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Abstract: In this study, we present a framework for seagrass habitat mapping in shallow (5–50 m) and
very shallow water (0–5 m) by combining acoustic, optical data and Object-based Image classification.
The combination of satellite multispectral images-acquired from 2017 to 2019, together with Unmanned
Aerial Vehicle (UAV) photomosaic maps, high-resolution multibeam bathymetry/backscatter and
underwater photogrammetry data, provided insights on the short-term characterization and
distribution of Posidonia oceanica (L.) Delile, 1813 meadows in the Calabrian Tyrrhenian Sea. We used
a supervised Object-based Image Analysis (OBIA) processing and classification technique to create
a high-resolution thematic distribution map of P. oceanica meadows from multibeam bathymetry,
backscatter data, drone photogrammetry and multispectral images that can be used as a model for
classification of marine and coastal areas. As a part of this work, within the SIC CARLIT project, a field
application was carried out in a Site of Community Importance (SCI) on Cirella Island in Calabria
(Italy); different multiscale mapping techniques have been performed and integrated: the optical and
acoustic data were processed and classified by different OBIA algorithms, i.e., k-Nearest Neighbors’
algorithm (k-NN), Random Tree algorithm (RT) and Decision Tree algorithm (DT). These acoustic
and optical data combinations were shown to be a reliable tool to obtain high-resolution thematic
maps for the preliminary characterization of seagrass habitats. These thematic maps can be used
for time-lapse comparisons aimed to quantify changes in seabed coverage, such as those caused by
anthropogenic impacts (e.g., trawl fishing activities and boat anchoring) to assess the blue carbon
sinks and might be useful for future seagrass habitats conservation strategies.
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1. Introduction

1.1. Seagrass Habitat, Importance and Knowledge

Seagrass beds are distributed over a near-global extent and play an important role in coastal
ecosystems as primary producers, providers of habitat and environmental structure, and shoreline
stabilizers [1,2]. Seagrasses are considered one of the most important coastal habitats [3], as they
support a wide range of ecologically and economically important marine species from different trophic
levels [4]. Moreover, vegetated coastal ecosystems and especially seagrass meadows, are highly
productive and have exceptional capacities to sequester carbon dioxide (CO2) [5]. P. oceanica is an
endemic Mediterranean species and is protected by specific European legislation frameworks such
as the EU Habitat Directive (92/43/CEE) which includes P. oceanica beds among its priority habitats
(Habitat Type 1120). Furthermore, according to the Water Framework Directive 2000/60/EC and the
Marine Strategy Framework Directive (MFSD -2008/56/EC), P. oceanica is selected as a representative
species among the angiosperm quality elements for evaluating “Good Ecological Status” and “Good
Environmental Status” in the Mediterranean marine environments. Therefore, in order to protect
this seagrass ecosystem, it is important to establish its preservation status and regularly monitor its
abundance and distribution. Furthermore, the evaluation of its ecological status should be based on a
monitoring strategy design that should be able to record accurately all its different spatial configurations
(ranging from highly fragmented to continuous meadows) and arrangements, ranging across scales of
meters to kilometers (seagrass landscapes), meters to tens of meters (patches), to tens of centimeters to
meters (rhizomes, shoot groups) [6,7].

1.2. Application of Multispectral Satellite Systems in Seagrass Habitat Mapping

Remotely sensed aerial or satellite optical imagery has been used successfully by several authors
to assess the spatial distribution and spatiotemporal changes in seagrass habitats [8–14] and has been
proven to be suitable for mapping and monitoring seagrass ecosystems [14,15]. Seagrass detection with
multispectral or hyperspectral imaging is one of the most widespread methods in this research area,
since data collection is faster than other surveying techniques. Moreover, these techniques have lower
costs, medium resolution accuracy, easier replicability and cover wider areas compared to traditional
field-based methods [5]. However, they typically provide low-resolution images and even if remote
technologies have a great potential in seabed mapping studies, the extraction of the bottom reflectance
spectrum from the orbital optical sensors data is quite complex. Several processes (i.e., absorption and
scattering) affect the electromagnetic radiation during its passage through the atmosphere and the
water column before this radiation is recorded by the satellite sensors, therefore information quality is
reduced [16,17]. Recent advances in remote sensing satellites and in acoustic sensors, computer vision,
OBIA classification algorithms and pattern recognition can overcome these limitations and encourage
new approaches to develop more accurate mapping techniques [8].

1.3. Application of Multibeam Systems in Seagrass Habitat Mapping

Side Scan Sonar (SSS) and Single-Beam Echo-Sounder (SBES), were considered as the most
common acoustic methods for seafloor mapping and analysis [18–21]. More recently (i.e., a few decades
ago) other techniques such as the Multibeam Echo-Sounder (MBES), allowed the acquisition of higher
resolution bathymetry and backscatter data especially for seagrass meadows [22–29].

Bathymetry and backscatter data and their derived products (such as Slope, Aspect, Curvature
and Terrain Ruggedness maps) can play a pivotal role in providing useful information for managing
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the world’s coasts and oceans [30]: seabed mapping with high-resolution MBES provides bathymetric
profiles that can be visualized as a high-resolution Digital Elevation Models (DEMs) along with
acoustic backscatter intensity from the seafloor and, more recently, from the water column [31–34]
(Figure 1). Moreover, for seagrass meadow mapping, the MBES technique provides a three-dimensional
reconstruction of the seafloor in shallow waters (from about 50 m to 10 m of depth) whereas optical
(multispectral satellites images), methods are unable to provide detailed maps after 15–25 m in
depth. Indeed, it delivers a precise and accurate bathymetric data for 3D reconstruction of seafloor
morphologies (e.g., seagrass matte), by highlighting the presence of canopies of P. oceanica meadows
(Figure 2).
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However, the MBES surveys are limited in very shallow water areas especially at a 5 m depth
where vessel navigation might be difficult and dangerous and the swath coverage is very limited
(generally 3–4 times the depth of the seabed) and, hence, might significantly increase the surveying
time and its costs.

