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Abstract: Seaweeds comprise ca. 12,000 species. Global annual harvest is ca. 30.13 million metric
tonnes, (valued ca. $11.7 billion USD in 2016) for various commercial applications. The growing scope
of seaweed-based applications in food, agricultural fertilizers, animal feed additives, pharmaceuticals,
cosmetics and personal care is expected to boost market demand. Agriculture and animal feed
applications held the second largest seaweed market share in 2017, and the combined market
is anticipated to reach much higher values by 2024 due to the impacts of current research and
development targeting enhanced animal health and productivity. In general, seaweeds have been
utilized in animal feed as a rich source of carbohydrates, protein, minerals, vitamins and dietary
fibers with relatively well-balanced amino acid profiles and a unique blend of bioactive compounds.
Worldwide, the animal nutrition market is largely driven by rising demand for poultry feeds,
which represents ca. 47% of the total consumption for all animal nutrition. This review provides an
overview of the utilization of specific seaweeds as sustainable feed sources for poultry production,
including a detailed survey of seaweed-supplemented diets on growth, performance, gastrointestinal
flora, disease, immunity and overall health of laying/broiler hens. Anti-microbial effects of seaweeds
are also discussed.

Keywords: seaweed-supplemented feed; poultry; prebiotics; anti-microbial; gastrointestinal flora;
immunity; animal nutrition market

1. Introduction

Algae comprise around 25,000–50,000 species, with a diversity of size, forms, pigments and
functional compounds; ca. 12,000 of these are designated as macroalgae or seaweeds [1]. The global
annual harvest of macroalgae is almost 36 million metric tonnes, with a market size of approximately
$6 billion USD for various commercial applications. Global seaweed production is mainly carried
out in Asian countries, which accounts for over 99% of global production [2]. Seaweeds can have
high crop productivities per unit area as they do not require land and fresh water for growth,
with lucrative scope for commercialization [3]. Seaweeds are a source of unique bioactive metabolites,
which are not synthesized by terrestrial plants [4]. Bioactive molecules such as carbohydrates, proteins,
minerals, polyphenols, pigments (chlorophylls, fucoxanthins, phycobilins), mycosporine-like amino
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acids (MAAs) and polyunsaturated fatty acids (PUFAs), including omega-3 fatty acids, have been
attributed to various biological functionalities, such as anti-microbial, anti-viral, anti-inflammatory,
immunomodulatory, prebiotic and cholesterol lowering effects [5]. Globally, seaweed cultivation has
been growing rapidly, and it is currently produced in over 50 countries. According to the Food and
Agriculture Organization (FAO), approximately 30.13 million tonnes of seaweeds were harvested in 2016
for various applications including direct consumption, food production, hydrocolloids, fertilizers and
animal feed [6]. While seaweed bioactives are an appealing source for commercialization due to their
various high value applications, the utilization of this resource has not been completely optimized.

Seaweeds have been utilized in animal feed as a rich source of carbohydrates, protein, minerals,
vitamins and dietary fibers, with relatively well-balanced amino acid profiles and a unique blend
of bioactive compounds. Recent developments in feed processing technologies have improved the
nutritional quality of animal feed products [2,7]. The global market for animal feed additives and
nutritional supplements was valued at 54 billion USD in 2018 and is estimated to generate a net revenue
of 64 billion USD by 2025, growing at a compound annual growth rate (CAGR) of 2.7%. Worldwide,
the animal nutrition market is largely driven by a rising demand for poultry feed, which constitutes
about 47% of the total consumption [7].

There has been increasing interest in the market potential for functional feeds for livestock,
with added-value linked to the health benefits for farm animals. Increasing consumer awareness
regarding poultry meat quality, recent outbreaks associated with poultry diseases and the utilization of
poultry meat and egg products as economical sources of protein are the major driving forces amplifying
the animal feed additive market [8]. Worldwide, several seaweed companies, such as Aurora
(Edmonds, WA), MBD (Melbourne, Australia), Alltech (Nicholasville, KY), Cellana (Kailua-Kona, HI),
Ocean Harvest (County Galway, Ireland), Olmix (Bréhan, France), AquAgri (New Delhi, India) and
ASL (NS, Canada), have been commercially producing high value seaweed-based commercial feed
products for animal nutrition. These commercial products can potentially improve the health and
performance of livestock animals with reduced investments in feed.

This review provides an overview of the utilization of various specific seaweeds as sustainable
feed sources for poultry production. A detailed survey of seaweed-supplemented diets on growth,
performance, gastrointestinal flora, disease, immunity and overall health of laying/broiler hens is
presented. Conclusions drawn and potential future developments are also discussed, with the
expectation that this review may open new opportunities to investigate enhanced exploitation for the
potential of various, efficacious seaweeds, especially for sustainable growth in the poultry feed industry.

2. Effects of Various Seaweeds on Poultry Production

Collectively, the poultry industry has explored novel candidates of seaweeds as dietary
supplements. A major goal of introducing supplements into the poultry diet is to enhance the
efficacy of feed for the cost-effective production of commercially important meat and eggs, whilst also
maintaining and/or improving poultry health.

The concept of using seaweeds in poultry diets has been the subject of considerable research over
at least the past two decades in particular. In livestock feed, seaweeds function as sources of complex
carbohydrates, with prebiotic activities and pigments and polyunsaturated fatty acids, which are
known to be beneficial to animal health [9]. Multiple species of brown, green and red seaweeds,
either alone or in combination, are already being commercially used in the U.S. and Canadian poultry
markets. The chemical compositions of different seaweeds are indeed highly variable, being dependent
on the species, time of collection and habitat, temperature and light intensity as well as nutrient
concentrations in their habitat and seawater. Brown seaweeds contain a range of bioactive compounds;
however, they generally have lower nutritional value than red and green seaweeds. Brown seaweeds
are rich in minerals (14%–35% dry matter) and some can accumulate iodine over 30,000 times higher
than that found in seawater (1500–8000 ppm vs. 0.05 ppm, respectively) [10]. Red seaweeds may
be rich in proteins (10%–50% dry matter) and contain lower levels of iodine (0.03%–0.04%) [10,11].
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Green seaweeds such as Sea Lettuce (Ulva spp.) may contain higher amounts of proteins (up to 15%)
as compared to brown seaweeds. Green algae are rich in total fiber (290–670 g/kg), with a high content
of both soluble and insoluble fibers [12].

