
Journal of

Marine Science 
and Engineering

Article

Short-Term/Range Extreme-Value Probability
Distributions of Upper Bounded Space-Time
Maximum Ocean Waves

Alvise Benetazzo * , Francesco Barbariol and Silvio Davison

Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), 30122 Venice, Italy;
francesco.barbariol@ve.ismar.cnr.it (F.B.); silvio.davison@ve.ismar.cnr.it (S.D.)
* Correspondence: alvise.benetazzo@ismar.cnr.it

Received: 4 August 2020; Accepted: 2 September 2020; Published: 3 September 2020
����������
�������

Abstract: There is general consensus that accurate model predictions of extreme wave events
during marine storms can substantially contribute to avoiding or minimizing human losses and
material damage. Reliable wave forecasts and hindcasts, together with statistical analysis of extreme
conditions, are then of utmost importance for monitoring marine areas. In this study, we perform
an analysis of the limitations of the available short-term/range extreme-value distributions suitable
for space-time maximum wave and crest heights. In particular, we propose an improvement of
the theoretical distributions by including upper bounds on the maximum heights that waves may
reach. The modification of the space-time probability distributions and its impact for extreme-value
assessment is discussed in the paper. We show that unbounded space-time distributions are still
effective provided that the surface area included in the analysis has sides smaller than O(102 m).
For wider surfaces, the use of the bounded distributions is consistent with the expected saturation of
maximum heights that ocean waves attain.

Keywords: ocean wave extremes; space-time maximum crest and wave heights; rogue waves

1. Introduction

The characterization of maximum wind-wave heights during marine storms has been an active
topic of research for decades because of its importance for marine safety, coastal hazards, offshore
design and operations. Significant efforts have been undertaken to better understand the likelihood
and amplitude of extreme events, including rogue and freak waves [1–14]. Present strategies, however,
resulted sometimes ineffective in warning seafarers or avoiding structural damage to offshore facilities
(see e.g., [6,15,16]). Theoretical progress has been accompanied by numerical model improvements, so
that currently most of the state-of-the art phase-averaged wave models, used for forecast and hindcast
numerical studies, are equipped with routines that provide estimates of wave extremes (namely
maximum crest height and maximum wave height) during storms [17–20].

The condition that supports the estimate of extreme sea waves is the steady-state (in time t) and
homogenous (on the two-dimensional xy-space) sea condition, and the derived statistics is referred to
as short-term/range (time interval from minutes to 1 h or so and spatial distance up to a thousand
meters). In the temporal domain t only, the short-term extremal probability pertains to sea surface
elevation η(t) time series at a fixed point x0 = (x0, y0) on the water surface, where x and y are the two
Cartesian horizontal axes. Starting from the Rayleigh distribution [21], it has been established that
nonlinear second-order bound waves and four-wave nonlinear interactions have a profound impact on
the statistics of extreme events over η(t) [2,12,22,23]. More recently, following the works of Adler [24]
and Piterbarg [25] for multidimensional manifolds, the concept of excursion probability was introduced
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and the time statistics was extended to the two-dimensional xy-space [26–29] by incorporating the
short-range condition for the space-time surface elevation field η(x, y, t).

For long time intervals and large sea surface areas, both time and space-time extreme theoretical
models, being based on Gaussianity (or weakly nonlinear Gaussian seas) and constructive interference,
never reach saturation, thus leading to overestimation of maximum surface heights. This implies that
there are no physical limits on the values that the surface height can attain as the Gaussian model
does not account for the saturation induced by the nonlinear dispersion [30] or wave breaking [31].
This limitation is more pronounced for space-time extremes with large sample size (namely over a wide
area A or a long-time interval D, or a combination of the two) that therefore may provide unrealistically
high amplitudes. The above-mentioned overestimation is a well-known feature of extreme-value
analyses that incorporate a spatial contribution [6] and indeed their applications were wisely limited to
assessments over sea areas with a size of a few hundreds of meters, where theoretical models proved
to be valuable [28,32–36].

In this study, we propose a modification, suitable for being used even for large areas, of
the short-term/range extreme-value probability distributions of (i) maximum crest heights, after
Benetazzo et al.’s [32] formula based on the Adler’s model of the Euler characteristics [26,29] and
Tayfun nonlinear correction [37], and (ii) maximum crest-to-trough wave heights [38] which stems from
the Quasi-Determinism (QD) asymptotic theory by Boccotti [39]. This aim is achieved by imposing
upper heights that maximum waves cannot exceed given a characteristic scale of the sea state. The basic
principles, capability, and weakness of our assumptions, as well as their impact on space-time extreme
assessments are considered in this study. Our purpose is to extend the application of space-time
wave extremes by imposing an additional physical constraint that allows more realistic probability
distributions and expected values of the random variables to be determined.