1.4. Application of Unmanned Aerial Vehicles (UAVs) and Autonomous Surface Vehicles (ASVs) Systems in
Seagrass Habitat Mapping

Marine observation techniques are usually divided into two major categories: (1) remotely
acquired data and (2) field measurements that are required for validation. The first category includes
satellite and aerial images, while the second includes techniques of ground-truth sampling like
underwater images, videos, underwater photogrammetry, in situ measurements and sampling
procedures. For seagrass habitat assessment, very fine resolution Unmanned Aerial Vehicle (UAV)
imagery has been effective for density coverage mapping and for detecting changes in small patches
and landscape features; these assessments would not have been possible with satellite or aerial
photography [10,35–38]. However, the application of UAVs for mapping and monitoring of seagrass
habitats has been limited by the optical characteristic of the water (e.g., turbidity), and the environmental
conditions (e.g., solar elevation angle, cloud cover and wind speed) during image acquisition [39].
As such, most research has been confined to clear shallow tropical waters [40,41] or small subsets
of exposed intertidal seagrass beds in temperate regions [36,37]. When it comes to Autonomous
Surface Vehicles (ASVs), they are considered promising approaches in the marine science community.
An immediate advantage is related to the collection of ground-truth data (optic and acoustic) with
single-beam echosounders and images from underwater photogrammetry cameras, which ensures
very high accuracy in very shallow waters [9,42,43]. This approach could represent, in the future, a
replacement of diver seagrass investigations (i.e., snorkeling or scuba diving [11]) especially during
either impractical or dangerous, field campaigns.

1.5. OBIA Classification Algorithms in Seagrass Habitat Mapping

Object-based image analysis (OBIA) is an advanced classification method that incorporates
spectral, weight, color, texture, shape and contextual information to identify thematic classes in optical
and acoustic data-derived images. The first step of OBIA classification is to perform a multiresolution
segmentation of the image to identify homogeneous objects (note: the term “object” in this case stands
for a contiguous group of spatial data such as pixels in a bathymetric grid). The segmentation process
is based on predefined parameters such as compactness, shape and scale, derived from real-world
knowledge of the characteristics to be identified and classified. For machine learning-based mapping,
several algorithms have been developed to improve either the classification from satellite imagery
or seagrass prediction from environmental parameters [44,45]. In a second step, the object-based
classification uses machine learning algorithms such as Support Vector Machine (SVM), Random Tree
(RT), Decision Tree (DT), Bayesian and k-Nearest Neighbor (k-NN) that have been further refined
and are accessible on a variety of data analysis software. Seafloor mapping based on multibeam
bathymetry and backscatter data using Object-based Image Analysis has been recently carried out
by Janowski [46,47]. The authors found that OBIA-based approaches led to a doubling of the overall
accuracy and Kappa measures, from 42% and 0.24–0.27, to 86% and 0.81. Some studies [45,48,49] already
employ the OBIA technique for benthic habitat mapping and automatic classification analysis of reefs
and seabed through the use the acoustic data of MBES or SSS has been described in several scientific
works [47,50]. The OBIA technique applied to map coral reefs has successfully shown improved
performance across different spatial scales [51–54]. Moreover, the OBIA technique is particularly suited
for the analysis of very high resolution (VHR) images such as QuickBird or WorldView-2, where the
increased heterogeneity of submeter pixels would otherwise confuse pixel-based classifications yielding
to an undesired “salt and pepper effect”. Finally, in the study performed by Roelfsema et al. [55],
the OBIA semiautomated approach proved to be very effective in extracting seagrass species and cover
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maps through the analysis of satellite images [56]. The UAV images and OBIA classifications have also
been used together for the mapping of seagrass habitats [37,39,40,57].

2. Materials and Methods

In this work, an integrated approach has been followed for the detection and mapping of seagrass.
In particular, multispectral images from satellite, aerial and underwater digital images from UAV/ASV,
Underwater Towed Video Camera Systems (UTCS) and acoustic data from underwater sonar technology
have been used to map the seagrass meadows and monitor their extent and condition (Figure 2).

2.1. Study Sites and Geomorphological Characterization

Fieldwork was carried out at Cirella Island, a Site of Community Importance in the Southern
Tyrrhenian Sea (Lat 39◦41′54.93′′ N-Long 15◦48′8.01′′ E). Four kinds of surveys in 2018 and 2019 were
carried out (Multibeam, UAV and Development Vehicle for Scientific Survey (DEVSS) and UTCS).

Cirella Island is located on the continental shelf at a distance of 600 m from the coast and 2.5 km
from the shelf break (Figure 3). The island is composed of an emerged portion of about 0.07 km2 and
has a greater submerged portion of about 0.3 km2; both portions belong to a carbonate unit of limestone
rocks from the Cretaceous [58]. The deeper seabed morphologies (from about 27 m to 41 m water
depth) around Cirella Island are characterized by semiflat bottom with a low gradient of about 1–1.5◦

toward the shelf break (Figure 3a), while in shallow water the morphologies are quite rugged with a
local gradient up to 70◦. These morphologies are produced by rocky outcrops and by an extensive
matte of P.oceanica.
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Figure 3. (a) Study Area Site of Community Importance (SCI) Isola di Cirella located in the southern
Tyrrhenian Sea. Track lines of Multibeam bathymetry, UAV, Underwater Towed Video Camera Systems
and Autonomous Surface Vehicles (ASVs) surveys. Ground-truth training and validation sampling set
for classification step: (b,c) shallow water area; (d,e) very shallow water area.
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P. oceanica is located both on sediment, represented mainly by sand, and on rocky outcrops.
Overall, the coverage of P. oceanica is about 0.54 km2 of which about 65% is located on rocky outcrops.
The matte height is quite variable due to the rocky outcrop (maximum height: 1.5 m).

