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Abstract: Point absorbers are extensively employed in wave energy conversion. In this work,
we studied the point absorber with the buoy of a vertical cylindrical shape. Wave power absorption is
obtained through the relative motion between the buoy and an internal mass. Three power-absorption
degrees of freedom are investigated, i.e., surge, heave, and pitch, together with the influence of wave
compliance of the buoy. Results show that, to absorb more power, the internal mass should be as large
as possible for power absorption in translational degrees of freedom, i.e., surge and heave. The total
rotational inertia should be as large as possible and the center of mass should be as low as possible
for power absorption in pitch. Wave compliance of the buoy slightly enhances the power absorption
in surge, but significantly weakens the power absorption in pitch. Surge is the best degree of freedom
for power absorption owing to the highest efficiency, indicated by the largest capture width ratio.
The simple resistive control is found to be adequate for wave power absorption of the self-reacting
point absorber.
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1. Introduction

Wave energy is a promising alternative renewable energy resource [1,2]. The European Marine
Energy Centre (EMEC) [3] classified wave energy converters (WECs) into nine types: point absorber,
terminator, attenuator, overtopping, oscillating water column, etc. A point absorber is characterized by
its small dimension compared to the wavelength and the relatively large motion response to incident
waves, and is by far the most investigated type. Statistical results from EMEC revealed that point
absorber developers account for 30% of total wave developers, implying its advantage over other WECs.
A point absorber consists of a buoy, which is normally axisymmetric, that oscillates with waves while
it reacts against a reference, and power absorption is obtained through the relative motion between
the buoy and the reference via a power take-off (PTO) system. The reference can be either a fixed type,
e.g., the seabed [4,5], or a moving type, e.g., a resistive plate [6,7]. When point absorbers are deployed
nearshore, a fixed reference is a natural choice. However, in offshore areas, where point absorbers are
more likely to be deployed due to higher incident power intensity, the cost of implementing a fixed
reference is too high to be impractical. As a result, a moving reference is a better option for offshore
applications. A moving reference can either be a submerged resistive plate [8], which oscillates with
only small amplitude due to large added mass and small excitation force, or an internal mass inside
the buoy [7]. The point absorber that employs an internal mass as the reference has the advantage of
avoiding external moving parts and resulting in a simplified system requiring little maintenance [9].
French et al. [10] found that the large structural element in the cost of wave energy conversion can
be cut down by using point-absorbers reacting against an internal moving mass. Budar et al. [11]
proposed to design the power absorption machinery inside the wave energy converter (WEC) hull,
so that, except for a mooring wire and anchor, no installation is then necessary on the bottom of the sea.
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A unidirectional wave is able to excite a buoy to oscillate in three degrees of freedom: surge,
heave, and pitch [12]. For the point absorber with an axisymmetric buoy reacting against a fixed
reference, the theoretical maximum absorbed power in heave is J/k, where J is the incident energy flux
per unit wave crest and k is the wave number, while in both surge and pitch is 2J/k [13–15]. The point
absorber with a buoy reacting against an internal mass is essentially a two-body system. By using
the “equivalent single-body model” proposed by Falnes [16], the theoretical maximum absorbed power
of this point absorber is found to be identical to that with a fixed reference. However, the above
conclusion is based on the idealized assumption that only one degree of freedom is employed to absorb
wave power with others manually fixed. In practical applications, since point absorbers are normally
moored at a single point [17–20], wave compliance of the buoy will make the above assumption
unsatisfiable. For example, if surge is employed to absorb power, the buoy will inevitably oscillate
in pitch. Pizer [21] found that wave compliance of the buoy does not necessarily weaken, but may
also enhance, the power absorption of a solo duck WEC. Therefore, although the maximum absorbed
power in surge and pitch are twice as much as in heave under the idealized assumption, the power
absorption ability in each degree of freedom may be different in practical applications. In this paper,
we take into consideration wave compliance of the buoy to find its influence on power absorption of a
point absorber, which reacts against an internal mass, in each degree of freedom, and identify which
degree of freedom is the best to be employed for wave power absorption. To enable results applicable
in real seas, the investigation is performed in irregular waves.

2. Methods

Since vertical cylinders are most frequently used for point absorbers [9,17,19,22,23], and spheres
do not couple with waves in pitch, we only consider vertical cylinders as the shape of the buoy of
point absorbers. A schematic diagram of the point absorber is shown in Figure 1. A slack single-point
mooring system is employed to keep the buoy in position. In a unidirectional wave, the incident wave
will excite the surge, heave, and pitch motion of the buoy. Therefore, these three modes of motion can
be adopted to extract energy from waves. Investigation on the power absorption process employs
the linear wave theory, which assumes the fluid to be inviscid, incompressible, and limits motion
amplitudes of both the wave and the buoy to be small and the flow to be irrotational.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 2 of 19 

 

A unidirectional wave is able to excite a buoy to oscillate in three degrees of freedom: surge, 

heave, and pitch [12]. For the point absorber with an axisymmetric buoy reacting against a fixed 

reference, the theoretical maximum absorbed power in heave is J/k, where J is the incident energy 

flux per unit wave crest and k is the wave number, while in both surge and pitch is 2J/k [13–15]. The 

point absorber with a buoy reacting against an internal mass is essentially a two-body system. By 

using the “equivalent single-body model” proposed by Falnes [16], the theoretical maximum 

absorbed power of this point absorber is found to be identical to that with a fixed reference. However, 

the above conclusion is based on the idealized assumption that only one degree of freedom is 

employed to absorb wave power with others manually fixed. In practical applications, since point 

absorbers are normally moored at a single point [17–20], wave compliance of the buoy will make the 

above assumption unsatisfiable. For example, if surge is employed to absorb power, the buoy will 

inevitably oscillate in pitch. Pizer [21] found that wave compliance of the buoy does not necessarily 

weaken, but may also enhance, the power absorption of a solo duck WEC. Therefore, although the 

maximum absorbed power in surge and pitch are twice as much as in heave under the idealized 

assumption, the power absorption ability in each degree of freedom may be different in practical 

applications. In this paper, we take into consideration wave compliance of the buoy to find its 

influence on power absorption of a point absorber, which reacts against an internal mass, in each 

degree of freedom, and identify which degree of freedom is the best to be employed for wave power 

absorption. To enable results applicable in real seas, the investigation is performed in irregular waves. 