The paper will proceed as follows. Section 2 is dedicated to explaining the bounded and
unbounded theoretical formulations for spatio-temporal maximum crest and wave heights. Section 3
presents the assessment of the bounded distribution against data available in the literature. The impact
of the bounded distribution on space-time extreme waves is examined in Section 4. A discussion and
summary of the main conclusions of the study are presented in Section 5.

2. Short-Term/Range Statistics of Extreme Waves

2.1. The Extreme-Value Distribution of the Spatio-Temporal Maximum Crest and Wave Heights

The short-term/range excursion probability Pr{·} of second-order nonlinear maximum crest
heights Cm belonging to wave groups crossing a two-dimensional sea surface area A = XY (X and
Y are the area sides along the two orthogonal directions x and y, respectively) and time duration D
was here approximated after Adler [40], and following Fedele [26], Baxevani and Rychlik [29] and
Benetazzo et al. [32] as follows

Pr{Cm ≥ σh | DA} ≈
[
N3

(
h2

0 − 1
)
+ N2h0 + N1

]
exp

−h2
0

2

 (1)

where the elevation threshold h is normalized with the standard deviation σ of the sea surface elevation
field η(x, y, t), and

h0 =
(
−1 +

√
1 + 2µh

)
µ−1 (2)

is the solution of the Tayfun equation [37] that relates the second-order nonlinear dimensionless
threshold (h) to its linear counterpart (h0) via the steepness parameter µ > 0 [23]. In Equation (1), N3 is
the average number of waves within the space-time region Γ of three-dimensional volume V = XYD,
N2 is the average number of waves on the two-dimensional faces of Γ, and N1 is the average number of
waves on the one-dimensional edges of Γ. These numbers of waves depend on the spectral moments
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through the definition of the mean zero-crossing period, the mean zero-crossing wave length, the mean
wave crest length, and a measure of the irregularity of the space-time sea surface elevation field [26,38].

Assuming the excursion probability in Equation (1) is continuous, its asymptotic Gumbel limit for
high values of h is easily found to have a cumulative distribution function (cdf) as follows [26]:

FCm(h) = P(Cm ≤ σh | DA) ≈ exp[− exp(−z)] (3)

where P represents the probability that the random variable Cm takes on a value less than or equal to
σh. The Gumbel variable z (that incorporates location and scale parameters) is written as

z =

(
h− ξ0 −

µ
2ξ

2
0

)(
ξ0 −

2N3ξ0+N2
N3ξ2

0+N2ξ0+N1

)
1 + µξ0

(4)

and ξ0 is the dimensionless mode of the linear part of the extremal probability in Equation (1).
By differentiating, the probability density function (pdf) of the Gumbel distribution of the random
variable Cm is given by

f Cm(h) = dFCm(h)/dh (5)

and the expected value of Cm is calculated as follows

E{Cm} = σ

∫
∞

0
h fCmdh (6)

where E{·} denotes expectation. In summary, the extreme-value statistical model based on the
Adler approach and the Tayfun theory allows finding a short-term/range extreme-value statistics for
second-order weakly nonlinear crest heights Cm belonging to space-time wave groups.

Unlike Cm or in the temporal domain [39,41], in the two-dimensional spatial and three-dimensional
spatio-temporal domain, an analogous distribution for maximum crest-to-trough wave height Hm does
not have a closed-form solution [26,35], given that the generalization to high-dimension excursion sets
of the notion of wave profile, from which to infer the crest-to-trough vertical distance, is ambiguous.
Notwithstanding, we have used the linear QD model by assuming it as to be effective for each
realization of a space-time wave group holding maximum waves. In this case, by imposing µ = 0, the
Gumbel variable in Equation (4) loses its nonlinear part (therefore h = h0) and z simplifies to [26]

z0 = (h− ξ0)

ξ0 −
2N3ξ0 + N2

N3ξ2
0 + N2ξ0 + N1

 (7)

The Gumbel-like cumulative distribution function for space-time linear maximum crest heights
can be then approximated as