Around Cirella Island, the depth and distribution of P. oceanica is uneven. On the western side, it is
located from a depth of 15 m while on the eastern side it is located from a depth of 3 m. These depths
reflect the prevailing direction of the waves. Indeed, most of the waves come from the W and SW
sectors (caused by Ponente and Sirocco winds, respectively, as shown in the elaboration of the the
directional wave analyzed from NOAA database from 1979 to 2009). This suggests that their effect
in shallow water is more relevant in the western sector of the study area which is exposed to both
predominant wave directions.

2.2. Remote Sensing

The Pléiades satellite image acquired on 28 September 2016 was used for the study area.
The Pléiades image was supplied with 4 spectral bands and 2 m of spatial resolution and was
already orthorectified with pixel values in reflectance [59] (Figure 4a). The image was initially rectified
using the Dark Object Subtraction (DOS) technique, with the aim of removing the disturbance related
to the return flow of the atmosphere that separates the marine surface from the transported sensor
aboard the satellite (Figure 4b).
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The second processing performed a correction to compensate for the effects of light intensity
attenuation as depth increases. This correction was made using the procedure proposed by [60] and by
identifying and choosing homogeneous sandy bottoms at different depths. The aim was to identify,
through appropriate regressions, the coefficients that allow correlating the reflectance values of the
bottom pixels to the depth (Figure 4c).

The water column correction was carried out with the ERDAS IMAGINE software via the Spatial
Modeler tool [61].

The bands of the Pléiades satellite image, used to obtain the water correction coefficients, are blue,
green and red: in this specific case, three bands originated from the blue–green, blue–red and green–red
pairs have been obtained from image processing. The three resulting bands were then combined to
create a new color image that was considered more appropriate for the classification phase (compared
to the unprocessed original image).
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2.3. Multibeam Bathymetry

During 2018, in the SIC CARLIT project, high-resolution multibeam survey campaigns (bathymetry,
backscatter and water column data), were performed in the Tyrrhenian sea (Figure 3). During this
project, 535 nautical miles of multibeam bathymetry data in shallow water, covering 81 km2 of the
seafloor, were collected. However, the study area of Cirella Island described in this work was examined
in just one day. The multibeam survey was carried out in September 2018 collecting data between
10 m and 40 m water depth with a Kongsberg EM2040 Multibeam Echo-Sounder System installed on
“Astrea”, a 24 m long boat with a 3 m draft. The multibeam was set to use the equidistant mode with a
frequency of 300 kHz and 256 beams per swath. A positioning system was installed: a Kongsberg
Seapath 300 with the correction of a Fugro HP Differential Global Positioning System (horizontal
accuracy: 0.2 m). A Kongsberg Seatex IMU (MRU 5) Motion Reference Unit recorded the attitude
and rotation about the three orthogonal axes centered on the vehicle’s center of gravity (pitch, roll,
heave and yaw movements). A Valeport mini sound velocity sensor (SVS), mounted in proximity
to the transducers, measured continuously the sound velocity for the forming beam. Three sound
velocity profiles were collected with a Valeport sound velocity profiler. Data were logged, displayed
and checked in real-time with the Kongsberg SIS software (Seafloor Information System). Bathymetric
multibeam data were processed using Caris HIPS and SIPS hydrographic software. The processing
workflow consisted of a patch test and in the application of statistical and geometrical filters to
remove coherent/incoherent noise [27,34]. Since the investigated area is a microtidal environment,
particular attention was given to tidal corrections to make sure that the DEMs were corrected. The local
hydrometric level was related to the permanent tide station of Palinuro, belonging to the National
Tide gauge Network (http://www.mareografico.it). The backscatter intensity (BS) maps were created
by using Caris HIPS and SIPS hydrographic software after applying the Angle Varying Gain (AVG)
beam pattern correction to remove the angular dependence artifacts from the seabed backscatter.
The soundings profiles were merged and gridded for the generation of DEMs at 0.3 m cell size resolution
and the backscatter intensity map at 0.2 m cell size resolution. All data (DEMs, backscatter intensity
map, UAV data and multispectral images), were merged through a GIS software (i.e., Global Mapper
20.0) that allowed to control the overlapping datasets positioning [62]. Furthermore, about 717 control
points were used to validate, by direct observation, the Multibeam morphology, the ground-truth
reference data for training, and the classification algorithm, Table 1.

Table 1. Number of ground-truth data derived by the acoustic data MBES, and collected through the
Underwater Towed Camera Systems (UTCs), ASVs DEVSS and UAV.

