αt.

Thus, it holds mi = E[Ti] = [(6− (i− 1))α]−1 and therefore

M1

M2
=

m1

m1 + m2
=

1
6α

1
6α + 1

5α

=
5
11
≈ 0.4545.

From here it follows that the necessary and sufficient condition (5) for the first PM to
be preferable over the second one is

b1

b2
>

M1

M2
≈ 0.4545,

or the mean time of the second strategy PM should be more than twice longer than the
relevant value for the first one. Analogously the inequality

b2

b0
>

M2

M4
=

m1 + m2

m1 + m2 + m3 + m4
=

1
6α + 1

5α
1

6α + 1
5α + 1

4α + 1
3α

=
22
57
≈ 0.386

shows that the second PM strategy is preferable to the system running to its failure with
the following repair only if its mean PM time is less than 38% of the mean repair time. The
results of this section are in complete agreement with the numerical calculations given for
exponential distribution in Section 4.2.

5. Preventive Maintenance of a System, Where Failures Depend on the Location of the
Failed Components
5.1. Preliminary

If the system failure depends on the location of the failed components, the comparison
of strategies, including “running to the system failure”, and the decision about the choice of
PM are system-specific and depend on the exploitation conditions. Thus, it is impossible to
solve these problems in general settings. Therefore, in this section we consider this problem
for the concrete (3 + 1, 5)-out-of-6 : F system with specific conditions of its exploitation.

5.2. Example: Model (3 + 1, 5)-out-of-6

Turn back to the investigation of the model that has been proposed in Section 1.2
under the condition that the system fails, when four (moreover three from one side and
one from the other side) or five motors fail. In other words, it means that the system
operates if any three or at least one from one side and one from the other side of its motors
operate. Thus, this system could be considered as a combination of 3 + 1-out-of-6 : F and
5-out-of-6 : F systems. For simplicity in Section 1.2 for such kind of systems a special
notation (3 + 1, 5)-out-of-6 : F system is proposed.

For the convenience, a binary code is used to indicate system states, namely the
number of the state j = (j1, j2, . . . j6) is given in accordance with the formula
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j = |j| = ∑
0≤i≤6

ji26−i.

Then the subset of failure states E0 includes the states with the numbers

E0 = {15, 23, 31, 39, 47, 55, 57, 58, 59, 60, 61, 62, 63},

where the states with 3 failures on the same side and 1 on the other are highlighted in bold.
By analogy with how it is defined in Section 4.2 consider four strategies:

• Strategy 0 is to run to the system failure (do not use any PM). It means that the repair
begins when 4 failures occur at that 3 of them on one side and one on the other or
5 failures occur. The subset of the states for the repair beginning is E0.

• Strategy l (l = 1, 2, 3) is to begin the PM after the failure of any l components.

In this case the ordinal statistics do not determine uniquely the distribution time to the
corresponding subset of states destination. Thus, the Algorithm 1 takes the following form.

5.3. Numerical Analysis

The results of the numerical experiments performed in accordance with Algorithm 2
are presented in Figure 4 and Table 3. As in the previous case (Section 4.2) in Figure 4
the ratios Ml

M0
of mean system working times Ml under different strategies l = 1, 2, 3 to

mean system working time M0 up to its failure (l = 0) for different distributions of system
components lifetime versus the coefficient of variation for (3 + 1, 5)-out-of-6 : F system are
given. Four failure distributions: Γ-distribution, GW-distribution, log-normal distribution,
and exponential distribution are examined. Bold dashed horizontal lines correspond to
the ratios of the mean PM time bl for any PM strategy l to the mean repair time b0. The
intersections of these lines with curves Ml/M0 for different distributions determine the
boundary values c∗ of the coefficient of variation, where the preference of appropriate
strategy l is changed to the preference for the strategy “the system running to the failure”
(l = 0). If the coefficient of variation exceeds the boundary value c > c∗, the strategy
l = 0 for given distribution is the preferable one. Otherwise appropriate PM strategy l
should be chosen. The boundary values c∗ of the coefficient of variation when PM strategy
l = 1, 2, 3 is preferable to strategy l = 0 for bl/b0 = 0.5 (upper horizontal line in Figure
4) and bl/b0 = 0.2 (lower horizontal line in Figure 4) for the two values bl/b0 = 0.5
and bl/b0 = 0.2 numerically calculated for different distributions of system components
lifetime are represented in Table 3.