FCm0(h) = P(Cm0 ≤ σh | DA) ≈ exp[− exp(−z0)] (8)

where “0” in the subscripts indicates linear theory prediction. The pdf of Cm0 can be analytically
inferred by derivation as follows

f Cm0(h) = dFCm0(h)/dh (9)

We then made use of the linear QD theory by imposing a change of variable of the type H = αh,
where the coefficient α =

√
2(1−ψ∗) was purposely used to relate the maximum crest and wave

heights in sea states with finite bandwidth, which is specified by the first minimum ψ∗ ∈ [−1, 0) of the
sea surface elevation autocovariance function [39]. The pdf of maximum wave heights Hm was thus
obtained from that of maximum crest heights as follows

f Hm(H) = α−1f Cm0(h) (10)



J. Mar. Sci. Eng. 2020, 8, 679 4 of 14

The expectation of the random variable Hm is given by

E{Hm} = σ

∫
∞

0
H fHmdH (11)

It is worth noting that this result is consistent with the prediction of the QD theory that yields an
equality for mean quantities, i.e., E{Hm} = αE{Cm}, as corollary of the relationship that exists between
the space-time wave group of the maximum expected crest height and the wave group of the maximum
expected crest-to-trough height. To complete this section, we recall, and it was used in the following
analyses, that all parameters of the extreme-value probability distributions may be obtained using
higher-order moments of the directional wave spectrum [26].

2.2. Extreme-Value Distribution of Upper Bounded Maximum Heights

As we reported earlier, the pdf of unbounded space-time extremes, being based on Gaussianity, has
no physical limits on the values that the surface height or crest-to-trough height can attain. In practice,
zero-probability events, which are events whose probability is zero, are not allowed. This is far from
being realistic, since many physical processes govern the scale of wave growth. One of the important
processes driving the wind-wave evolution is the energy dissipation via breaking [31]. When breaking
occurs, it produces a sudden reduction of wave height and consequently wave energy; it was estimated
that a breaking wave may lose more than half of its height [42] in a space less than one wavelength [43].
Over a surface area, breaking appears randomly and the fraction of breaking waves is such that, on
average, every 20th to 50th wave displays breaking [31], a fact that would favor the likelihood of
encountering a breaking wave as the area increases. During the breaking onset, waves approach an
instability condition that ultimately reduces their height, whether waves relax back or steepen further
and collapse. After Stokes [44], the most common criterion for wave breaking in deep water employs
the local steepness, by limiting the height-to-wavelength ratio H/L. This geometric criterion, originally
thought for linear monochromatic waves, was confirmed as the limit for wave breaking induced by
linear wave focusing [45], and for breaking due to modulation instability [46]. Further, local effects,
such as the superimposed wind forcing [47] or the ocean surface current gradients [48], may influence
the formation of breaking, steep waves.

The parameterization of the ultimate steepness beyond which directional waves will certainly
break, and the pdf of wave steepness H/L has a sudden cut-off, is not straightforward in the context of
extreme-value theories. There are two main limitations. First of all, theoretical criteria based on the
maximum steepness appear rather as upper bounds, even when they are converted into equivalent
formulations for nonlinear crest heights [49]. Indeed, measurements from laboratory [50] and field
experiments [51] suggested that waves generally break below the Stokes limiting steepness. Secondly,
those criteria require the knowledge of the local wave-by-wave length L [52] from which one can
infer the maximum wave steepness Hm/L (or Cm/L). However, since parameters of the extreme
height pdf are computed from the wave spectrum, the deterministic value of the local L for each
realization of maximum waves is unknown; indeed, amplitudes and therefore steepness of waves with
a specific wavenumber are not deterministically defined in the continuous-spectrum environment [31],
so that a probabilistic approach was established [53,54]. This makes the computation of the individual
steepness and the simulation of breaking an unviable solution to judge whether or not an individual
maximum wave of a given height is breaking. We have therefore decided to give up the search of a
limiting steepness, and we have loosely used normalized (with the significant wave height Hs = 4σ)
limiting crest and crest-to-trough heights for the maximum waves. In the following, we show how the
extreme-value pdfs are modified to account for such a maximum value, while in the next section we
discussed how to characterize maximum allowable heights, and we assessed the theoretical formulation
against literature data.
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From a statistical point of view, we aimed at restricting the unbounded sample space (0,∞) of
the two density functions f Cm and f Hm by equalling them to zero above a finite height threshold; in
other words, we wish to know the probability density of the non-negative random variables Cm and
Hm, after limiting the corresponding support to be below a threshold scaled with Hs. We proceed by
assuming that (i) before reaching the threshold, maximum waves are allowed to grow and decay and
the random process and its extreme-value probability distribution are unaffected, and (ii) the upper
bound is an accumulation point for the extreme-value statistics. This is a further simplification of the
effects of wave breaking, since it forces the height reduction after breaking, by assigning a normalized
height that maximum waves cannot exceed. This choice is however reasonable since we are taking
into account the extreme-value pdf of maximum heights, which describe the distribution of maximum
parameters over an ensemble of realizations.