For the production of seaweed meal, the post-harvesting steps must be performed quickly in order
to avoid contamination, primarily by molds. Seaweeds are usually dried and ground to fine particles
(300 and 900 µm) for supplementation in poultry meals. Drying of seaweeds should not exceed
50–70 ◦C in order to protect the bioactivity of the functional metabolites contained therein [13,14].
The purported health benefits for the inclusion of seaweed meal in poultry diets are explained below.

2.1. Broiler Health

2.1.1. Green Seaweeds

The ubiquitous green seaweed Ulva spp. has been studied extensively as a substitutional feed
ingredient in the diets of broiler chickens. The replacement of corn with 3.0% U. lactuca in the diets
of male broilers, from days 12–33 post-hatch, improved the yield of breast muscle and dressing
percentage and showed a numeric improvement in body weight gain (BWG) for birds fed 3% vs. 1%.
These enhancements were attributed to the availability of soluble fibers and essential sulphur-containing
amino acids including methionine and cysteine [15]. Inclusion of 3.0% U. lactuca significantly reduced
abdominal fat (i.e., related to cholesterol and triglycerides) in treated birds. However, production
parameters including feed intake (FI), BWG and feed conversion ratio (FCR) were the same in treated
birds as in the control group. Lower inclusion levels of U. lactuca of up to 3% did not demonstrate toxic
or anti-nutritive effects on broiler health [15]. However, the inclusion of 4% and 6% of U. rigida—as a
prebiotic feed additive in a broiler diet was found to improve FI, FCR and mortality. In addition, blood
serum total cholesterol and triglyceride levels were lower in Ulva-fed birds over the controls. Intestinal
histo-morphology (Figure 1), including villi width, height, and length, was greater in birds fed U. rigida
feed as compared to basal diets.
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Figure 1. Histo-morphological parameters, including villi height, villi width, mucosal depth and crypt
depth, for a histology section (0.5 µm thick, stained using haematoxylin and eosin staining using
the procedure of Drury and Wallington (1980) and the Tissue-Tek® DRS™ (Sakura Finetek USA Inc.,
Torrance, CA, USA)) prepared at the ileocaecal junction region of the gastrointestinal tract (GIT) in a
laying hen (Lohmann Brown Classic, 67 weeks) (Original figure by G.K.).

The prebiotic effects of U. rigida were similar to other prebiotic feed supplements including
BIO-MOS® and inulin [16]. An increased intestinal villi length resulted in both a larger intestinal
surface area and increased activity of the brush-border enzymes, leading to an increased surface
area for absorption and digestive capacity [17]. Serum total cholesterol and triglyceride levels were
significantly lower in Ulva treatments as compared to controls [17]. The differences in outcome of
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these studies with dietary inclusion of Ulva spp. may be attributed to factors such as the amount of
seaweed supplemented, the purity of the seaweed, drying method, particle size, various methods of
meal preparation and differences between species. All these variables should be considered in the
construction of any seaweed-derived meal. However, it seems to be a common feature that levels of
inclusion in the diet are generally low (up to 6%). The seaweeds are not feed replacers in their own
right, but they work (perhaps synergistically) to improve bird health and resistance to disease and,
therefore, help them to grow faster, with better quality when added at lower rates as supplements
or prebiotics.

2.1.2. Brown Seaweeds

Brown algae are rich in functional polysaccharides such as alginates and fucoidans, which are
known to have various biological activities including anti-coagulant, anti-inflammatory, anti-viral and
anti-tumoral properties. These seaweed components have been evaluated as feed additives to improve
broiler performance. For example, by-products of the brown seaweed Undaria pinnatifida have been
evaluated as a dietary supplement in broiler diets. Seaweed by-products, which are components of
thalli (plant components that lack differentiation into distinct parts such as stem, leaves and roots) and
which do not grow from an apical point, are not consumed as food. Brown seaweed by-products, at an
inclusion level of 0.5% in broiler diet, resulted in higher BWG, improved blood serum profile, immune
response and a reduced mortality rate as compared to a control diet [18]. Basal diet supplementation
with 100 and 200 mg/kg of a fucoxanthin extract increased catalase (CAT), superoxide dismutase (SOD)
activities and glutathione (GSH) levels and decreased malondialdehyde (MDA) levels in the liver,
breast and drumstick tissues. These results were taken to demonstrate that fucoxanthins could be used
to regulate the antioxidant metabolism and improve the immune system of broilers [19].

It is well documented that the antioxidant status of birds plays an important role in their resistance to
various infections, maintenance of health and production and reproductive performance [20]. In another
study, dietary supplementation with polymannuronate (a brown seaweed derivate), at inclusion levels
of 0.1%, 0.2%, 0.3% and 0.4%, altered the cecal microbiome, increased the concentration of lactic and
acetic acid in the cecum and improved broiler chicken performance (i.e., average daily gain (ADG), FCR,
antioxidant capacity and immune status) compared to the control diet [18]. This indicated that brown
seaweed-derived compounds can improve the immune status, antioxidant capacity and performance
of broiler chickens.

The addition of Ascophyllum nodosum (A. nodosum, 0.05% of feed) to broiler feed reduced the effect
of prolonged heat stress while not negatively affecting growth and feed conversion, indicating that
this type of feed supplementation can be used to improve bird welfare during heat stress events in
poultry production [21]. Due to climatic change, meteorological events causing heat stress are of
increasing occurrence. Moreover, poultry production is often carried out in regions of the globe where
temperatures can reach 50 ◦C; the costs of cooling would be difficult to pass on with tight margins.
Hence, the addition of A. nodosum at low inclusion levels in the diets of poultry birds can reduce the
requirement (and therefore the associated cost) of cooling poultry barns, as well as the consequences of
heat-associated increased mortality and lost production.

The nutritional value of various brown seaweeds of the genus Sargassum spp., applied in different
formats including raw or thermally treated (i.e., boiled and autoclaved), were evaluated in broiler
diets at 2%, 4% and 6% inclusion levels. However, the inclusion of raw or thermally treated seaweeds
showed no significant effects on carcass characteristics. In contrast, the blood plasma profiles of treated
birds were significantly altered, including elevated plasma high density lipoprotein (HDL) and reduced
total cholesterol concentrations as compared to the control birds [22].