Class MBES UTCS ASV UAV

P. oceanica (P) 214 41 26 13
Rock (R) 95 \ 6 50

Mobile Fine sediment (FS) 197 13 \ \

Coarse sediment (CS) 211 5 \ \

Cystoseira (Cy) \ \ \ 49
Total 717 59 32 112

2.4. UAV Survey and Processing for Digital Terrain and Marine Model Generation

The images were collected across Cirella Island in July 2019 via a Parrot Anafi Work UAV.
This model has an onboard camera with a 1/2.4-inch CMOS sensor which captures 21-megapixel images
(.jpeg format) and an f/2.4 lens with an 84◦ field of view. Automated flights were carried out with the
Pix4D Capture free drone flight planning mobile application with an 80% overlap on both axes, and a
flight altitude that ranged between 60–75 m depending on the total size of the surveyed site. In total,
4 photogrammetric flights were performed in order to cover the north/south and east/west side of the
island. A total of 360 frames were captured during a continuous flight (Figure 5). The surveyed images
were processed with Pix4D Mapper software [63] by using 11 ground control points located around

http://www.mareografico.it
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the island between 0 and 10 m altitude. The mosaic image and the DEM were processed at 0.02 m and
0.3 m resolution respectively. In particular, 112 frames were used to collect, by UAV direct observation,
the ground-truth reference data for training and validating the classification algorithm, Table 1.
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Figure 5. (a) Unmanned Aerial Vehicle (Anafi Parrot Work UAV) survey performed from a small boat;
(b) GNSS surveys carried out along the coast of Cirella Island to identify the 11 ground control points;
(c) UAV Mosaic image of Cirella Island.

2.5. Image Ground-Truth Data

The ASV robotic platform DEVSS (DEvelopment Vehicle for Scientific Survey) developed by
the 3D Research private research company [64] and the Underwater Towed Camera Systems (UTCS)
were used, in the very shallow water area, to collect the ground-truth reference data for training and
validating the classification algorithm, Table 1 [65]. The ASVs was equipped with a GoPro Hero 4
Black model, which is a consumer-brand high-definition sports camera with a 12 MP HD CMOS
sensor, 1/2.5′′ size [64]. The GoPro Hero 4 Black records at different video and photo resolutions and
Field-Of-View (FOV). In this work, we used the camera (set in time-lapse mode) with 12 MP widescreen
1080 p and a FOV of 108◦. The camera was positioned face-down in order to obtain vertical images
at the same height from the bottom. In the shallow water area, time-lapse photos were recorded by
using: an UTCs Platform, equipped with a caudal fin in order to reduce pitch and roll movements and
stabilize video acquisition, a SeaViewer’s Sea-Drop™ 6000 high-definition underwater video camera,
with a surface console and two GoPro Hero 3+ cameras (Figure 6b), with a 12 MP HD CMOS sensor f
2.8–170◦ [66] (Figure 6b).
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The combined sampling of acoustic and optical data was carried out in the shallow water
coastal area (depth < 10 m) that surrounds Cirella Island. In order to acquire overlapping pictures,
ensuring about 75% of shared coverage between two consecutive photos, a speed of about 1 knot/h
was maintained. A total of about 2500 georeferenced images were collected. Before performing
the 3D processing, an underwater image enhancement technique [67] was performed to minimize
the effect of the water column on the underwater images. After the image enhancement step,
a Structure-from-motion (SfM) 3D reconstruction was performed using the commercial software
Agisoft Metashape Pro and Pix4D mapper [68]. The average root-mean-square error (RMSE) achieved
at this step was 0.022 m for GPS coordinates. Finally, a Multiview Stereo (MVS) algorithm was used by
the Metashape software to produce a dense 3D point cloud from the refined intrinsic orientation and
ground-referenced camera exterior orientation (Figure 7). In particular, in the very shallow water area,
32 sampling areas were acquired with Autonomous Surface Vehicle DEVSS and 59 sampling areas
were acquired with UTCS in the shallow water area, Table 1 [64]. The 3D reconstructions generated
by DEVSS and UTCS were used in order to: (a) interpret the bathymetric DEM and backscatter and
(b) identify further ground-truth data.
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Figure 7. (a) Sample image before and (b) after the application of the image enhancement algorithm on
a single frame of the underwater photogrammetric survey. Orthogonal view of the 3D point clouds of
three sample areas: (c) area size: 35 m × 7 m, 13 million 3D points; (d) area size: 40 m × 7 m, 15 million
3D points; (e) area size: area size: 33 m × 9 m, 14 million 3D points. The map between (c) and (d) shows
the location of the submerged transects with respect to Cirella Island.

In general, all the ground-truth data used in this work were carefully checked for possible overlaps
between the training and validation samples. The minimum distance, calculated between any training
and validation samples, was about 25 m and this affects only 10% of the total dataset.

2.6. OBIA Segmentation and Classification

All collected data, i.e., DEMs, backscatter intensity map, UAV data and multispectral images data,
were processed in the OBIA process [69] by eCognition Essentials 1.3. software, using a classification
algorithm [70] (Figure 8). The Multibeam bathymetry data were converted into secondary features:
Slope, Northness, Eastness, Curvature and Terrain Roughness Index (TRI) using the Morphometry
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Tool in SAGA (SAGA (System for Automated Geoscientific Analyses) Version) [71] as shown in (Table 2
and Figure 9).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 10 of 25 
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of Cirella Island marine habitats (see Figure 10).

Table 2. Multidata source variable and list of extracted secondary features of the bathymetric and
backscatter data.

Source Features Resolution Software Area

Multibeam
EM2040 Backscatter/Bathymetry 0.3 m Caris HIPS and

SIPS shallow

Bathymetry Curvature General 0.5 m SAGA-GIS shallow
Bathymetry Curvature Total 0.5 m SAGA-GIS shallow
Bathymetry Slope 0.5 m SAGA-GIS shallow
Bathymetry Aspect 0.5 m SAGA-GIS shallow
Bathymetry Northness 0.5 m SAGA-GIS shallow
Bathymetry Eastness 0.5 m SAGA-GIS shallow

Bathymetry
Terrain

Ruggedness Index
(TRI)

0.5 m SAGA-GIS shallow

Pléiades Satellite image 2 m ERDAS IMAGINE shallow

UTCS Image Truth data 0.001 m AGISOFT
METASHAPE shallow

Parrot Anafi
Work Orthophoto 0.02 m PIX4D Mapper very

shallow

ASVs (DEVSS) Image Truth data 0.001 m AGISOFT
METASHAPE

very
shallow
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Figure 9. Bathymetry data products used to classify the seabed morphologies and acoustic facies:
Multibeam Digital Elevation Model (DEM), backscatter intensity map and secondary features: Terrain
Roughness Index (TRI), Aspect, Curvature and Slope obtained from postprocessing of bathymetric data.