Accordingly, we might first write the condition for maximum crest heights Cm as follows

gCm(h; Bc) = fCm(h | 0 < Cm ≤ BcHs) (12)

by defining the bounded pdf gCm as follows
gCm(h; Bc) = fCm(h), hσ < BcHs

gCm(h; Bc) = 1− FCm(h), hσ = BcHs

gCm(h; Bc) = 0, hσ > BcHs

(13)

where Bc > 0 is the maximum elevation a normalized crest height Cm/Hs may reach. The expectation
of the bounded random variable is given by

E{Cm}BC = σ

∫
∞

0
hgCmdh (14)

which depends on Bc and it is, by construction, smaller than E{Cm}, being E{Cm}BC = E{Cm} in the limit
Bc→∞. Notice that gCm is a density since ∫

∞

0
gCmdh = 1 (15)

For maximum wave heights Hm, we followed a similar strategy by thresholding the values with
an upper limit for the crest-to-trough vertical distance BH > Bc, so that the pdf of bounded Hm is
defined as

GHm(H; BH)= fHm(H | 0 < Hm ≤ BHHs) (16)

and may be written as 
GHm(H; BH) = fHm(H), Hσ < BHHs

GHm(H; BH) = 1− FHm(H), Hσ = BHHs

GHm(H; BH) = 0, Hσ > BHHs

(17)

The expectation of maximum wave heights Hm that are constrained to be below the normalized
threshold BH is evaluated as

E{Hm}BH = σ

∫
∞

0
HGHmdH (18)

and, as anticipated, it is smaller than E{Hm}.
In summary, we proposed a modification of the unbounded space-time pdfs of Hm and Cm by

including an upper threshold for both maximum heights that permits a transition of the extreme-value
statistics towards zero-probability events. Since in the distribution of extremes the likelihood of
having the largest waves above such thresholds increases with the sample size (namely, the number
of individual waves N3, N2 and N1), the effect of the bounds is greater when the sea surface area
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(or the interval duration) for the characterization of extremes is relatively large. An example of the
thresholding effect is shown in Figures 1 and 2, where the bounded and unbounded pdf, cdf, expected
values and errors are shown for varying sea surface area width

√
XY. We note that the probability

that the threshold values are larger than any wave maximum diminishes with increasing sample size
(colored curves from blue to red in Figures 1 and 2). Differences between the bounded and unbounded
distributions increase accordingly. With this in mind, in the following sections we focused on the
meaningfulness of the threshold and its consequence on the extreme wave prediction over sea states of
variable severity.
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Figure 1. Space-time extreme crest heights Cm. Example of unbounded Gumbel-like distribution
and bounded distribution by imposing the upper bound max{Cm} = 1.55Hs (Bc = 1.55; see Section 3
for the choice of the threshold value). The temporal interval duration for the extreme assessment is
fixed to D = 1200 s, whilst the sea surface area XY changes. (top-left) Unbounded (dashed line) and
bounded pdf (solid line) color-coded from blue to red with growing sea surface area width (XY)1/2 as
in the top-right panel. (bottom-left) Unbounded (dashed line) and bounded cdf (solid line) with the
same color code as the pdf. (top-right) Variation with (XY)1/2 of normalized E{Cm} and E{Cm}BC, and
(bottom-right) percentage relative error ∆ = (E{Cm} − E{Cm}BC)/Hs. Parameters of the distributions are
computed using a directional wave spectrum (Hs = 4.9 m; zero-crossing mean spectral period Tz = 6.5 s;
µ = 0.074) obtained by running the wave model WAVEWATCH III® (see Section 3 for a description of
the numerical runs).
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Figure 2. Space-time extreme wave heights Hm. Example of unbounded Gumbel-like distribution and
bounded distribution by imposing the upper bound max {Hm} = 2.45Hs (BH = 2.45; see Section 3 for
the choice of the threshold value). The temporal interval duration for extreme assessment is fixed to
D = 1200 s, whilst the sea surface area XY changes. (top-left) Unbounded (dashed line) and bounded
pdf (solid line) color-coded from blue to red with growing sea surface area width (XY)1/2 as in the
top-right panel. (bottom-left) Unbounded (dashed line) and bounded cdf (solid line) with the same
color code as the pdf. (top-right) Variation with (XY)1/2 of normalized E{Hm} and E{Hm}BH, and
(bottom-right) percentage relative error ∆ = (E{Hm} − E{Hm}BH)/Hs. Parameters of the distributions are
computed using a directional wave spectrum (Hs = 4.9 m; Tz = 6.5 s; µ = 0.074) obtained by running
the wave model WAVEWATCH III® (see Section 3 for a description of the numerical runs).