A recent study by Kumar (2018) demonstrated the effects of dietary supplementation of Sargassum
wightii in broiler diets. Dried S. wightii powder at 1%, 2%, 3% and 4% improved BW, FI, FCR and
meat quality of broilers. Dietary inclusion of 1% and 2% Sargassum reduced both blood plasma
cholesterol and globulins and also improved total serum proteins, albumin, calcium, phosphorous and
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triglyceride levels in treated birds. Results from this study indicated that inclusion of 1% or 2%
Sargassum powder had the optimal supplementation effects. Sargassum improved dietary palatability
whilst resulting in higher FI and enhanced digestibility and intestinal absorption, leading to improved
BWI, as compared to controls. A higher FCR subsequently improved meat quality and carcass yield
in treated birds, leading to cost efficiency. Active ingredients from Sargassum, including saponins,
hemicelluloses, mucilage, tannins and pectin, were implicated as altering blood low density lipoprotein
(LDL)-cholesterol by inhibiting bile salts [23]. Beneficial effects in broilers might also be attributed to a
rich content of minerals, vitamins, long-chain fatty acids, essential amino acids, sterols and fucoidans
in S. wightii. The degree of enhancement of broiler performance with dietary inclusion of Sargassum
supplement can be attributed to factors such as amount supplemented, the purity of the seaweeds used
and differences in seaweed meal preparation (drying and particle size). Tasco®, a branded product
made simply from rapidly sun-dried A. nodosum, has been demonstrated as a prebiotic for broilers and
can be used as an alternative to antibiotic growth promoters. Addition of Tasco® improved the growth
and performance of broilers at very low inclusion levels (0.25% and 0.5%), thus increasing its cost
effectiveness (and enabling the use of the term “super-prebiotic”). Tasco® displayed improvements
in growth comparable to the positive control inulin (a standard prebiotic derived from chicory) and
the antibiotic virginiamycin. Tasco® showed effectiveness in the lower gastrointestinal tract (GIT)
by altering the pH of the intestine, intestinal histo-morphology and bursa and cecal relative weights,
indicating its fermentation in the lower GIT by beneficial microflora [24].

2.1.3. Red Seaweeds

Red seaweeds including Chondrus crispus (Irish moss) and Palmaria palmata (dulse) have high
nutritive values and have been considered to be highly palatable to poultry and ruminant animals.
Dried red seaweeds, e.g., Polysiphonia spp. (up to 3%), were shown to serve as an intermediate source
of protein to growing broiler chicks. Polysiphonia contains elevated levels of proteins (i.e., 32.4%) and
minerals as required by rapidly growing poultry. However, inclusion had no significant effect on
overall growth performance [14]. Calcified seaweeds can function as an alternative source of dietary
calcium, which resulted in increased bone health and reduced leg weakness and lameness as compared
to calcium obtained from limestone. The inclusion of the calcareous marine algae (CMA, at 0.45%, 0.6%,
0.75% and 0.9%) reduced both feed intake and bird growth, with a negative impact on bone strength,
since tibia ash and phosphorus levels were lower in birds fed with calcium (0.9%) from CMA. However,
ileal calcium digestibility had a linear increase in birds fed with 0.45% CMA [25]. Higher dietary calcium
from limestone decreased phosphorous digestibility in broilers, which was shown to be improved by
the inclusion of lower concentrations of calcified seaweeds [26,27]. Inclusion of P. palmata (1.8%) in
broiler diets improved body weight and increased beneficial bacteria (e.g., Lactobacillus) in the ileum,
serum IgA and ileal villus width, height and surface area [28]. Feed supplementation with Kappaphycus
alvarezii (AF-KWP) improved body weight gain and feed intake and increased the haemagglutination
(HA) titre and cell-mediated immunity (CMI) levels. Inclusion of 1.25% AF-KWP in a broiler diet
positively affected performance, immunity and breast yield in broiler chickens [29]. Dietary inclusion
of the commercial red seaweed, dulse (P. palmata) (Organic Whole Leaf-Dulse, Vitaminsea®) at 0.15%
showed beneficial effects on growth performance, cooking loss, drip loss, diarrhea score and the fecal
microbiome (i.e., it significantly reduced the relative abundance of pathogenic bacteria including
E. coli and enhanced beneficial bacteria including Lactobacillus) [30]. A similar response of decreased
“shedding” of intestinal E. coli O157:H7 was observed in beef cattle when sun-dried Ascophyllum nodosum
seaweed (i.e., Tasco-14™) was added to their diets. Administration of Tasco-14™ at a level of 20 g/kg
diet for 7 days was effective at lowering both the duration and intensity of E. coli O157:H7 fecal shedding
by cattle [31]. These beneficial effects can be due to the presence of dietary sulphated polysaccharides
in seaweeds. Similarly, economically viable seaweeds can be administered to pre-slaughter chickens in
order to evaluate reductions in the shedding of pathogenic bacteria.
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2.2. Health of Laying Chickens

2.2.1. Green Seaweeds

Ulva prolifera and Cladophora sp. are enriched in micro-elements including Cu(II), Zn(II), Co(II),
Mn(II) and Cr(III), and improved the average body weight of treated laying hens, resulting in a higher
average egg weight and eggshell thickness vs. the controls. Laying hen diets supplemented with
seaweeds enriched with micro-elements also resulted in higher microelement transfer to eggs and
enhanced the colour of yolk [32]. Inclusion of U. prolifera at 1%, 2% and 3% improved immune function,
egg production and egg quality (egg weight, shell thickness and yolk colour) whilst also reducing and/or
improving the feed conversion ratio and yolk cholesterol. In addition, the abundance of beneficial
microbes, including Bifidobacterium and Lactobacillus, was significantly increased in the feces of laying
hens as compared to control groups, indicating better animal health [33]. Ulvan (i.e., a sulphated
polysaccharide extract from the green seaweed Ulva), when added to diets of brown laying hens at
0.5%, 0.8% and 1%, enhanced the function of the small intestine and regulated the digestive system,
resulting in improved egg production, egg weight and FCR. This could be of great benefit to poultry
farmers, as ulvan did not increase the feed intake but enhanced the egg weight [34]. It is possible that
other sulphated polysaccharides (from brown and red seaweeds) have similar functionalities, but this
remains to be investigated.