2. Methods 

Since vertical cylinders are most frequently used for point absorbers [9,17,19,22,23], and spheres 

do not couple with waves in pitch, we only consider vertical cylinders as the shape of the buoy of 

point absorbers. A schematic diagram of the point absorber is shown in Figure 1. A slack single-point 

mooring system is employed to keep the buoy in position. In a unidirectional wave, the incident wave 

will excite the surge, heave, and pitch motion of the buoy. Therefore, these three modes of motion 

can be adopted to extract energy from waves. Investigation on the power absorption process employs 

the linear wave theory, which assumes the fluid to be inviscid, incompressible, and limits motion 

amplitudes of both the wave and the buoy to be small and the flow to be irrotational. 

Figure 1. Schematic diagram of the point absorber. 

Figure 2 shows the working principle of power absorption systems in the three degrees of 

freedom, i.e., surge, heave, and pitch, which are respectively numbered 1, 3 and 5 in later parts of this 

paper. For power absorption in each degree of freedom, the buoy oscillates with waves while reacting 

against an internal mass. Relative motion between the buoy and the internal mass drives the PTO 

system to produce useful power. When wave compliance of the buoy is taken into consideration, 

hydrodynamic coupling between different degrees of freedom should be considered. It has been 

widely recognized that heave response of an axisymmetric buoy in waves is decoupled from other 

degrees of freedom. Therefore, analysis of the power absorption in heave can be separated from 

Figure 1. Schematic diagram of the point absorber.

Figure 2 shows the working principle of power absorption systems in the three degrees of freedom,
i.e., surge, heave, and pitch, which are respectively numbered 1, 3 and 5 in later parts of this paper.
For power absorption in each degree of freedom, the buoy oscillates with waves while reacting against
an internal mass. Relative motion between the buoy and the internal mass drives the PTO system to
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produce useful power. When wave compliance of the buoy is taken into consideration, hydrodynamic
coupling between different degrees of freedom should be considered. It has been widely recognized
that heave response of an axisymmetric buoy in waves is decoupled from other degrees of freedom.
Therefore, analysis of the power absorption in heave can be separated from others. Tarrant [24] found
that parametric resonance may happen because heave may change hydrostatic restoring forces in other
degrees of freedom, e.g., pitch, resulting in a resonance. However, since the motion amplitude in each
degree of freedom is assumed small in this paper according to the linear wave theory, heave motion will
not cause significant changes of hydrostatic restoring forces in other degrees of freedom, thus parametric
resonance may be avoided. Other than heave, Young et al. [25] found that surge and pitch are fully
coupled, which means that, when analyzing power absorption in either mode, the influence of the other
degree of freedom should also be considered. Here, we first study power absorption in surge and pitch,
and then in heave.
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Figure 2. Working principle of power absorption systems in the three degrees of freedom: (a) surge;
(b) pitch; (c) heave.

2.1. Power Absorption in Surge

Since surge and pitch are coupled, power absorption in surge should take into consideration
the pitch response. The schematic diagram of the power absorption mechanism is shown in Figure 2a.
Due to wave compliance, the buoy oscillates in both surge and pitch. Useful power is produced in
surge by the buoy reacting against an internal mass via the PTO system. Meanwhile, the buoy oscillates
freely in pitch. In monochromatic waves, equations of motion of the point absorber are

m
..
x1 = Fe1 + Fr1 + Fu ,

mi1
..
xi1 = −Fu ,

It5
..
θ5 = Me5 + Mr5 + Ms5.

(1)

Here, xj (j = 1, 3) and θ5 denotes the displacement and angular displacement of the buoy in surge,
heave, and pitch, respectively, xij (j = 1, 3) and θi5 for the displacement and angular displacement
of the internal mass, Fej (j = 1, 3) and Me5 for the excitation force and moment, Frj (j = 1, 3) and Mr5

for the radiation force and moment, and mij (j = 1, 3) and Ii5 for the mass and rotational inertia of
the internal mass. m is the mass of the buoy. It5 is the total rotational inertia of the buoy and the internal
mass since they oscillate together in pitch when wave power is absorbed in surge. Fu is the control
force applied on the buoy by the PTO system. The radiation force and moment may be written as

Fr1 = −cr11
.
x1 −mr11

..
x1 − cr15

.
θ5 −mr15

..
θ5 ,

Mr5 = −cr55
.
θ5 −mr55

..
θ5 − cr51

.
x1 −mr51

..
x1 ,

(2)

where crij and mrij (i, j = 1, 3, 5) denote the radiation damping coefficient and added mass, respectively.
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The hydrostatic restoring moment in pitch Ms5 is obtained as follows. Coordinates systems of
the buoy are shown in Figure 3, including a global fixed coordinate system G-xyz and a body-fitted
coordinates system G-xiyizi. Then, the hydrostatic restoring moment of the buoy in pitch is