The multiresolution segmentation algorithm, performed by the eCognition Essential software,
was used to identify homogeneous objects. The process of multiresolution segmentation was carried
out by considering the following parameters: Scale Factor, Shape, Smoothness and Compactness.
In shallow water, the multiresolution segmentation algorithm was used to generate objects with similar
information by using only the backscatter intensity and TRI features. The bathymetry, Slope, Aspect
and Curvature features were excluded from this first segmentation procedure. The multiresolution
segmentation algorithm was used to generate objects with similar information by using only the
most important features selected. This decision was taken since the use of all features (primary
and secondary) had created an excessive disturbance effect and the segmentation results were not
adapted to the real shapes of the objects. In order to identify and remove nonimportant features
from all the input layers, a feature selection algorithm (i.e., the R package Boruta algorithm) was
used to assess their relevance in determining the thematic classes. The Boruta algorithm is built on a
“random” forest classification algorithm. With the wrapper algorithm, present in the Boruta package,
we selected all the relevant features by comparing the importance of the original attributes with the
importance reached in a random way, estimated using permutations (i.e., shadows). Only the features
whose importance was higher than those of the randomized features were considered important [72].
The Boruta algorithm result gave a list of attributes according to their importance, separating them
into “confirmed” or “rejected” features. The features without decision at the end of the analysis were
classified as “provisional”. In the following classification step, we used the 10 most important attributes
considered as “confirmed” by the Boruta algorithm. Therefore, the Boruta test allows identification of
the most important and nonredundant features to train a model improving the learning process timing
and accuracy of the final classification map (Figure 8). The orthophotos generated from UAV data
surrounding the area around the Cirella Island (seabed depth from 0 to 12.5 m) were treated separately
by the eCognition software due to the lack of data acquired from multibeam surveys in very shallow
water. Therefore, two different projects within the eCognition Essential software were created. The first
included all data acquired by multibeam in shallow water areas (8–30 m) and the second included
only the orthophotos acquired by UAV in very shallow water areas (1–12.5 m; Table 1). We tested the
performance of the three different supervised classification algorithms available in the eCognition
Essential software: (k-NN), (RT) and (DT). The k-NN algorithm is a method for classifying objects by a
majority ranking of its neighbors—with the object being assigned to the class most common among
its k-Nearest neighbor. DT learning is a method commonly used in data mining where a series of
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decisions are made to segment the data into homogeneous subgroups through a tree system with
branches. Random tree is a combination of tree predictors where each tree depends on the values of a
random vector, sampled independently and with the same distribution for all trees in the forest [73].
All trees are trained with the same features but on different training sets, which are generated from the
original training set. It aggregates the ranks from different decision trees in order to assign the final
class of the test object. The ground-truth data acquired with the direct interpretation of multibeam data,
by means of the ASV DEVSS (both images and 3D point clouds) and the UTCS platform were used to
assign specific class values to the segmented objects. In the sampled area, five different classes were
identified: Fine sediment-FS, Coarse sediment-CS, Rock-R, P. oceanica meadows-P and Cystoseira-Cy.
Some samples were identified through other techniques in order to have homogeneous ground-truth
data coverage. Along the perimeter of the island, in the very shallow water areas, ground-truth data
were taken directly via visual identification during UAV survey, while for deeper areas that could not
be reached by the ASV DEVSS, some ground-truth data were selected based on the study of multibeam
bathymetry, backscatter and water column data acquired during the multibeam survey and by direct
observation with the UTCS platform. Overall, 920 ground-truth data were used in this study and
divided into two different groups (Training set and Validation set): one to perform the training step and
the second to evaluate the classification accuracy and Kappa coefficients [74–76] (Table 3 and Figure 3).

Table 3. Main thematic classes of seabed and number of ground-truth data collected through the ASV
DEVVS, UTCS, UAVs and derived by the acoustic data.

Shallow Water Very Shallow Water
Class Training Set Validation Set Training Set Validation Set

P. oceanica (P) 123 122 23 26
Rock (R) 80 15 35 21

Fine sediment (FS) 207 170 \ \

Coarse sediment (CS) 44 5 \ \

Cystoseira (Cy) \ \ 31 18
Total 454 312 89 65

3. Results

Multibeam and photogrammetric (UAV) DEMs were merged via Global Mapper software using
the acoustic data and point cloud raw data respectively. The cloud points obtained by Pix4D software
were georeferenced by comparing the position of the Ground Control Points detected along the
coastline and on the island, while the bathymetric data collected with multibeam were used in order to
correct the altitude in the marine area. This operation was carried out through the tools for Quality
Control of LiDAR point cloud data LiDAR module of the Global Mapper software allowing comparison
and/or 3D correction of the height of point cloud data to known control points, and to report statistics
about subsets of points.

The acoustic profiles and point clouds were gridded (0.3 m) generating an integrated digital land
and sea model, overall the merged soundings and cloud points highlighted a vertical subdecimetrical
accuracy, see Figure 10.
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Figure 10. Digital Terrain and Marine Model (DTMM) generated by the optical (UAV) and acoustic
(multibeam) data fusion; (a) Area of Interest (AOI) in shallow water; (b) Area of Interest (AOI) in very
shallow water. The white boxes are shown in Figure 11.