2.2.2. Brown Seaweeds

Incorporation of 10% Macrocystis pyrifera (giant kelp) in meal enriched with n-3 FA from fish
oil in the diets of 35-week-old Leghorn hens effectively increased egg n-3 FA content, albumen
height and yolk colour [35]. Sensory evaluation of these eggs revealed that flavour was not affected
by the treatment. In another study, the effects of different concentrations of brown algae (BMA,
Sargassum dentifebium, 3% and 6%) prepared using different methods (i.e., sun-dried, SBMA; boiled,
BBMA; autoclaved, ABMA) on egg profiles were reported. Inclusion of 3% or 6% BMA meal in the
laying hen diet significantly reduced plasma cholesterol, as well as yolk cholesterol and triglycerides,
whilst also improving the total palmitic acid, carotene, lutein and zeaxanthin levels in eggs [36].
By-products from Undaria pinnatifida and Hizikia fusiformis (0.5%) were shown to improve egg laying
performance and relative organ weights, particularly the liver and cecum, over those of the control
group. This study demonstrated that supplementation with seaweed by-products resulted in superior
bird health [37]. Dietary supplementation by the commercial brown seaweed Ascophyllum nodosum,
trademark name Tasco® (at 0.25% and 0.5%), significantly enhanced egg weight, shell weight and
yolk colour in eggs from Lohmann Lite hens (age = 70 weeks). Hens fed a diet with 0.25% Tasco®

had significantly larger eggs and shell weight as compared to hens fed 0.5% and the control diets,
indicating that lower inclusion levels of Tasco® enhanced both productivity and economic efficiency in
poultry production [38].

2.2.3. Red Seaweeds

Inclusion of red seaweeds, e.g., Chondrus crispus (CC, 1%) and Sarcodiotheca gaudichaudii (SG, 2%),
in standard poultry diets improved FCR and egg quality parameters. The SG and CC groups showed
greater height and surface area of villi as compared to the control birds. Seaweed supplementation
also increased the abundance of beneficial gut bacteria, e.g., Bifidobacterium longum (4-14-fold) and
Streptococcus salivarius (4-15-fold), and reduced the prevalence of Clostridium perfringens. Additionally,
the concentration of short chain fatty acids, including acetic acid, propionic acid, n-butyric acid and
i-butyric acid, were significantly higher for both CC and SG treatments [39]. Gracilariopsis persica meal
fed at 50 gm/kg (5%) significantly lowered the levels of cholesterol and malondialdehyde in egg yolk
vs. control birds [40]. Dietary inclusion of the red seaweed Kappaphycus alvarezii (1.5%) significantly
reduced egg laying age and improved production parameters and egg quality traits (egg production,
egg weight, shell thickness) in laying hens [41]. Taken together, these studies suggest that dietary



J. Mar. Sci. Eng. 2020, 8, 536 7 of 28

supplementation with selected red seaweeds as a potential prebiotic source is associated with improved
performance, egg quality and overall gut health in laying hens.

3. Novel Formulations of Seaweeds for Poultry Health

Processing/modification of seaweeds can improve the bioavailability of their active components
in poultry feed, thereby impacting both the digestibility and performance of chickens. The following
strategies have been reported to improve feed efficiency and palatability of seaweeds in livestock
feed. The drying and pre-treatment phases are very important for the maintenance of seaweed quality
during storage.

3.1. Mechanical Approach

Feed processing methods include drying, cooling, pelleting, cooking, vacuum coating, steam
exploding and extruding. These processes are utilized in order to be cost-effective (provide target
nutrient at least/best cost) and to improve digestibility and feed efficiency in chickens. Feed technology
has advanced from basic mixing of a mash feed to more innovative preparations involving physical
and hydrothermal processing operations. In a commercial setting, feed processing includes single
or multiple processing of feedstuffs in order to meet objectives. Poultry diets are manufactured
using a combination of technologies such as grinding with hammer and/or roller mills, along with
hydrothermal processing including pelleting, expansion or extrusion. The major advantages of feed
processing are the improved availability of nutrients, destruction of inhibitors and toxins and reduction
of feed wastage [42].

3.1.1. Size Reduction

The particle size of feed in the diet plays an important role in the development of the digestive
tract and regulation of feed intake by birds. Birds consuming larger particle-size feed develop larger,
more muscular gizzards and longer intestines. In addition, larger feed particles require more time
for breakdown in the gizzard and intestine (Figure 2), resulting in longer microvilli and an increase
in surface area, thus positively affecting digestibility and absorption [43]. Raw seaweeds are mainly
dried and ground to pass a 0.3–1.0 mm mesh screen using a Wiley mill or grinders. Size reduction by
grinding is the most economical method utilized in poultry feed preparation.

3.1.2. Extrusion

Feed extrusion is a combination of heat, shear and compressional forces utilized to produce
strongly bonded and porous pellets. Feed prepared by extrusion with Chondrus crispus (0.5%–3%)
had no effect on either egg quality or production parameters, indicating that minimal processing by
simple grinding was satisfactory compared to the added cost of mechanical processing [38]. Birds fed
on the 3% Chondrus diet produced larger and heavier eggs, but no other significant differences were
observed in 3% vs. 1% and/or 2% inclusion. Hence, the recommended levels of Chondrus crispus
supplementation to laying hen feed were 1%–2%, which is also more cost-effective. On the other hand,
the recommended level of Tasco® (air dried, brown seaweed Ascophyllum nodosum) in laying hen feed
was 0.25%, which is predicted to be the most cost-effective.

3.2. Additive/Synergistic Approaches

3.2.1. Biological Treatment by Fermentation

In poultry, feed processing by fermentation can produce functional feeds which are formulated to
improve the gut microbiome, health and performance. Major functional ingredients introduced by this
treatment include higher numbers of lactic acid bacteria, a reduced pH and high concentrations of
organic acids. These features protect the feed from microbial contamination during storage [45,46].
Fermentation enhances the antioxidant, anti-coagulant and anti-inflammatory effects of seaweeds,
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and it also increases the stability of feed during storage. In addition, beneficial microorganisms used
in microbial fermentation can have probiotic effects on poultry performance. Thus, fermentation of
seaweeds by probiotic bacterial strains could introduce synergistic effects [47]. Feed supplementation
with fermented brown seaweeds, e.g., Undaria pinnatifida (0.5%), improved the weight gain, feed:
gain ratio and immune status of broiler chickens as compared to controls. Blood serum profiles
including glutamic pyruvate transaminase (GPT) and concentrations of immunoglobulins (IgA and
IgM) were significantly higher in fermented seaweed treatments than their controls. However, the IgG
titers were decreased as compared to controls [18]. These observations indicated that fermentation of
these dietary seaweeds by Bacillus subtilis improved the growth performance and immune profile in
broilers [18]. Conversely, the same authors concluded that supplementation with fermented seaweeds
had no beneficial effect on laying hen performance. Bacterial fermentation was proposed to result in
depletion of oligosaccharides, which would decrease the positive supplementation effect of seaweeds
as prebiotics [37]. Altering the conditions/environment during fermentation by adding acidifiers,
e.g., organic acids, concentrated starter lactic acid bacteria (LAB) strains or enzymes, can speed up
the fermentation processes as well as improve the functional characteristics and palatability of the
final product [48]. With improved palatability, feed intake by chickens can be increased, leading to
positive effects on growth performance, gut microbiome and morphology. Clearly, whilst promising,
further work is required in this fledgling area of application.J. Mar. Sci. Eng. 2020, 8, 536 8 of 32 
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3.2.2. Botanical Blends