Ms5 = −ρgVxcb, (3)

where ρ is the water density, g is the gravitational acceleration, V is the displaced volume, and xcb
is the x coordinate of the center of buoyancy in the fixed coordinate system G-xyz. The displaced
volume is

V = πr2
[
d− dg +

dg

cos(θ5)

]
, (4)

where d and dg are respectively the draft and the depth of center of mass of the buoy in still water;
r denotes the radius of the buoy. We write the center of buoyancy in the body-fitted coordinate system
G-xiyizi as (xicb, yicb, zicb). By integration, we have

xicb =
r2 tan(θ5)

4
(
d− dg +

dg

cos(θ5)

) , (5)

and

zicb =

4
[

d2
g

cos2(θ5)
−

(
d− dg

)2
]
+ r2 tan2(θ5)

8
(
d− dg +

dg

cos(θ5)

) . (6)
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Then, by a transformation of coordinates, xcb can be written as

xcb =
r2 sin(θ5)

4
(
d− dg +

dg

cos(θ5)

) + 4
(

d2
g

cos2(θ5)
−

(
d− dg

)2
)
+ r2 tan2(θ5)

8
(
d− dg +

dg

cos(θ5)

) sin(θ5). (7)

Inserting Equations (4) and (7) to Equation (3) gives

Ms5 = −ρgπr2 sin(θ5)

 r2

8

[
2 + tan2(θ5)

]
+

1
2

 d2
g

cos2(θ5)
−

(
d− dg

)2

. (8)

Differentiate Ms5 with respect to θ5 around zero and neglect non-significant second order terms,
the hydrostatic restoring stiffness is

τs5 =
dMs5

dθ5
= −

ρgπr2

4

(
r2 + 4ddg − 2d2

)
. (9)
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According to the small-motion-amplitude assumption of the linear wave theory, the hydrostatic
restoring moment can be linearized around zero pitch angular displacement as

Ms5 = τs5θ5. (10)

Then, we come to define the control force Fu. To date, many control methods have been proposed
in the wave energy conversion field. Advanced control methods, such as model predictive control [26],
pseudo spectral control [27], latching control [28], etc., significantly improves power absorption of a
WEC. Normally, for a given WEC, the more absorbed power resulted from a highly efficient control is
accompanied by a larger motion amplitude. For point absorbers that absorb wave energy by reacting
against an internal mass, the volume inside the buoy where the internal mass oscillates is quite limited.
Therefore, the displacement amplitude of the relative motion between the buoy and the internal mass
should not be too large, resulting in the fact that advanced control methods may lose their advantages.
Resistive control, though less efficient than others, may be a good alternative due to its simplicity,
robustness, and unidirectional energy flow, and has been widely used for point absorbers [8,20].
In this paper, resistive control is employed in the power absorption of point absorbers, and the PTO
system is modeled as a spring-damper system with the control force defined by

Fu = −cu(
.
x1 −

.
xi1) − ku(x1 − xi1) , (11)

where cu and ku are the damping coefficient and spring stiffness of the PTO system, respectively.
Inserting Equations (2), (10), and (11) into Equation (1) gives

m
..
x1 + cr11

.
x1 + mr11

..
x1 + cr15

.
θ5 + mr15

..
θ5 + kc(x1 − xi1) + ku(x1 − xi1) + cu(

.
x1 −

.
xi1) = Fe1 ,

mi1
..
xi1 − kc(x1 − xi1) − ku(x1 − xi1) − cu(

.
x1 −

.
xi1) = 0 ,

I5
..
θ5 + cr55

.
θ5 + mr55

..
θ5 + cr51

.
x1 + mr51

..
x1 + k5θ5 = Me5 .

(12)

We define
x =

[
x1 xi1 θ5

]T
, F =

[
Fe1 0 Me5

]T
, (13)

where T denotes the transposition operation. Then, Equation (12) can be written in the matrix form

M
..
x + C

.
x + Kx = F , (14)

where

M =


m + mr11 0 mr15

0 mi1 0
mr51 0 It5 + mr55

 , C =


cr11 + cu −cu cr15

−cu cu 0
cr51 0 cr55

 , K =


ku −ku 0
−ku ku 0

0 0 τs5

 . (15)

2.2. Power Absorption in Pitch

Deducing the equation of motion for this power absorption process is more or less the same as in
Section 2.1. Here, we define

x =
[

x1 θ5 θi5
]T

, F =
[

Fe1 Me5 0
]T

. (16)

Then, we obtain the same equation of motion as Equation (14) with corresponding coefficients
directly given as

M =


mt + mr11 mr15 0

mr51 I5 + mr55 0
0 0 Ii5

 , C =


cr11 cr15 0
cr51 cr55 + cu −cu

0 −cu cu

 , K =


0 0 0
0 τs5 + ku −ku

0 −ku ku

 , (17)
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where mt is the total mass of the buoy and the internal mass since they move together in surge when
wave power is absorbed in pitch and equals the displaced mass.

2.3. Power Absorption in Heave

Since heave is decoupled from other degrees of freedom, power absorption in heave can be
separated from others. Here, we define

x =
[

x3 xi3
]T

, F =
[

Fe3 0
]T

. (18)

Again, we obtain the same motion of equation as Equation (14) with corresponding coefficients
defined as

M =

 m + mr33 0
0 mi3

 , C =

 cr33 + cu −cu

−cu cu

 , K =

 ks3 + ku −ku

−ku ku

 , (19)

where ks3 is the hydrostatic restoring stiffness in heave.