Table 3. Boundary values for the coefficient of variation c∗ for (3 + 1, 5)-out-of-6 : F system.

Distribution
bl /b0 = 0.5 bl /b0 = 0.2

l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

Γ-distribution 0.37 0.6 0.98 0.82 1.26 2.05
GW-distribution 0.34 0.56 0.98 0.78 1.36 2.85

Log-normal
distribution 0.42 0.68 1.27 1.2 2.49 > 5

Figure 4 shows that the difference between distributions grows as the coefficient of
variation increases. So, depending on the coefficient of variation, the decision about the
choice of the PM is sensitive to the distribution of system components lifetime.

Since collection of data on real equipment failures takes considerable time and the
confidence intervals for the mathematical expectation and standard deviation of the in-
vestigated random variables can be wide enough, it makes sense when choosing the best
strategy to focus not on a specific value of the coefficient of variation, but on the range
c ∈ [cmin, cmax], and make a decision on the choice of a strategy on the assumption that the
coefficient of variation can be in the specified range. For example, with the ratio of PM
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time to repair time bl/b0 = 0.2 if the variation coefficient is supposed to be in the interval
c ∈ [0.3, 2.05], the strategy l = 3 will be the best for any of the considered distributions. For
c ∈ [2.05, 2.85] for a Γ-distribution of the system components lifetime, one should prefer the
strategy of operation until complete failure l = 0, for a GW- and a log-normal distributions
strategy l = 3 will remain the best. For c ∈ [2.85, 5] the strategy l = 0 should be chosen for
a Γ- and a GW- distributions. For a log-normal distribution the choice is the strategy l = 3
regardless the coefficient of variation. So the choice of the strategy significantly depends
on the distribution of components lifetime.

Algorithm 2: The choice of a PM strategy for a heterogeneous system
Start is repeated from the Algorithm 1.
Step 1. Determine the times to set of states El destination in terms of ordinal statistics A(j). Because the system
failure occurs when 4 (3+1) or 5 motors fail, so the time S0 to the subset E0 destination has the following form

S0 =


A(4), if four motors fail, at that three from one side and one from
the other side (3+1),
A(5), if four motors fail, at that two from one side and two from the
other side (2+2), and the system failure occurs after the fifth failure.

The times Sl to the subsets El (l = 1, 2, 3) destination coincide with the relevant variation series members, namely:

Sl = A(l), the PM under strategy l begins after the failure of l motors.

Step 2. Calculate the distributions of times to the corresponding subsets destination in terms of the ordinal
statistics distributions. Since the system failure occurs when (3+1) or 5 motors fail, and (3+1) failures state
contains 6 of the 15 states from the complete subset E4 of states with 4 failures, taking into account that the
probabilities of any component failures are equal, so the probability of time to the destination of subset E0 has
a form

F0(t) =
2
5

A(4)(t) +
3
5

A(5)(t).

The distributions of the subset of states El (l = 1, 2, 3) destination are

F1(t) = A(1)(t), F2(t) = A(2)(t), F3(t) = A(3)(t),

where accordingly to (4) distributions A(j)(t) are

A(j)(x) = P{X(j) ≤ x} = ∑
j≤i≤n

(
n
i

)
Ai(x)(1− A(x))n−i.

Step 3. Calculate the expectations times to destinations of the subsets El .

M0 =
2
5

E[A(4)] +
3
5

E[A5)], M1 = E[A(1)], M2 = E[A(2)], M3 = E[A(3)].

Step 4. With the help of obtained values compare different PM strategies using the necessary and sufficient
condition to prefer the j-th strategy over the l-th one in the form of inequality (5).