Seaweeds can be used in combination with other natural bioactives including essential oils,
green tea and anti-microbial peptides. Such combined products function as botanical alternatives to
chemicals and antibiotics, for use in certifiably organic poultry production. For example, a combination
of the green alga Ulva (cited as Enteromorpha) (10%) and sardine oil (2%) provided a source of
antioxidants in the laying hen feed and also enhanced the DHA (docosahexaenoic acid) levels in
eggs [49]. Similarly, the brown algae Macrocystis pyrifera and Sargassum sinicola (administered at 10%)
enhanced the EPA (eicosapentaenoic acid) content of the eggs. In general, eggs can be conserved at
4 ◦C; however, the concentration of fatty acids declines with increasing storage time. The inclusion of
sardine oil in the diets of laying hens was observed to increase the n-3 polyunsaturated fatty acids
(PUFAs) content of eggs; however, n-3 PUFAs are more sensitive to oxidation, resulting in rancidity in
the final product and leading to reduced shelf life. [49]. Thus, it can be inferred that supplementation
of laying hen diets by selected seaweeds, in combination with essential oils, can produce enriched eggs
with improved shelf life. In another study, co-supplementation of a laying hen diet with green tea
(at 0.1% and 0.2%), combined with red and green seaweeds (also at 0.1% and 0.2%), led to improved egg
production, egg quality and physiological and immunological performance of late phase laying hens [50].
Co-supplementation with dietary Laminaria japonica (brown seaweed) powder (3%) and anti-microbial
peptide (300 mg cecropin/kg, 0.03%) significantly improved growth performance (i.e., increased FCR)
and immune function (serum Newcastle disease antibody titers and lymphocyte numbers) in broilers.
In addition, the same co-supplementation reduced E.coli and increased Lactobacillus levels in the cecum
of broiler chickens, indicating the potential use of L. japonica powder and cecropin as an alternative to
antibiotics in broiler production [51].

Algae-based antioxidant supplements containing selenium yeast (EconomasE®, Alltech Inc.,
Nicholasville, KY, USA), when added to broiler diets, significantly improved the meat quality attributes,
including water holding capacity, tenderness, colour and pH; thus, EconomasE® can be used as a
nutrient supplement in broiler diets [52]. Contamination by mycotoxins as a result of the spoilage of
the feed results in undesirable health effects and a decline in the rate of egg production, with adverse
economic effects. Hence, control of fungal development and mycotoxin production are critical for feed
and animal producers. Addition of EconomasE® (2 gm/Kg, 0.2%) to mycotoxin-contaminated corn
diet was demonstrated to partially improve the production performance (FCR) in broiler chickens [53].
Mycotoxins such as aflatoxins (AF), ochratoxin A (OTA), fumonisins (FUM), deoxynivalenol (DON)
and T-2 toxin adversely affect the health and productivity of poultry. It was suggested, but not fully
tested, that Tasco® or dried Ascophyllum meal could have mycotoxin-binding effects [53].

3.2.3. Algal Clay

Seaweed containing feed supplement MFeed+® Olmix, Brehan, France, has been developed by
associating algal extracts (Ulva sp. and Solieria chordalis) with clay (bentonite) for use in livestock diets.
Clays contain layered mineral materials organized in a succession of aluminum and silica-based sheets.
Some seaweeds contain high levels of trace mineral ions (e.g., iron, zinc, copper, titanium) that can
function as co-factors for enzymes and so improve their activities. Moreover, clay has been shown to
slow down the transit time of feed in the intestine, thereby increasing digestion and resulting in better
feed efficiency and nutrient uptake [54]. Such effects of clay have also been established in pigs [55].

In broilers, supplementation with a clay mix improved the weight gain and feed efficiency
(feed intake and growth). Seaweeds in the clay mix introduced trace mineral ions into the diet,
which improved the activity of some digestive enzymes and resulted in increased growth performance
of the broilers fed on the supplemented diet. Algal clay (0.1%) can be incorporated to reduce the
cost of feed while still maintaining a productive performance in broilers [56]. An algal clay-based
product (i.e., MT.X+®, Olmix product) added to the diet prevented the negative effects of mycotoxin
contamination on performance and productivity in broilers, at both experimental and commercial
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scales. The product improved the production efficiency factor by 10% and the return on feed cost by
36% when compared with the control [57].

In 2016, the European Food Safety Authority (EFSA) Panel on Additives and Products or Substances
Used in Animal Feed (FEEDAP Panel) delivered a scientific opinion on the safety and efficacy of an
algal/clay mix for animal consumption [58]. The panel concluded that the additive product, composed
of feed-grade bentonite and selected seaweeds, was considered safe for livestock (e.g., piglets, cows and
chickens) consumption, at a maximum recommended dose of 124 mg/kg (0.0124%) of complete feed.
The additive product is considered non-genotoxic (bentonite is not absorbed from the gut lumen and
the seaweeds were shown to have beneficial effects in humans) and were safe for animal nutrition and
for consumers [58].