2.4. Absorbed Power

In a monochromatic wave with frequency ω, by employing the form of complex amplitude as
introduced in [29], Equation (14) can be written as

.̂
x =

[
C + i

(
Mω−

K
ω

)]−1
F̂ . (20)

Time-averaged absorbed power through the relative motion between the buoy and the internal
mass is

P =
1
2

cu

∣∣∣∣ .̂
xbj −

.̂
xi j

∣∣∣∣2 j = 1, 3 or P =
1
2

cu

∣∣∣∣∣ .̂
θb5 −

.̂
θi5

∣∣∣∣∣2 . (21)

In real seas, waves are usually irregular. A common treatment of irregular waves is to decompose
them into regular-wave components, whose amplitude are determined by a discretized wave spectrum.
The Pierson–Moskowitz spectrum is one of the most commonly used wave spectra and is defined by

Sh(ω) = 262.9
H2

s

ω5T4
e

exp
(
−

1054
ω4T4

e

)
, (22)

where Hs is the significant wave height and Te the energy period. For the n-th discretized regular-wave
component with the frequency ωn, the wave amplitude is

An =
√

2Sh(ωn)∆ω , (23)

where ∆ω is the sampling interval of the discretized frequency. Then, the velocity column may be
written by

.̂
x(ωn) =

{
C(ωn) + i[M(ωn)ωn −K(ωn)/ωn]

}−1AnF̂0(ωn) , (24)

where F̂0 is the excitation force column per unit wave amplitude. It is revealed in [30] that time-averaged
absorbed power in irregular waves equals the summation of absorbed power at each discretized wave
frequency, i.e.,

P =
∑

n
Pn , (25)

where

Pn =
1
2

cu

∣∣∣∣ .̂
x j(ωn) −

.̂
xi j(ωn)

∣∣∣∣2 j = 1, 3 or Pn =
1
2

cu

∣∣∣∣∣ .̂
θ5(ωn) −

.̂
θi5(ωn)

∣∣∣∣∣2 . (26)
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Due to the irregular feature, amplitude of the displacement of the point absorber varies
wave-to-wave. However, this motion amplitude complies with the same statistic characteristic
as the wave amplitude. Here, by imitating the definition of significant wave height, we employ
the concept of significant motion amplitude, which is defined in [31] as the averaged highest one third
motion amplitude, to quantitatively reflect the motion amplitude of the point absorber in irregular
waves. To find the significant motion amplitude, we should first find the complex amplitude of
the displacement of the buoy in each discretized wave frequency

x̂(ωn) =
[
K(ωn) −M(ωn)ω

2
n + iC(ωn)ωn

]−1
AnF̂0(ωn) . (27)

Then, the motion-amplitude spectrum is

Sm =

∣∣∣x̂(ωn)
∣∣∣2

2∆ω
. (28)

Finally, we obtain the significant motion amplitude as

xs = 2
√

m0 , (29)

where m0 is the zero-order moment of the motion-amplitude spectrum

m0 =

∫
∞

0
Smdω . (30)

2.5. Setting of the Analysis Process

In order to provide a general guidance, non-dimensionalization of the results are preferred.
To measure the power absorption ability of the point absorber, the concept of capture width ratio (CWR)
is adopted defined as the absorbed power divided by the incident wave power within the width of
the buoy

CWR =
P

WPin
, (31)

where W is the width of buoy and Pin is the energy flux per unit wave crest and in irregular waves is

Pin =
1

64π
ρg2TeH2

s . (32)

In order to broaden the application of the results in this paper, parameters that defines the point
absorber are non-dimensionalized. The mass of the internal mass in surge and heave is mi1 = ai1mt,
mi3 = ai3mt, and the rotational inertia of the internal mass in pitch is Ii5 = ai5I5t. The depth of the center
of mass is dg = bd.

For a vertical cylinder, the minimum rotational inertia in pitch is zero when all masses are
concentrated at the center of mass, while the maximum value be obtained as follows. The rotational
inertia of a structure will be the maximum when its masses are distributed as far as possible from
the center of mass. Here, we assume that all masses are concentrated at extreme side edges of the buoy
in the xz plane, and are represented by a series of concentrated mass points, as shown in Figure 4.
When the number of mass points in each sidewall is sufficiently large, the mass distribution can be
deemed as continuous. In Figure 4, mlp and mrq (p = 1, 2, . . . , e, q = 1, 2, . . . , f ) denote the concentrated
mass of the p-th point on the leftmost edge and the q-th point on the rightmost edge, respectively;
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zlp and zrq denotes their z coordinates. The mass distribution should satisfy that the center of mass is
located at point G, hence

e∑
p = 1

mlp +
f∑

q = 1
mrq = m ,

e∑
p = 1

mlpr +
f∑

q = 1
mrqr = 0 ,

e∑
p = 1

mlpzlp +
f∑

q = 1
mrqzrq = 0 .

(33)
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Therefore, we have
e∑

p = 1
mlp =

f∑
q = 1

mrq = 1
2 m ,

e∑
p = 1

mlpzlp = 1
2 mzl ,

f∑
q = 1

mrqzrq = 1
2 mzr .