Step 5. Print results in terms of mean operational times Ml (l ∈ L) and their ratio
Mj
Ml

as advice to a DM in order
to choose the best strategy.
Stop.
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Figure 4. The dependence of the ratios Ml/M0 for different distributions of system components life-
time versus their coefficient of variation for (3 + 1, 5)-out-of-6 : F system. Solid lines—Γ-distribution,
dashed lines—GW-distribution, dotted lines—log-normal distribution, circles—exponential distribu-
tion.

5.4. Special Case

In the special case of exponential system components lifetime distribution, it is possible
to use the same approach as before and the problem can be solved analytically.

In this case the time S2 of the subset E2 destination coincides with the distribution
of the second ordinal statistics A(2), but it also equals the sum S2 = T1 + T2 of the time
to the first component failure T1 and the time interval between the first and the second
component failure T2, where the distributions are exponential with parameters 6α and 5α.
Thus, the mean time to the second component failure is

M2 = m1 + m2 =
1

6α
+

1
5α

=
11

30α

Analogously the mean time to the subset E3 destination is

M3 = m1 + m2 + m3 =
1

6α
+

1
5α

+
1

4α
=

37
60α

Thus, the condition (5) of preference of the strategy l = 2 to the strategy l = 3
Kav.,2 > Kav.,3 takes the form

b2

b3
>

m1 + m2

m1 + m2 + m3
=

22
37
≈ 0.59.

This means that the strategy l = 2 will be preferable to the strategy l = 3 if the mean
PM time b2 is less than 59% of b3. This result coincides with the one we obtained for the
corresponding strategies for the 4-out-of-6 : F system examined in Section 4.3 as the states
with 2 or 3 failures are the same for both systems, the difference will be only in calculating
the mean time before system failure with the following repair.
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Compare now each of PM strategy with the regime of the system operating up to its
failure with the following repair. To do that we should compare the mean times Ml (l = 2, 3)
of the subsets El (l = 2, 3) destination with the mean time M0 of the system operation up
to its failure without any PM.

M0 =
2
5

E[A(4)] +
3
5

E[A5)] =
2
5

M4 +
3
5

M5 =
2
5

57
60α

+
3
5

87
60α

=
5

4α

The comparison shows that the strategy l = 2 is preferable over working without PM
2 ≥ 0 iff

b2

b0
≥ M2

M0
=

22
75
≈ 0.29

and the strategy l = 3 is preferable over the working without PM iff

b3

b0
≥ M3

M0
=

37
75
≈ 0.49.

In Figure 4 the blue circle corresponds to the ratio b2
b0

= 0.29 and the red circle

corresponds to the ratio b3
b0

= 0.49 which demonstrates the coincidence of analytical and
numerical calculations for exponential distribution.

6. Conclusions

In this paper we investigate different PM strategies for a k-out-of-n system based on
its states. The novelty and the feature of the paper are that the system failure depends on
the position of its failed components. We propose a new method to solve this problem,
based on the distribution of the members of the variational series of the failing components.
Also, we investigated how sensitive the decision about PM beginning is to the shape of the
system components’ lifetime distributions. This investigation is very actual because the
initial information about system components lifetime is usually very limited and available
only up to one or two moments.

We propose an algorithm to compare different PM strategies and to choose the best
among them with respect to the system availability maximization. The algorithm can be
used for any k-out-of-n : F system with any system failure set. The algorithm is applied to
analyze PM strategies of the UUV to monitor the condition of a subsea pipeline. A series
of numerical experiments made it possible to draw conclusions about how sensitive the
choice of PM strategy to the shape of system components lifetime distribution. It is also
possible to determine the intervals for the coefficient of variation, where the decision to
choose a preferable strategy does not depend on the type of distribution.

The proposed approach can be expanded with other quality criteria, such as produc-
tivity of the system or system service cost under different PM strategies. Multi-criteria
assessment of the PM effectiveness is also possible.
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The following abbreviations are used in this manuscript:

PM Preventive Maintenance
UUV Unmanned Underwater Vehicle
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