4. Anti-Bacterial and Anti-Viral Effects of Various Seaweeds on Disease in Poultry Production

The use of seaweeds as anti-infective agents in commercial livestock production has gained
interest due to an increase in antibiotic-resistant bacterial strains and increasing consumer concerns
regarding drug residues in animal meat. Seaweeds are a rich source of dietary fiber, minerals,
vitamins, proteins, phlorotannins and carotenoids [59]. Seaweeds in poultry diets enhance gut
microbiota, as the algal biomass remains mostly undigested in the lower GIT, and therefore
act as substrates for bacterial fermentation [60]. Red and brown seaweeds have prebiotic-like
properties that alter the metabolic activities of beneficial microflora and reduce the prevalence
of pathogenic bacteria [61]. Moreover, a carbohydrate fraction extracted from the red seaweed
Gracilaria persica exhibited direct anti-microbial effects against six bacterial pathogens including
Staphylococcus aureus, E. coli, Methicillin-resistant Staphylococcus aureus (MRSA), Salmonella typhimurium,
Pseudomonas aeruginosa and Aeromonas hydrophila and induced a humoral-immune response against
sheep red blood cells (SRBC) [62]. Likewise, phlorotannin extracts isolated from two brown seaweeds
A. nodosum and Fucus serratus were effective at killing three foodborne pathogens, E. coli O157,
Salmonella agona, and Streptococcus suis, without negatively affecting the pig intestinal cells (in vitro) [63].
Water extracts of the red seaweeds Gelidium latifolium, Hypnea musciformis, Jania rubens, Jania spp. and
Laurencia obtusa showed significant in vitro anti-microbial activities against pathogenic, Gram-negative
bacteria, including E. coli, Klebsiella spp. and P. aeruginosa [64]. Moreover, sulphated galactans
and carrageenans from an aqueous extract of the calcareous red alga Corallina sp. possessed
bactericidal activity against pathogenic Gram-positive bacteria including Enterococcus faecalis and
Staphylococcus epidermidis. Taken together, these studies indicate that the organic and polysaccharide
fractions of selected red seaweeds can function directly as anti-microbial components in poultry diets.
In addition, seaweed polysaccharides such as carrageenans, sulphated proteoglycans, and dextran
sulphates have been reported to possess a broad spectrum of anti-viral activities [65–69]. A number of
sulphated polysaccharides are potent inhibitors of paramyxoviruses, including parainfluenza virus,
respiratory syncytial virus, mumps virus, measles virus, Newcastle disease virus (NDV) and distemper
canine virus [68,70–73]. The aqueous extracts of the red alga Schizymenia dubyi with the highest
sulphate content were effective in inhibiting HSV-1 replication at an EC50 = 2.5–80 µg/mL without
cytotoxic effects. Methanolic and 2,3,6-tribromo4,5-dihydroxybenzyl methyl (TDB) ether extracts
isolated from the red alga Symphyocladia latiuscula exhibited anti-viral activities against wild type HSV-1
and acyclovir (ACV) resistant-HSV-1 (IC50 values of 5.48, and 4.81 µg /mL, respectively). Daily oral
administration of the methanolic and TDB extracts delayed the appearance of lesions in infected
mice, without toxicity [74]. Similarly, lambda-carrageenans from the red seaweed Gigartina skottsbergii
(Gigartinaceae) displayed anti-viral activity against animal viruses belonging to the Alphaherpesvirinae
sub-family BoHV-1 (bovine herpesvirus type 1) strain Cooper and SuHV-1 (suid herpes virus type 1)
strain Bartha [75]. These results indicated that seaweed components, primarily polysaccharides, have
potential as anti-viral agents in poultry diets. Table 1 describes recent studies of the use of various
seaweeds as anti-microbial (bacterial, viral, plasmodial, etc.) in poultry diets in order to improve
animal health and performance.
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Table 1. Use of seaweeds (SW) as anti-microbials in poultry diseases.

Macroalgae B = Brown
R = Red G = Green

Level of Inclusion
in Feed Anti-Microbial Response/Poultry Disease Reference

Laminaria japonica (LJP) (B)
and anti-microbial peptide

cecropin

Laminaria japonica
LJP:1%, 3% and 5%;

Cecropin: 0.03%

Anti-bacterial and anti-viral activities were
observed with dietary supplementation of broiler
diets with LJP + cecropin, which increased feed
conversion ratio (FCR), and serum Newcastle
disease antibody titers and lymphocyte numbers.
In addition, birds fed with LJP showed
significant inhibition of E. coli counts and
increase in Lactobacillus counts in ceca.

[51]

Ascophyllum nodosum (B) 0.05% and 0.1%

Anti-bacterial activity.
A. nodosum reduced C. jejuni counts in the
caecum of chicks (10 days old), at both
concentrations, but decreased the growth
parameters (disruptive effect on gut morphology
in ileum). Significant increases in the expression
of tight-junction genes OCLN and CLND-1
alongside increases in MUC2 and
CCND1 expression.

[76]

Chondrus crispus and
Sarcodiotheca gaudichaudii (R) 2% and 4%

Anti-bacterial activity.
The incorporation of SW in the diets of Lohmann
Lite laying hens reduced the negative effects of
Salmonella enteritidis (SE) infection on body
weight and egg production.

[77]

Grateloupia filicina, (R) Ulva
pertusa (G) and Sargassum

qingdaoense (B)

In vitro, 20–500 mg/mL
of sulphated

polysaccharides SPs;
in vivo mouse model,
0.001% and 0.005% of

SPs per day

Anti-viral activity.
Sulphated polysaccharide extracts from all three
species showed immune-modulatory activities,
both in vitro and in vivo; S. qingdaoense showed
the best activity. All three SPs significantly
inhibited the activity of activated AIV
(H9N2 subtype) in vitro and inactivated avian
influenza virus (AIV) in vivo. Sulphated
polysaccharides from G. filicina showed the
strongest anti-AIV response.

[78]

Ulva clathrata (G) and
fucoidan

In vitro
0.1–1000 µg/mL

Anti-viral activity.
The ulvan and fucoidan extracts inhibited
Newcastle disease virus (NDV) in vitro and
showed no cytotoxicity at effective
concentrations. Ulvan inhibited viral fusion by
interacting with the intact F0 protein.
Ulvan exhibited better anti-cell–cell spread
activity than fucoidans, but a combination
showed more potent (synergistic) responses.

[79]

Highly soluble calcified
seaweed (HSC) (R) 0.6% and 0.9%

Anti-bacterial activity.
Broilers fed HSC diets had significantly higher
feed conversion/total weight than control birds.
Lower dietary Ca (0.6% vs. 0.9%) showed lower
mortality associated with necrotic enteritis (NE)
as compared to higher dose (0.9%) and on
bird performance.

[80]

Chaetomorpha antennina (G)
in combination with

mangrove species
Aegiceras corniculatum

(land plant)

In vitro: 0.5, 1.0 and
1.5 mg/mL

In vivo rat model:
0.02% per day

Parasite inhibition.
The extract mixture showed 60% suppression of
parasitaemia against Plasmodium falciparum at
1.5 mg/mL. Anti-plasmodial activity (50%)
against Plasmodium berghei was observed in vivo.