(34)

where zl and zr are z coordinates of the center of mass containing all mass points in the leftmost
and rightmost edges, respectively, and zl + zr = 0. The rotational inertia of the buoy in pitch is

I5 =
e∑

p = 1

mlp

(
z2

lp + r2
)
+

f∑
q = 1

mrq
(
z2

rq + r2
)
=

e∑
p = 1

mlpz2
lp +

f∑
q = 1

mrqz2
rq + mr2 . (35)

From Equation (33), we can express the mass of the leftmost top and bottom points with respect
to the mass of other points

ml1 = 1
2 m zl−zle

zl1−zle
−

e−1∑
p = 2

mlp
zlp−zle
zl1−zle

,

mle = 1
2 m zl−zl1

zle−zl1
−

e−1∑
p = 2

mlp
zlp−zl1
zle−zl1

.
(36)

Then, we can find the first term of the rightmost expression in Equation (35).

e∑
p = 1

mlpz2
lp =ml1y2

l1 + mley2
le +

e−1∑
p = 2

mlpy2
lp =

1
2

m[zl(zl1 + zle) − zl1zle] +
e−1∑

p = 2

mlp
(
zlp − zl1

)(
zlp − zle

)
. (37)

Similarly, the second term can be written as

f∑
q = 1

mrqz2
rq =

1
2

m
[
zr
(
zr1 + zr f

)
− zr1zr f

]
+

f−1∑
q = 2

mrq
(
zrq − zr1

)(
zrq − zr f

)
. (38)
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From Figure 4, we found that, z coordinates of top mass points in both the leftmost and rightmost
edges are the same, i.e., zl1 = zr1, and this is also suitable for bottom mass points, i.e., zle = zrf. Inserting
Equations (37) and (38) into Equation (35) gives

I5 = −mzl1zle +
e−1∑

p = 2

mlp
(
zlp − zl1

)(
zlp − zle

)
+

f−1∑
q = 2

mrq
(
zrq − zr1

)(
zrq − zr f

)
+ mr2 . (39)

Since middle points has the z coordinate between that of top and bottom points in both the leftmost
and rightmost edges, we have

(
zlp − zl1

)(
zlp − zle

)
< 0 for p = 2, 3, . . . , e− 1 ,(

zrq − zr1
)(

zrq − zr f
)
< 0 for q = 2, 3, . . . , f − 1 .

(40)

Therefore, from Equation (39), we found that the maximum rotational inertia in pitch happens
when the mass of middle points are zero, implying that masses are only concentrated at the top
and bottom points, and the maximum rotational inertia is

I5max = −mzl1zle + mr2 . (41)

Rotational inertia of the buoy reaches maximum only when masses are concentrated at corner
points in the xz plane, which is impractical. Therefore, rotational inertia of the buoy should be smaller
than this maximum value, and is defined as I5 = a5I5max with a5 be within the range of 0.1 ≤ a5 ≤ 0.9 to
avoid extreme conditions. Likewise, we constrain other non-dimensional coefficients within the same
range as well, i.e., 0.1 ≤ ai1, ai3, ai5, b ≤ 0.9.

Figure 5 shows the structural configuration of the point absorber at different values of above
non-dimensional parameters, with subfigures (a) and (b) for the case when wave power is absorbed in
surge and subfigures (c) and (d) for pitch. Relative motion between the buoy and the internal mass
drives a linear spring-damper PTO system to produce electricity. The damper can either be a linear
generator as demonstrated in subfigures (a) and (b) or a rotary generator as demonstrated in subfigures
(c) and (d). The internal mass as shown in subfigures (a) and (c), where ai1, ai5 = 0.1, looks obviously
lighter than that as shown in subfigures (b) and (d), where ai1, ai5 = 0.9. Correspondingly, since a light
internal mass implies a heavy buoy mass, the ballast in subfigures (a) and (c) looks much heavier than
that in subfigures (b) and (d).

It has been revealed in [8,32] that a point absorber that reacts against an internal mass has a
narrower bandwidth of the wave frequency for power absorption when compared to a point absorber
reacting against an external submerged resistive plate. This suggests that, when discretizing the wave
spectrum, the sampling interval of the wave frequency should be as small as possible. Figure 6 shows
an example of the component power as a function of the sampling frequency when wave power is
absorbed in surge. It is found that the absorbed power is concentrated at two narrow frequency ranges,
i.e., around 0.98 and 1.49 rad/s, resulting from being close to the two natural frequencies of the WEC.
Due to the narrow power absorption bandwidth, a highly accurate value of the absorbed power, which
in irregular waves is the summation of the component power, requires that the sampling interval of
the frequency is sufficiently small, which is chosen to be 2 × 10−5 rad/s in this work.
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Figure 6. An example of the component power as a function of the sampling frequency when wave
power is absorbed in surge for a buoy geometry of r = 4 m, d = 4 m, b = 0.9, ai1 = 0.8, a5 = 0.8 and the PTO
system of cu = 1 × 102 N.s/m, ku = 1 × 105 N/m at the wave climate of Te = 8 s, Hs = 2 m.

3. Results

To find the potential of power absorption in each degree of freedom, the maximum absorbed
power should be obtained for the point absorber. In this section, we first find the maximum absorbed
power and corresponding response in different degrees of freedom, then their differences are compared.
The investigation is based on typical wave climates with energy periods that range from 4 s to 10 s [6]
and a diameter of buoys from 2 m to 12 m [9].
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3.1. Maximum Power Absorption in Surge

The maximum power absorption can be found when parameters of the point absorber are
optimized, whose flowchart is shown in Figure 7. For a given buoy geometry, wave climate,
depth ratio of the center of mass b, internal mass ratio ai1 and rotational inertia ratio in pitch a5, we can
find the maximum absorbed power of the buoy through an elementary maximization process with
the objective function defined by Equation (26). To perform this elementary maximization, the MATLAB
function fmincon, which employs the interior point algorithm, is adopted. In this process, initial values
of cu and ku should be set as an initial guess of the optimal solution. Based on this maximization process,
the maximum absorbed power can be found as a function of the internal mass ratio ai1 and rotational
inertia ratio in pitch a5. Then, the maximum absorbed power and the optimal value of ai1 and a5 can
be determined for the given buoy geometry, wave climate and depth ratio of the center of mass b.
Repeating the above steps for different b, we can find the maximum absorbed power as a function of
the depth ratio of the center of mass. Finally, by analyzing the changing trend of the absorbed power
with respect to b, the maximum absorbed power and the corresponding optimal b can be determined
for this particular buoy geometry and wave climate. Since the elementary maximization process is in
the innermost loop of the optimization procedure, in each scenario of the non-dimensional parameters,
e.g., ai1, ai3, ai5 a5, and b, the maximum absorbed power is obtained with this elementary maximization
process be executed, resulting in the PTO parameters being optimal.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 19 
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Figure 7. Flowchart of the optimization procedure for power absorption in surge.