3. Upper Heights and Assessment of the Bounded Distribution

There are not many studies dealing with the ultimate normalized heights Cm/Hs and Hm/Hs

that sea waves may reach, since, as we pointed out before, the individual height is not by itself a
limiting factor for the wind-wave growth. In the literature, there are a number of credible accounts of
giant rogue waves [3], which are among the highest and steepest waves ever recorded in the world’s
oceans [55,56]. A summary of parameters of some iconic and widely studied rogue waves is reported
in Table 1, where individual wave and crest heights are shown after being normalized with the sea
severity expressed by the vertical scale Hs, which is the standard way used by scholars and engineers
to classify whether a single wave falls within the definition of rogue or not [57]. It is important to
mention that the work by Fedele et al. [58] pointed out that rogue wave formation seems to result from
constructive interference of elementary waves enhanced by second-order nonlinearities, which is the
physical mechanism underlying the theoretical formulations for extremes used in this study.

Table 1. Crest and crest-to-trough maximum wave height parameters of iconic rogue waves (namely
Draupner, Andrea, Killard, and El Faro; [6,8]) and of maximum waves AA1 and AA2 gathered within
space-time fields of sea elevation [5].

Draupner Andrea Killard AA1 AA2 El Faro a

Cm/Hs (-) 1.55 1.63 1.62 1.59 1.60 1.68
Hm/Hs (-) 2.15 2.49 2.25 - - 2.60

a El Faro values were not derived from observations but obtained from numerical simulations.



J. Mar. Sci. Eng. 2020, 8, 679 8 of 14

For the selected rogue cases, maximum crest heights Cm range between 1.55Hs and 1.68Hs, and
maximum wave heights Hm between 2.15Hs and 2.60Hs, the highest values pertaining the rogue event
associated to the sinking of the El Faro vessel [6] that were not directly observed but instead obtained
from numerical simulations. Moreover, Magnusson and Donelan [59] indicated that the conditions in
the Andrea storm were more extreme for steepness and near breaking than in the Draupner case; both
individual waves, however, had steepness smaller than the Stokes limit. This suggests that, excluding
the very extreme El Faro case that was obtained numerically, likely observed largest values for Cm/Hs

and Hm/Hs were in the ranges from 1.55 to 1.65 and from 2.45 to 2.50, respectively, the former limit
being also consistent with the values found for space-time maximum elevations (AA1 and AA2 cases
in Table 1), and the latter with rogue wave observations off the US West coast [60] for which Hm/Hs

peaked at 2.57.
Additionally, it is worth noting, that the two above-mentioned intervals are consistent with each

other in the framework of the QD model, supporting the choice of upper bounds that lie within the
suggested intervals. Indeed, if we assume for second-order nonlinear crest heights the upper bound
BC = 1.55 and the steepness parameter µ = 0.06, the linear threshold for crest height, after [37], equals
1.34Hs; then, using the wave height bound BH = 2.45, the coefficient α =

√
2(1−ψ∗) would equal

1.83 and, as a consequence, ψ∗ = −0.67, which is well within the range from −0.75 to −0.65 of typical
values for wind-generated waves [39]. The other way around, assuming BH = 2.45, µ = 0.06, and the
mid-value ψ∗ = −0.70, the upper bound for crest height would be BC = 1.54.