In the shallow water areas, the most relevant results were obtained by using the following
multiresolution segmentation parameters: scale segmentation 20; Shape 0.1, compactness 0.5 and
scale slider min. value 10, scale slider max value 100. These parameters were selected after several
tests carried out with different settings comparing the segmentation objects created by the algorithm
with those of real morphology. Figure 10 shows the two Areas of Interest (AOI) from which we have
extracted the two examples of segmentation and classification processes. The results are shown in
Figure 11.

The acquired ground-truth data were used to assign specific class values to determine segmented
objects (Figure 11).
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photogrammetry: (b) Orthomosaic UAV image; (b’) Orthomosaic segmented into image objects and 
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eCognition Essential software and analyzed with the Boruta R package (version 6.0.0) in order to 
assess their importance in the assignment of the corresponding class (Figure 12) [77]. The 
classification tests performed with a higher than 10 number of attributes used in the training phase 
did not significantly increase the accuracy of the classification. The most relevant features emerging 
from the Boruta test, are the following in order of importance: the mean backscatter intensity, the 
mean Aspect, the general Curvature standard deviation, mean Pléiades Blu band, the mean of Total 
Curvature, the mean of Slope, the Aspect standard deviation, the Slope standard deviation, TRI 
standard deviation; the mean of Eastness. Figure 12 shows the results of the Boruta test. 

Figure 11. Shallow water classification process from multibeam data: (a) backscatter intensity map;
(a’) multiresolution segmented objects image and training and validation set; (a”) RT classified map:
(green: P. oceanica, light brown: Fine sediment, gray: Coarse sediment); (a”’) RT final classified map
after merging and smoothing objects. Very shallow water classification process from UAV aerial
photogrammetry: (b) Orthomosaic UAV image; (b’) Orthomosaic segmented into image objects and
training and validation set; (b”) k-NN classified map: green: P. oceanica, blue: Cystoseira, pale brown:
Rock); (b”’) k-NN final classified map after merging and smoothing objects. See Figure 10 for location.

All statistical information about the features (primary and secondary), associated with the objects
classified from 766 ground-truth data (training and validation set) were extracted from eCognition
Essential software and analyzed with the Boruta R package (version 6.0.0) in order to assess their
importance in the assignment of the corresponding class (Figure 12) [77]. The classification tests
performed with a higher than 10 number of attributes used in the training phase did not significantly
increase the accuracy of the classification. The most relevant features emerging from the Boruta test,
are the following in order of importance: the mean backscatter intensity, the mean Aspect, the general
Curvature standard deviation, mean Pléiades Blu band, the mean of Total Curvature, the mean of
Slope, the Aspect standard deviation, the Slope standard deviation, TRI standard deviation; the mean
of Eastness. Figure 12 shows the results of the Boruta test.
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The comparison between the different classification algorithms available in the eCognition
Essential software: (k-NN), (RT) and (DT) was performed considering three levels of data combination:
(A) Pléiades image; (B) Pléiades image combination with backscatter and bathymetry data; (C) Pléiades
image combination with backscatter, bathymetry data and secondary features, (Table 4C). The best
classification performance was obtained with the multilayer combination (Table 4C). The algorithm
(RT) generally provided the best overall accuracy results in two levels of data combinations (B and
C). In particular, the algorithm (RT), compared to the k-NN and RT algorithms, showed an overall
accuracy of 99.63% and the Kappa coefficient 0.99, the Producer’s accuracy and User’s accuracy values
with a low gap between them (Table 4C). The k-NN algorithm returned overall accuracy values of
86.94% and the Kappa coefficient 0,80, while the DT learning, showed an overall accuracy of 88.57%
and the Kappa coefficient 0.77 (Table 4C). The k-NN algorithm did not show the best response in terms
of classification (Table 4), whereas the DT learning showed an overall accuracy always lower than RT
(Table 4). As shown in Table 4, in the RT all classes had a relatively consistent accuracy, as shown by the
small differences between User’s and Producer’s Accuracy for each thematic map class. Results from
the DT approach showed the divergence of the Producer’s and User’s accuracy increases considerably
(Table 4).
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Table 4. Accuracy assessment for the DT, k-NN and RT supervised classification algorithm (shallow
water area) for 3 different combinations: (A) Pléiades image; (B) Pléiades image-Backscatter-Bathymetry;
(C) Pléiades image-Backscatter-Bathymetry-Secondary features.

Combinations
(Data Source) Decision Tree (DT) Random Tree (RT) k-NN

A
Pléiades image

Overall accuracy:
67.83%
K: 0.48

Overall accuracy:
66.78%
K: 0.47

Overall accuracy:
71.33%
K: 0.48

Class User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

(P) 75.36% 85.25% 72.67% 89.34% 70.31% 73.77%
(R) 83.33% 33.33% 83.33% 33.33% 100.00% 33.33%
(FS) 84.21% 55.56% 87.80% 50.00% 75.35% 74.31%
(CS) 10.64% 100.00% 10.42% 100.00% 18.18% 40.00%

B
Pléiades-Backscatter

Bathymetry

Overall accuracy:
83.61%
K: 0.73

Overall accuracy:
91.80%
K: 0.85

Overall accuracy:
82.38%
K: 0.69

Class User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

(P) 95.45% 77.78% 96.97% 88.89% 90.22% 76.85%
(R) 28.57% 80.00% 42.11% 80.00% 42.11% 80.00%
(FS) 100.00% 88.43% 100.00% 95.04% 89.92% 88.43%
(CS) 23.81% 100.00% 45.45% 100.00% 21.43% 60.00%

C
Pléiades-Backscatter

Bathymetry
Secondary features

Overall accuracy:
88.57%
K: 0.80

Overall accuracy:
99.63%
K: 0.99

Overall accuracy:
86.94%
K: 0.77

Class User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

(P) 94.95% 86.24% 100.00% 99.07% 94.95% 86.24%
(R) 43.75% 70.00% 100.00% 100.00% 43.75% 70.00%
(FS) 94.74% 89.26% 99.31% 100.00% 94.74% 89.26%
(CS) 25.00% 80.00% 100.00% 100.00% 25.00% 80.00%

In the very shallow water area, the same workflow was performed to generate the classified habitat
map (Figure 8). The UAV orthophoto was imported via the eCognition software and a multiresolution
segmentation algorithm in order to identify objects. The most relevant segmentation results were
obtained by using the following parameter settings: scale 300; Shape 0.1, compactness 0.5 and scale
slider min. value: 50, scale slider max. value: 600 (Figure 11). These parameters were selected after
several tests carried out with different settings comparing the shapes created by the algorithm with
those of the real morphologies of the seabed.