Figure 8 shows an example of the maximum capture width ratio as a function of the internal mass
ratio ai1 and rotational inertia ratio in pitch a5 at different depth ratios of the center of mass b for a given
buoy geometry and wave climate. At different depth ratios of the center of mass, the absorbed power
increases significantly with the increasing internal mass ratio while shows only weak dependence
on the rotational inertia ratio in pitch. This finding is representative for other buoy geometries,
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wave climates, and depth ratios of the center of mass. Therefore, to absorb more power, the internal
mass ratio should be as large as possible within the physical constraint.
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Figure 8. An example of the maximum capture width ratio CWR as a function of the internal mass ratio
ai1 and the rotational inertia ratio in pitch a5 at different depth ratios of the center of mass b for the buoy
geometry of r = 4 m, d = 4 m and the wave climate of Te = 8 s: (a) b = 0.5; (b) b = 0.75; (c) b = 0.9.

Figure 9a shows an example of the maximum capture width ratio CWR as a function of the rotational
inertia ratio in pitch a5 when the internal mass ratio ai1 is optimal and the depth ratio of the center of
mass b = 0.9 for different buoy geometries. It shows that the rotational inertia in pitch has little effect on
the absorbed power. Figure 9b shows an example of the maximum capture width CWR as a function of
the depth ratio of the center of mass b when both the internal mass ratio ai1 and rotational inertial ratio
a5 are optimal for different buoy geometries. It is found that the depth of the center of mass also does
not significantly influence the absorbed power. In fact, the rotational inertia in pitch and the depth of
the center of mass, which is defined as the pitch axis, affect pitch response more directly than surge.
Therefore, as a summary of both subfigures, we conclude that the mass configuration in pitch does not
significantly influence the power absorption in surge.
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Figure 10. The capture width ratio as a function of the energy period when wave power is absorbed 
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Figure 9. (a) An example of the maximum capture width ratio CWR as a function of the rotational
inertia ratio in pitch a5 when the internal mass ratio ai1 is optimal and the depth ratio of the center of
mass b = 0.9 for different buoy geometries; (b) an example of the maximum capture width CWR as a
function of the depth ratio of the center of mass b when both the internal mass ratio ai1 and rotational
inertial ratio a5 are optimal for different buoy geometries. The energy period of the wave climate for
both subfigures is 8 s.

Due to wave compliance of the buoy, when wave power is absorbed in surge, the buoy will also
oscillate freely in pitch since pitch is uncontrolled. Then, pitch is a non-absorbing degree of freedom.
As a result, the power absorption will differ from that when surge is controlled while other degrees
of freedom are fixed, which is commonly considered in the literature assuming only one degree of
freedom to absorb power. Figure 10 shows the capture width ratio as a function of the energy period
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when wave power is absorbed in surge while pitch is either uncontrolled or fixed for different buoy
geometries. We found that the buoy captures more power when the pitch motion is set free. This agrees
with the finding of Pizer [21], who investigated the solo Duck wave energy converter reacting against a
fixed reference and found that the uncontrolled pitch help enhance power absorption in the controlled
surge. From Figure 10, we found that the enhancement is more obvious at small energy periods
and gradually vanishes in large wave periods. Overall, the enhancement is quite limited.
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Figure 10. The capture width ratio as a function of the energy period when wave power is absorbed 
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Figure 10. The capture width ratio as a function of the energy period when wave power is absorbed in
surge while pitch is either uncontrolled or fixed for different buoy geometries.

3.2. Maximum Power Absorption in Pitch

When wave power is absorbed in pitch, the optimization procedure is more or less the same as
in surge, and the only alteration is to replace the internal mass ratio ai1 in Figure 7 by the internal
rotational inertia ratio in pitch ai5. Figure 11 shows an example of the maximum capture width ratio as
a function of the internal and total rotational inertia ratios in pitch at different depth ratios of the center
of mass. It can be seen that the deeper the center of mass locates, the more sensitive to the total
rotational inertia ratio a5 than the internal rotational inertia ratio ai5 the absorbed power is. Based on
these results, an investigation is made on the effect of the depth of the center of mass on the absorbed
power as shown in Figure 12. We found that, for all depths of the center of mass, the optimal rotational
inertia ratios reside on their physical boundaries, and the maximum absorbed power increases with
the depth of the center of mass. For buoy geometries and wave periods investigated in this paper,
it is found that the optimal total rotational inertia ratio is always fixed at 0.9 while the optimal internal
rotational inertia ratio varies at different cases. This indicates that the total rotational inertia should be
as large as possible. Meanwhile, the optimal depth ratio of the center of mass is also found to be 0.9 for
all cases, implying that the center of mass should be as low as possible. The above finding suggests
that facilities inside the point absorber should gather at the bottom of the buoy and locates as far as
possible from the pitch axis.
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Figure 11. The maximum capture width ratio CWR as a function of the internal and total rotational
inertia ratio in pitch, ai5 and a5, at different depths of the center of mass b for the buoy geometry of
r = 4 m, d = 4 m and wave climate of Te = 8 s: (a) b = 0.5; (b) b = 0.75; (c) b = 0.9.
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uncontrolled. In this case, surge is a non-absorbing degree of freedom. As a result, the power 

absorption will differ from that when pitch is controlled while other degrees of freedom are fixed. 