[81]

4.1. Mechanism of Anti-Microbial Activity of Seaweeds

4.1.1. Anti-Bacterial Mode of Action

Seaweeds are continuously exposed to a range of abiotic stresses such as desiccation, sunlight,
osmotic stress and extreme temperatures, as well as pathogenic microbes. In response, seaweeds have



J. Mar. Sci. Eng. 2020, 8, 536 12 of 28

developed protective mechanisms in order to combat and survive these stressful conditions [82].
They produce an array of unique bioactive compounds, including sulphated polysaccharides,
organic acids, pigments and phenolic compounds, which are responsible for a range of functionalities,
such as antioxidant, anti-microbial and anti-viral activities. For example, phenolic compounds
exhibit anti-microbial activity by permeabilizing the bacterial cell wall and releasing the intracellular
contents [83]. Other mechanisms of action of phenolic compounds against bacteria include interference
with nutrient uptake, impairment of protein and nucleic acid synthesis and disruption of electron
transport chains [83]. On the other hand, seaweed-derived polysaccharides can elicit defense
responses in the host which are similar to pathogen recognition (PAMP triggered immunity) [84].
Red seaweed-derived polysaccharides also exhibit anti-microbial activity because of their affinities
towards surface appendages of the bacteria. Anti-microbial activities of red seaweeds and their
extracted compounds on the poultry pathogen Salmonella Enteritidis (SE) have been linked with the
down-regulation of virulence factors, restricted motility and flagellar functions and also direct the
blockage of bacterial quorum sensing (Figure 3). Quorum sensing molecules such as auto-inducers
(acylated homoserine lactones, AHL) have been shown to facilitate virulence, motility and biofilm
formation in bacterial pathogens including Salmonella [85,86]. Previous studies have shown that some
red seaweeds contain quorum sensing inhibitors, such as brominated furanones, which are capable of
inhibiting bacterial biofilm formation and the regulation of flagellar and virulence genes, resulting in
bacterial growth inhibition [87,88].J. Mar. Sci. Eng. 2020, 8, 536 13 of 32 
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Figure 3. Illustration of modes of actions of selected red seaweeds, Chondrus crispus (CC) and
Sarcodiotheca gaudichaudii (SG). A. Direct anti-microbial effect: red algal extracts inhibited growth,
motility, biofilm formation and quorum sensing mechanisms in Salmonella Enteritidis. B. Protection of
Caenorhabditis elegans from infection by S. Enteritidis: both red seaweed extracts increased the survival
of infected worms by reducing S. Enteritidis colonization in Caenorhabditis elegans and enhancing the
immune response of the worms (redesigned from [89]).

Yeast cell wall-derived mannan polysaccharides have been shown to deactivate Gram-negative
pathogens such as E. coli and Salmonella by competitively binding to surface appendages such as
the fimbriae and flagella. In the intestine, the adherence of pathogens to polysaccharides such as
mannans reduces their ability to attach to epithelial cells, which results in the complete clearance of
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pathogenic bacteria from the gut without colonization [90]. Seaweed polysaccharides, with their ionic
properties, have been shown to exhibit anti-bacterial activity against Gram-negative bacteria. For
example, the anti-microbial activity of alginic acid (from brown seaweeds) against E. coli has been
attributed to its polyanionic nature [91].

Another mechanism by which red seaweeds reduce the colonization of S. Enteritidis in the ceca of
laying hens has been attributed to the attenuation of the virulence factors of SE (Figure 4). One study
demonstrated that C. crispus (CC) and S. gaudichaudii (SG) water extracts reduced the relative expression
of virulence factors of SE in vitro and decreased the colony count of SE in the intestine of C. elegans.
Water extracts of seaweeds (CC and SG) significantly increased the survival of C. elegans infected
with SE and reduced the accumulation of SE in C. elegans gut. A decrease in the colonization of SE
in C. elegans was likely due to (i) a significant reduction in expression of virulence-associated genes
of SE; (ii) reduced ability of bacteria to attach to the surface of the intestinal epithelium of C. elegans;
(iii) induced immune response related genes of infected C. elegans. The modes of action of these red
seaweeds to reduce Salmonella colonization in the model organism (C. elegans) were also effective when
added to the feed of laying hens. The virulence factors of S. Enteritidis, which are known to be essential
for the colonization of the intestinal tract in C. elegans, can be critical for SE colonization in poultry [92].J. Mar. Sci. Eng. 2020, 8, 536 14 of 32 
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Figure 4. Dietary inclusion of red seaweeds in laying hen diets was observed to suppress the negative
effect of SE on laying hen growth and performance. Various mechanisms included direct inhibition
(bactericidal) of bacterial colonization of feces and ceca, competitive exclusion (i.e., reduction of E. coli
titers) by beneficial bacteria such as Lactobacillus acidophilus and immune stimulation. SCFA: short chain
fatty acid; GALT: gut-associated lymphoid tissue (Original figure by G.K.).

4.1.2. Anti-Viral Modes of Action

Polysaccharides and other bioactive functional molecules in seaweeds display anti-viral activity
against a range of viruses by interfering with different stages of viral attachment, penetration and
infection (Figure 5). Seaweed polysaccharides, such as carrageenans and galactans from red seaweeds,
target viral attachment stages by either directly interacting with the virion or mimicking the binding of
virus associated proteins (VAP) to the respective receptors [75,93]. Moreover, marine polysaccharides
can also block the allosteric processing of the viral capsid during the internalization process and
uncoating of the virus. For example, carrageenans inhibit viral attachment as well as its internalization
and uncoating; ulvans inhibited fusion of Newcastle disease virus by blocking the cleavage of intact
protein F0 into the mature form [79]; fucoidans inhibited viral infection by direct interaction with
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envelope glycoproteins [71]. Seaweed polysaccharides can also improve the host anti-viral immune
response; for example, fucoidan can stimulate both specific and non-specific responses such as the
activation of NK cells, maturation of dendritic cells (DCs) and activity of cytotoxic lymphocytes, as well
as the ability to produce antigen-specific antibodies and memory T cells under in vitro and in vivo
conditions [94].J. Mar. Sci. Eng. 2020, 8, 536 15 of 32 
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Figure 5. Mechanisms of anti-viral inhibition by seaweed polysaccharides. Seaweed polysaccharides
display anti-viral activity against a range of viruses by interfering with different stages of viral
attachment and replication as well as by improving host immunity (redesigned from [95]).

5. Use of Prebiotics in Poultry Production

The term prebiotics is defined as “a non-digestible food ingredient that affects the host by selectively
stimulating the growth and/or activity of one, or a limited number of bacteria, in the colon” [96–98].
From a food safety perspective, prebiotics function as preventative agents which can modulate
gastrointestinal microbiota in order to benefit the host and serve as a barrier to pathogen colonization.
In poultry, prebiotics can induce a direct effect on birds by priming the host immune system or
an indirect effect by modulating the compositing and fermentation profile of the gastrointestinal
microbes [99]. Seaweeds must satisfy a number of criteria in order to be considered a prebiotic source:

(1) They should resist digestion by acid and enzymatic hydrolysis in the upper gastrointestinal
tract (GIT).

(2) They must have a selective function as a substrate for the growth of beneficial bacteria.
(3) They must be capable of altering the profile of the microflora.
(4) They must induce beneficial effects that boost the host immune system and overall health.