A greater scale was used for the orthophotos due to the higher image resolution (0.03 m).
Data available for the OBIA classification derived only from the RGB orthophoto image, therefore the
Boruta algorithm was not used. In the very shallow water area, 3 different classes were identified
(Cystoseira (Cy), Rock (R), P. oceanica meadows (P); Table 2). The supervised classification algorithms
(k-NN, RT and DT) were tested, but in this case, the best classification result in terms of accuracy
was obtained when using the k-NN algorithm, with an overall accuracy equal to 95.24% and Kappa
coefficient 0.92 (Table 5). With regard to the k-NN classification algorithm, all classes (Cystoseira,
Rock and P. oceanica) showed small differences between the Producer’s and User’s accuracy values
(Table 5).
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Table 5. Accuracy assessment for the DT, k-Nearest Neighbors’ algorithm (k-NN) and RT supervised
classification algorithms (very shallow water area).

Decision Tree (DT) Random Tree (RT) k-NN
Overall Accuracy: 74.6% Overall Accuracy: 77.78% Overall Accuracy: 95.24%

K: 0.61 K: 0.65 K: 0.92

Class User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

(P) 71% 65.38% 66.70% 100% 100.00% 100.00%
(R) 62.50% 75% 88% 35.00% 87.00% 100.00%

(Cy) 100.00% 88.24% 100% 94.12% 100.00% 82%

The two best-classified habitat maps (very shallow and shallow maps) selected on the basis of
accuracy were merged into one very high-resolution classified map (Figures 13 and 14).
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Figure 13. Comparison between seafloor mapping techniques using optical GoPro images collected by
(UTCS) and Autonomous Surface Vehicle (DEVSS) and: (a–d) high-resolution multibeam bathymetry,
(a’,b’,c’,d’) backscatter intensity data, (a”,b”,c”,d”) multispectral reflectance of Pléiades images. The data
collected in the study area show different types of seafloor: sediments (from fine to coarse), rocks and
P. oceanica. The GoPro images were used to interpret and calibrate the morphological features while
using the eCognition software. See Figure 14 for location.

More specifically, about 51 hectares of P.oceanica were mapped, while 119 hectares and 1.70 hectares
were, respectively, identified for the Fine and Coarse sediment, and 0.45 hectares for Cystoseira.

4. Discussion

The main objective of this work was to perform benthic habitat mapping by using several data
acquisition platforms and OBIA algorithms and to develop a high-resolution seagrass mapping digital
elevation model. OBIA algorithms are now stable and powerful approaches to use for classifying
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benthic habitats and to produce accurate maps [78–82]. In this work, an integrated methodological
approach has been followed for multisensor data fusion (acoustic and optical) with different degrees
of resolution. This approach might be useful, if necessary, for mapping the P. oceanica meadows,
but also seabed geomorphological features and furthermore, to estimate the carbon sequestration
and storage of the seagrass ecosystem [83]. Generally, surveying techniques are used individually,
and show several limitations such as spatial coverage in very shallow waters (e.g., Multibeam) or poor
resolving capacity (e.g., satellite images) that might not allow a complete characterization of the spatial
and temporal extent of P. oceanica meadows in deeper areas. Most benthic seagrass habitat mapping
studies examine a single data source and quite a few attempts have been made to combine multiple
data sources [84,85]. High spatial resolution satellite imagery (2 m or smaller) alone has proven to
be unable to produce adequate accuracy for fine descriptive detailed maps [51] (a fact that is also
confirmed by this study). High-resolution multispectral and hyperspectral imagery can be useful
in discriminating habitat community size to a not-so-fine detail, but its moderate spatial resolution
might limit its broader application especially as the depth of the seabed increases, and reflectance
and radiance are absorbed [86]. The present study highlights how the OBIA classification did not
provide a satisfactory result in terms of thematic accuracy by using only the Pléiades satellite images.
Indeed, satellite images can be effective for the mapping of P. oceanica meadows, only in conditions of
high water transparency and in the presence of excellent spatial and spectral resolution. However,
the combination of acoustic bathymetric data (DEM and backscatter) combined with optical data (e.g.,
multispectral satellite) has proven to improve the final classification performance. The set of optical and
bathymetric acoustic data combined with secondary features showed the best classification results and
this has also been confirmed by other studies [14,35,87]. The present work, specific on high-resolution
seagrass mapping, highlights how RT seems to be the OBIA algorithm with the best classification
performance. Similar answers on RT have been highlighted also by Janowski [47] on the automatic
classification of benthic habitats [78,80,81]. As far as the K-NN classifier is concerned, it has a lower
case history of application in marine habitat mapping studies [79], and in general, the performances of
the K-NN classifier were almost always moderate or fair. The RT algorithm in this study proved to be
very effective in generating accurate classification, thus showing fair performance. Instead, the DT
classification algorithm has always shown the lowest accuracy. The classification of the orthophoto
produced with the UAV showed instead the best accuracy with the k-NN algorithm, which, although
not much used for marine habitat mapping, has nevertheless obtained an excellent result compared to
the DT and RT algorithms. The OBIA object classification, as highlighted in existing literature [45],
represents an effective tool to obtain robust thematic maps.