Figure 13 shows the capture width ratio as a function of the energy period when wave power is 

Figure 12. Optimal internal and total rotational inertia in pitch, ai5 and a5, and the maximum capture
width ratio CWR as a function of the depth of the center of mass b for the buoy geometry of r = 4
m, d = 4 m and the wave climate of Te = 8 s: (a) optimal internal and total rotational inertia in pitch;
(b) the maximum capture width ratio.

When wave power is absorbed in pitch, the buoy will also oscillate freely in surge since surge is
uncontrolled. In this case, surge is a non-absorbing degree of freedom. As a result, the power absorption
will differ from that when pitch is controlled while other degrees of freedom are fixed. Figure 13 shows
the capture width ratio as a function of the energy period when wave power is absorbed in pitch while
surge is either uncontrolled or fixed for different buoy geometries. We found that the buoy captures
less power when the surge motion is set free. Pizer [21] also found this phenomenon for a solo duck
WEC that for power absorption in pitch releasing a degree of freedom weakens the power absorption.
Again, the difference of absorbed power between the cases when surge is uncontrolled and fixed is
more obvious at small energy periods and gradually decreases with the increasing energy period.
Compared to the slight enhancement of the absorbed power when wave power is absorbed in surge,
a significant reduction of absorbed power is observed when wave power is absorbed in pitch with
surge uncontrolled. This suggests that power absorption in pitch is more sensitive to wave compliance
of the buoy than in surge.
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3.3. Maximum Power Absorption in Heave

Since heave is decoupled from other degrees of freedom, both the total rotational inertia in
pitch and the depth of the center of mass will not affect the absorbed power in heave. Therefore,
the parameters that need optimization reduces. The optimization procedure is also similar to that
in surge, but removing the outer loop in Figure 7 and input only one parameter, i.e., the internal
mass ratio in heave ai3, in the inner loop. Figure 14 shows the maximum capture width ratio as
a function of the internal mass ratio in heave at different buoy geometries for the wave climate of
Te = 8 s. For each buoy geometry, the absorbed power increases with the internal mass, indicating
that the heavier the internal mass is, the more wave power can be absorbed. For all buoy geometries
and wave periods investigated in this paper, the optimal internal mass ratio is always fixed at 0.9,
which suggests the internal mass should be as large as possible within physical boundaries.
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Figure 14. The maximum captured width ratio CWR as a function of the internal mass ratio in heave
ai3 at different buoy geometries for the wave climate of Te = 8 s.

3.4. Comparison of Power Absorption between Different Power-Absorption Degrees of Freedom

Figure 15 shows the maximum capture width ratio as a function of the energy period at different
buoy geometries and power-absorption degrees of freedom. It has been revealed by Falnes [33] that,
for an axisymmetric buoy in regular waves, the maximum absorbed power in both surge and pitch is
twice as much as in heave when other degrees of freedom are fixed. From Figure 15, we found that,
when other degrees of freedom are set free, power absorption in surge always results in more absorbed
power than the other two. The low absorbed power in heave is as expected. Meanwhile, the low
absorbed power in pitch seems to result from the wave compliance of the buoy that significantly
weakens the power absorption ability. Although the concept of resonance seems to be less clear in
irregular waves due to the non-harmonic wave excitation, resonance at dominant wave periods plays
an important role in improving the power absorption efficiency. For the buoy with a larger radius or
draft, its nature period increases as well [33], resulting in the maximum power absorption efficiency
appears at a larger wave period. This is obvious from the curves as shown in Figure 15. We take
the power absorption in heave for example. When the draft d is fixed at 6 m, peak capture width ratio
appears at the energy period of 5 s for the radius r = 2 m and 6 s for r = 6 m. When the radius is fixed
at 6 m, the peak capture width ratio appears at 4.5 s for d = 2 m and 6 s for d = 6 m.
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degree of freedom for a vertical cylindrical buoy that extracts wave power by reacting against an 

internal mass. 

Figure 15. Capture width ratio CWR as a function of the energy period Te at different buoy geometries:
(a) r = 2 m, d = 2 m; (b) r = 2 m, d = 6 m; (c) r = 6 m, d = 2 m; (d) r = 6 m, d = 6 m.