To assess the meaningfulness of the limit BC for nonlinear crest heights and its impact on the
extreme-value distribution, we used the results presented by Fedele et al. [6], who show that the
variation with the surface area of the space-time maximum crest heights suggests statistical similarity
and universal law (Figure 3). Those authors used a combination of stereo observations (OBS in Figure 3)
and Higher-Order pseudo-Spectral numerical simulations (HOS in Figure 3) to assess the growth of
space-time maxima (expected values E{·} with subscript ST in Figure 3) over purely temporal maxima
(expected values E{·}with subscript T in Figure 3).

Aiming at reproducing the results of Fedele et al. with the unbounded distribution, we have
adopted theoretical expectations that were obtained from a sample of one hundred directional wave
spectra computed at hourly interval in the Mediterranean Sea, south of the Gulf of Lion (point of
coordinates 4.65◦E, 42.06◦N), using the wave model WAVEWATCH III® (https://polar.ncep.noaa.
gov/waves/) forced with ERA5 reanalysis wind fields at 0.25◦ resolution (https://www.ecmwf.int/en/

forecasts/datasets/reanalysis-datasets/era5). The Mediterranean Sea wave model setup is based to
cover the whole basin with 0.05◦ uniform resolution in longitude and latitude and with a spectral
grid composed of 36 evenly spaced directions and 32 frequencies exponentially spaced from 0.0500
to 0.9597 Hz at an increment of 10%. WAVEWATCH III® was formulated using the ST4 source term
configuration [61], but with adjusted coefficients βmax = 1.55 and z0,max = 0.002. To make the analysis
reliable, we used a large variety of sea conditions, with the significant wave height Hs ranging between
1.3 and 6.7 m, the mean wavelength Lx between 24 and 85 m, the zero-crossing mean period Tz between
4.4 and 7.9 s, and the mean steepness µ between 0.035 and 0.074. For the extreme-value analysis, the
square sea surface region of area XY was considered around the selected point.

We observe in Figure 3 that normalized values of unbounded E{Cm} and bounded E{Cm}BC
extreme-value crest heights tend to part when

√
XY is above ~2Lx, and the maximum difference

between E{Cm}BC and El Faro HOS simulations is about +6% (+9%) of the mean temporal maximum
when the limiting threshold Bc = 1.55 (Bc = 1.60) is adopted. Then, over larger areas, the differences
between numerical outputs and theoretical expectations E{Cm}BC reduce, and they tend to reconcile for
width

√
XY > ~20Lx by setting Bc = 1.55. The use of a higher limit such as Bc = 1.60 seems to produce a

poorer matching against HOS numerical outputs, at least within the spatial range for which they are
available (blue line in Figure 3). In conclusion, we first acknowledge that a universal law for space-time
wave extremes is not yet fully validated and needs further understanding. Nevertheless, these results
show that the use of an upper bounded distribution (green markers in Figure 3) both reduces the

https://polar.ncep.noaa.gov/waves/
https://polar.ncep.noaa.gov/waves/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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overestimation over large areas of space time maximum crest heights and produces a more realistic
saturation of surface heights in comparison to an unbounded distribution (red markers in Figure 3).
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Figure 3. Assessment of the space-time extreme bounded distribution of Cm. Theoretical ratio between
space-time (ST) and time (T) extreme expectations as a function of the normalized sea surface area
width (XY)1/2/LX (LX is the spectral mean wavelength) for the unbounded (red markers) and the
bounded distribution (green markers). The time-interval duration is D = 3600 s, as in Fedele et al. [6].
OBS: stereo observations from the Acqua Alta oceanographic platform (Adriatic Sea, Italy, [62]); HOS:
Higher-Order pseudo-Spectral numerical simulations (adapted from [6]). (left) Upper bound BC = 1.55,
and (right) upper bound BC = 1.60.

4. Impact of the Upper Bounds on Space-Time Extreme Waves

The impact of the upper bound on space-time extreme waves was examined by evaluating the
theoretical difference between the expected values of the unbounded and bounded maximum heights
when the sea state characteristics and sea surface areas were varied. Expected maximum crest and
wave heights were obtained via numerical integration of the corresponding pdf. We considered two
time intervals: D = 1200 s, which is the wave buoy record standard length that has been used in
previous assessments of space-time extremes from model data [33], and D = 3600 s, which is the
generally accepted maximum time interval for a sea state to be considered stationary [63]. We assume
the two upper limits Bc = 1.55 and BH = 2.45, and we vary the area width

√
XY by keeping X = Y.