The Boruta feature selection algorithm showed promising results on seagrass habitat
mapping [23,66]. The results confirmed the usefulness of applying this feature selection method in
seagrass habitats mapping [47]. The multiresolution segmentation scale requires careful adjustment of
the value and represents a very important setting for correct classification by OBIA and has a significant
impact on the results of seagrass habitat classification [48]. Multiresolution segmentation represents
a very important step in the whole process, so defining the wide range of parameters, first of all,
the scale factor, the shape, the Smoothness and Compactness, is of paramount importance since they
can determine the good progress of the classification. In this work, even if only five thematic classes
have been used (Fine sediment (FS), Coarse sediment (CS), Rock (R) P. oceanica meadows (P) and
Cystoseira (Cy), Figure 13), it has been necessary to increase the number of ground-truth data for
training and validation in order to improve the answers of the classification algorithms. In order to
obtain a relatively high number of ground-truth data, different sampling platforms have been integrated
and used, such as acquisitions with ASV, UAV, UTCS and direct observation and interpretation of
the backscatter and DEM data, obtained by the Multibeam acquisition (Figure 9). This integrated
technique could be useful to reduce the time and costs for the acquisition of ground-truth data.

The accuracy of habitat classification might be affected by multiple factors, including habitat
heterogeneity, bathymetry and water column attenuation [88]. This study highlights how the integration
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of satellite imagery with ultrahigh spatial resolution UAV aerial imagery and bathymetric acoustic
data shows a good performance in habitat classification [24]. The integrated multisource technique
represents, indeed, an improved solution to map benthic habitats with high degrees of spatial accuracy.
Therefore the higher the quality and spatial resolution of the data the better the performance of the
segmentation algorithm and resulting OBIA classification [45,83,88] and consequently the generation
of thematic maps. A high-resolution seabed classification map has been obtained for producing
high-quality habitat-classified maps (Multilayer data and UAVs data). Two maps (shallow and deep
water classified area) have been selected based on an accuracy assessment (shallow and deep water
classified area) and have been merged into a unique and complete habitat map (Figures 13 and 14).
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Figure 14. Seabed map classification of Cirella Island overlapped over high-resolution multibeam
bathymetry. The map shows part of the analyzed areas in order to provide an example of the mapping
outcomes. The inset at the bottom right shows the circular histogram of the wave directions and
significant wave height (Hs) plotted using the directional wave time series recorded from 1979 to
2009, from NOAA wave watch III model [89] for the Mediterranean Sea at the Lat 41.33◦ and Long
12.50◦ coordinates.

At this stage, in the shallow classification, the integration of Pléiades satellite image, bathymetric
and backscatter data has shown that the contribution of the optical component of the satellite data
alone did not confer any clear improvements in the classification procedure. Therefore, for future
implementations of the method, the team will evaluate how the different types of satellite sensors,
the different characteristics of satellite images, in terms of spatial and spectral resolution, can improve
the results of the multilevel classification.

Finally, the adopted methodological approach has proven its ability to extract information of
geomorphological data related to marine ecosystems from the coast to the deep areas, in a georeferenced
3D environment. This provides important geoinformation on the extension of the three-dimensional
coverage (area extensions and volumes) of the benthic macrohabitats necessary for the analysis of data
such as blue carbon.
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5. Conclusions

The integration of different methodological techniques (Multibeam, UAV, DEVS, UTCS and
multispectral image) represents a rapid and effective method for high-resolution seafloor and habitat
mapping from the coastline to deeper water. The geophysical and optical techniques, if correctly
processed, allow generation of high resolution integrated terrestrial and marine digital elevation
models that can also be used for the analysis of the physical environment both in the geological context
and in oceanographic modeling. Furthermore, these processed data can be used for time-lapse analysis
aimed to verify seabed changes, such as, the loss of seagrass habitats, migration of sediments (erosional
and depositional processes), as well as the anthropogenic impacts caused by fishing activities or
leisure boating.

The processing carried out from the multisensor (optical–acoustic) data fusion has significantly
improved the resolution of the mapping of the P. oceanica meadows mainly along the upper limit,
especially in shallower areas where data acquisition, performed with orthophoto UAVs image, are more
likely to be valid. The best results of the Object-based Image classification were achieved with combined
processing of DEM bathymetry, backscatter, secondary data and optical satellite data. The worst and
most inaccurate results of the Object-based classification were obtained when processing relied only
on Pléiades satellite image.

Based on the increasing use of thematic maps for habitat and the current interest in using
seagrass extension as a monitoring indicator, this digital cartographic method improves the quality
(limits of benthic facies) of the final maps, returning high-resolution products with high spatial and
thematic accuracy.

The integration of multiple acquisition methods (Satellite sensor, UAV, DEVS, UTCS and
Multibeam) allows to map the full extension of the P. oceanica meadows starting from very shallow
waters up to the lower limit; improves the performance of the cost-efficiency of the monitoring according
to the quality response of every single sensor (acoustic and/or optical), reduces the monitoring execution
time of the acoustic surveys with the Multibeam in very shallow water areas, which generally require
higher costs and more time to perform the surveys. This mapping technique may represent, within the
Marine Strategy Framework Directive (MFSD-2008/56/EC) and the EU Habitat Directive (92/43/CEE),
a valid methodology to determine the habitat extend and condition of P. oceanica meadows and to
quantify also the carbon sinks and capture rates of seagrass meadows.
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