Figure 16 shows an example of the capture width ratio as a function of the buoy geometry at
different power-absorption degrees of freedom and the energy period of 8 s. It can be seen that, within
the buoy-geometry range of interest, power absorption in surge always captures more power than both
pitch and heave. Combined with the observation above, we found that surge may be the best degree of
freedom for a vertical cylindrical buoy that extracts wave power by reacting against an internal mass.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 16 of 19 
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From Figure 3, we see that, when wave power is absorbed through a buoy reacting against
an internal mass, the buoy should have sufficient volume to accommodate the internal mass.
Since the internal mass oscillates inside the buoy, motion excursion of the relative displacement
between the buoy and the internal mass should be smaller than the outmost dimension of the buoy to
avoid physical interference. Of course, this is a quite rough derivation since we neglected the dimension
of the internal mass itself and the structural configuration of inside the buoy. The above derivation
means that, when wave power is absorbed in surge the significant relative displacement amplitude
between the buoy and the internal mass should be smaller than the radius of the buoy and in heave be
smaller than the draft of the buoy. When wave power is absorbed in pitch, the internal mass can be
designed as a circular structure centered at the pitch axis, thus there will not be physical interference
between the internal mass and the buoy at any pitch angular displacement. Therefore, pitch is not
considered here. Figure 17 shows the relative displacement amplitude between the internal mass
and the buoy non-dimensionalized by the radius, draft of the buoy when wave power is absorbed
in respectively surge and heave as a function of the energy period at the significant wave height
of 2 m. Both the relative surge and heave motion amplitude increase with the increasing energy
period at different buoy geometries. The non-dimensionalized relative surge motion amplitude is
larger than heave, which is in accordance with the absorbed power. According to the linear wave
theory, the motion amplitude should be proportional to the wave height. When the wave height
changes, vertical coordinates of the curves scales up and down accordingly. In energy periods when
the non-dimensional relative motion amplitude exceeds 1.0, the internal mass physically interferes with
the buoy, hence the maximum absorbed power should be obtained taking into consideration the motion
constraint. As a result, the capture width ratio will be lower than displayed in Figures 15 and 16.
It should be mentioned that, for advanced control methods, the more absorbed power is accompanied
by a larger motion amplitude. This seems to be unfriendly to the wave power absorption of the point
absorber reacting against an internal mass, since the volume inside the buoy where the internal mass
can oscillate is quite limited. Therefore, the simple resistive control employed in this paper may be a
better option.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 17 of 19 
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b Non-dimensional depth of the center of mass. 
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Figure 17. Relative displacement amplitude between the internal mass and the buoy, xr1 and xr3,
non-dimensionalized by the radius r and draft d of the buoy when wave power is absorbed in
respectively surge (a) and heave (b) as a function of the energy period at the significant wave height
of 2 m.

4. Conclusions

In this work, we studied the point absorber with the buoy of a vertical cylindrical shape.
Wave power absorption is obtained through the relative motion between the buoy and an internal mass.
Three power-absorption degrees of freedom are investigated, i.e., surge, heave, and pitch, together
with the influence of wave compliance of the buoy. It is found that the mass configuration in pitch
does not significantly influence the power absorption in surge. To absorb more power, the internal



J. Mar. Sci. Eng. 2020, 8, 711 18 of 20

mass should be as large as possible for power absorption in translational degrees of freedom, i.e.,
surge and heave. The total rotational inertia should be as large as possible and the center of mass
should be as low as possible for power absorption in pitch. Wave compliance of the buoy slightly
enhances the power absorption in surge, but significantly weakens the power absorption in pitch.
Surge is the best degree of freedom for power absorption owing to the highest efficiency, indicated by
the largest capture width ratio. Even under the less efficient resistive control employed in this paper,
the relative motion amplitude between the buoy and the internal mass easily physically interfere with
the buoy at a low wave height, indicating that resistive control is adequate for wave power absorption
of the self-reacting point absorber.

Funding: This research was funded by the NSFC of China, grant number 51905096, and the Basic Research Plan
of Jiangsu Province, grant number BK20190373, the Innovative and Entrepreneurial Talents (Doctor) of Jiangsu
Province and was also supported by “the Fundamental Research Funds for the Central Universities”.
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Nomenclature

a5 Non-dimensional rotational inertia of the buoy in pitch.
aij (j = 1, 3, 5) Non-dimensional mass of the internal mass.
b Non-dimensional depth of the center of mass.
C Damping coefficient matrix.
cri Radiation damping coefficient.
cu, ku Damping coefficient and spring stiffness of the PTO system.
CWR Capture width ratio.
dg Depth of center of mass of the buoy.
F Excitation force column.
F0 Excitation force column per unit wave amplitude.
Fej (j = 1, 3) Excitation force in surge and heave, respectively.
Frj (j = 1, 3) Radiation force in surge and heave, respectively.
Fu Control force applied on the buoy by the PTO system.
g Gravitational acceleration.
Hs Significant wave height.
I5max Maximum rotational inertia in pitch.
Ii5 Rotational inertia of the internal mass in pitch.
It5 Total rotational inertia of the buoy and the internal mass.
K Stiffness matrix.
ks3, τs5 Hydrostatic restoring stiffness in heave and pitch.
m Mass of the buoy.
M Mass matrix.
m0 Zero-order moment of the motion-amplitude spectrum.
mij (j = 1, 3) Mass the internal mass in surge and heave, respectively.
Me5, Mr5 Excitation and radiation moment in pitch.
mlp, zlp Concentrated mass and z coordinate of the p-th point on the leftmost edge.
mrij Added mass.
mrq, zrq Concentrated mass and z coordinate of the q-th point on the rightmost edge.
mt Total mass of the buoy and the internal mass.
P Time-averaged absorbed power.
Pin Energy flux per unit wave crest.
Pn Time averaged absorbed power at the n-th discretized wave frequency.
r, d Radius and draft of the buoy.
Sh Wave spectrum.
Sm Motion-amplitude spectrum.
Te Energy period.
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V Displaced volume.
W Width of buoy.
x Displacement column.
xcb x coordinate of the center of buoyancy in the fixed coordinate system G-xyz.
xicb, yicb, zicb Coordinate of the center of buoyancy in the body-fitted coordinate system G-xiyizi.
xij (j = 1, 3) Displacement of the internal mass in surge and heave, respectively.
xj (j = 1, 3) Displacement of the buoy in surge and heave, respectively.
xr1, xr3 Relative displacement amplitude between the internal mass and the buoy.
xs Significant motion amplitude.
zl, zr z coordinate of the center of mass containing all mass points in the leftmost and rightmost edges.
∆ω Sampling interval of the discretized frequency.
θ5, θi5 Angular displacement of the buoy and the internal mass in pitch.
ρ Water density.
ω Wave frequency.
ωn, An Frequency and amplitude of the n-th discretized regular-wave component.
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