Results are presented, at first, by assessing the error (i.e., overestimation) committed in using the
unbounded distribution as a function of the unbounded expected heights; then, we considered how
this error changes with the area size and the sea severity. Theoretical results were obtained using the
same set of directional spectra as in the previous section.

Figure 4 shows that the overestimation increases with increasing extreme height values E{Cm}/Hs

and E{Hm}/Hs. When the normalized expected values of the unbounded pdf equal the two thresholds
Bc = 1.55 and BH = 2.45, the difference (unbounded - bounded) is however smaller than +4% of Hs,
while for higher values the errors tend to cluster around a steady growth. The two time intervals
produce different results (the shorter one, 1200 s, allows for smaller errors), but for both cases these
errors remain quite small below the threshold (<+4%). Since the expected values of extremes depend
on the sea severity (i.e., Hs) of the sea state [64], overestimations do vary with Hs, as is shown in
Figures 5 and 6, which provide the relative errors ∆(Cm) = (E{Cm} − E{Cm}BC)/Hs and ∆(Hm) = (E{Hm}
− E{Hm}BH)/Hs as a function of Hs,

√
XY, and D. For both interval durations, errors are smaller for

more energetic sea states (i.e., large Hs) and grow with the sea surface area (i.e., sample size). Moreover,
in order to keep errors as low as 5% of Hs for the more severe sea conditions, area sides must remain
smaller than about 300 m.
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Figure 5. Space-time extreme crest and wave heights. Relative errors ∆(Cm) = (E{Cm} − E{Cm}BC)/Hs

(left), and∆(Hm) = (E{Hm}−E{Hm}BH)/Hs (right) as a function of the sea surface area width. Upper limit
BC = 1.55 and BH = 2.45. Markers are color-coded with the value of the significant wave height Hs of
each directional spectrum. Time interval duration D = 1200 s.
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Figure 6. Space-time extreme crest and wave heights. Relative errors ∆(Cm) = (E{Cm} − E{Cm}BC)/Hs

(left), and ∆(Hm) = (E{Hm} − E{Hm}BH)/Hs (right) as a function of the sea surface area width. Upper
limit BC = 1.55 and BH = 2.45. Markers are color-coded with the value of the significant wave height Hs

of each directional spectrum. Time interval duration D = 3600 s.
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5. Concluding Remarks

In this study we have proposed and tested an improvement of the extreme-value pdf of space-time
maximum waves in order to include an upper bound for nonlinear crest heights and crest-to-trough
wave heights. Indeed, the pdf of unbounded extremes, being based on Gaussianity, has no physical
limits on the maximum values that the surface height or crest-to-trough height could attain. This poses
a limitation on the probability functions based on asymptotic expansion, which require large heights in
order to be effective. A practical trade-off was suggested in this study. The solution was based on a
thresholded Gumbel-like distribution of short-term/range space-time extreme waves, but its general
approach might be applied to time extreme waves as well. Fundamental in the thresholding is the
selection of the upper bounds that we have fixed as a multiple of the significant wave height, stemming
from the highest values reached by rogue waves. A preliminary assessment of the bounded pdf was
made using reference values from previous research studies. Finally, the overestimation induced by
the unbounded pdf over large areas was evaluated. Main conclusions of the study may be summarized
as follows:

• The extreme-value bounded distribution alleviates the overestimation of the unbounded
distribution over large areas. The use of limiting heights allows a smooth transition towards a
realistic saturation of crest and wave heights with increasing sample size. Although the proposed
pdf used a simplified measure of the limit for wave growth, it improves the performance of the
space-time extreme pdf, while leaving its skill for small areas unchanged.

• Primary in the proper assessment of the bounded pdf is the definition of the upper limits. Here we
have used 1.55Hs and 2.45Hs for the maximum crest and wave heights, respectively, which were
derived from historical rogue wave parameters. However, more validation studies are needed to
improve the knowledge on the confidence limits for varying sea state characteristics. Numerical
studies, using for instance HOS simulations, seem to be promising for this purpose, allowing for
investigation of nonlinear wave groups crossing sea surface regions with a different area.

• Our analysis has shown that the unbounded pdfs are reliable over surface areas with a side smaller
than O(102 m) for all sea states and time interval shorter than one hour. More energetic (and
potentially damaging) sea conditions however are less influenced by the inclusion of the bounds,
since, for a given area, they provide smaller sample sizes.

• The proposed formulations are suitable for being integrated into phase-averaged spectral
wave models to expand their range of applicability for a proper characterization of extreme
wave parameters.
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