Seaweeds and their bioactive compounds, such as polysaccharides and phenolics, exhibit these
characteristics and can be considered prebiotic dietary supplements with gut health benefits. In poultry,
prebiotics have been shown to improve gastrointestinal health by providing a substrate for beneficial
bacteria within the gut microbiota of chickens [100]. The mode of action of most of prebiotics is by
one or more of the following mechanisms: lactic acid production, inhibiting/preventing colonization
of pathogens, modifying metabolic activity of normal intestinal flora and stimulation of the immune
system [101]. Major beneficial probiotic bacteria present in the gut microbiome of chickens include
Bifidobacteria, Lactobacillus, Ruminococcus and Streptococcus. These bacteria, which are present in the
small intestine, utilize non-digestible polysaccharides and fibers for energy [102]. These beneficial
bacteria can utilize seaweed polysaccharides and dietary fibers for energy and modulate the population
of disease-causing bacteria in order to improve metabolism (Figure 6).
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Figure 6. Modes of action of selected seaweeds as prebiotics for poultry health. Seaweeds are resistant 
to digestion in the upper gastrointestinal tract of chickens. After entering the colon, they are 
selectively fermented by beneficial microbiota, resulting in their increased numbers as well as the 
reduction of pathogenic bacteria by competitive exclusion. Beneficial microbes are known to produce 
short chain fatty acids and secrete anti-microbial peptides such as bacteriocins whilst also helping in 
the differentiation and proliferation of enterocytes, all of which improves epithelial growth in 
addition to exhibiting immunomodulatory effects (redesigned from [89]). 
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significantly from the proximal to distal segments. Bacterial abundance in a specific section of the 
GIT depends on their affinity to either enterocytes or to the mucus layer, tolerance to the GIT 
environment and also their resistance to the host immune system. Additional factors including the 
rate of passage of digesta, pH, nutrient digestibility and bioavailability and the presence of anti-
microbial peptides can modulate bacterial diversity in each segment of the GIT [103]. Dietary fibers 
and carbohydrates present in some seaweeds enhance the growth of certain beneficial bacteria, which 
leads to a cascade of biological functions which then impart beneficial effects on the health and 
growth of the host. Gut microbial fermentation of seaweed components, and their effects on the 
microbiome and metabolomics, are presented in Table 2. 

Various seaweed polysaccharides, including ulvans and mannans from green, fucoidans and 
laminarans from brown and carrageenans from red seaweeds have been associated with a range of 
health-promoting effects, such as prebiotic, anti-bacterial, anti-inflammatory and antioxidant 
functionalities. These polysaccharides are neither digested nor absorbed by the host, but they serve 
as a substrate for bacterial fermentation in the colon and thus impart beneficial effects on both animal 
and human health [104]. 
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Figure 6. Modes of action of selected seaweeds as prebiotics for poultry health. Seaweeds are resistant
to digestion in the upper gastrointestinal tract of chickens. After entering the colon, they are selectively
fermented by beneficial microbiota, resulting in their increased numbers as well as the reduction
of pathogenic bacteria by competitive exclusion. Beneficial microbes are known to produce short
chain fatty acids and secrete anti-microbial peptides such as bacteriocins whilst also helping in the
differentiation and proliferation of enterocytes, all of which improves epithelial growth in addition to
exhibiting immunomodulatory effects (redesigned from [89]).

6. Effect of Selected Seaweeds on the Gut Microbiome

The gastrointestinal tract (GIT) of chickens possesses a diverse bacterial population which varies
significantly from the proximal to distal segments. Bacterial abundance in a specific section of
the GIT depends on their affinity to either enterocytes or to the mucus layer, tolerance to the GIT
environment and also their resistance to the host immune system. Additional factors including the rate
of passage of digesta, pH, nutrient digestibility and bioavailability and the presence of anti-microbial
peptides can modulate bacterial diversity in each segment of the GIT [103]. Dietary fibers and
carbohydrates present in some seaweeds enhance the growth of certain beneficial bacteria, which leads
to a cascade of biological functions which then impart beneficial effects on the health and growth of the
host. Gut microbial fermentation of seaweed components, and their effects on the microbiome and
metabolomics, are presented in Table 2.

Various seaweed polysaccharides, including ulvans and mannans from green, fucoidans and
laminarans from brown and carrageenans from red seaweeds have been associated with a range
of health-promoting effects, such as prebiotic, anti-bacterial, anti-inflammatory and antioxidant
functionalities. These polysaccharides are neither digested nor absorbed by the host, but they serve as
a substrate for bacterial fermentation in the colon and thus impart beneficial effects on both animal and
human health [104].
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Table 2. Summary of prebiotic effects of different seaweed dietary fibers (in vitro and in vivo), including modulation of the gut microbiome and fermentation response.

Seaweed Source
Red (R), Brown (B)

or Green (G)
Component Type of Study/Level of

Inclusion Microbiome Modulation Metabolome
Modulation Other Responses Reference

Palmaria palmata (R) whole
seaweed

0.6%, 1.2%, 1.8%, 2.4%
and 3%.

In vitro in broiler
chickens

Method: Microbiology culture
techniques, 16SRNA amplicon

sequencing.
↑Bifidobacterium

↑ Lactobacillus (ileum)
↓ Clostridium perfringens

Not measured

Increasing trend in the size
of villus height, width,
villus surface area and
mucosal depth
↑ Plasma immunoglobulin
(IgA and IgG)
Best response: 1.8%

[28]

Chondrus crispus and
Sarcodiotheca

gaudichaudii (R)

whole
seaweed 0.5%,1% and 2%

Method: Real-time PCR.
↑Bifidobacterium longum, ↑Lactobacillus

acidophilus ↑Streptococcus salivarius
↓Clostridium perfringens

↑Acetic, ↑propionic
acid, ↑n-butyric acid

↑i-butyric

Increase in the size of villus
height, width, villus surface
area and mucosal depth
Increase in ceca weight

[39]

Chondrus crispus and
Sarcodiotheca

gaudichaudii (R)
whole seaweeds 2% and 4%

Method: Microbiology culture
techniques, 16SRNA amplicon

sequencing.
↑ Firmicutes and Bacteroidetes

↑Bifidobacterium longum, ↑Lactobacillus
acidophilus, ↑Streptococcus salivarius

↓ Clostridium perfringens
↓ Salmonella Enteritidis

↑ Propionic acid ↑ Plasma immunoglobulin
(IgA and IgG) [77]

Chondrus crispus (R) whole seaweeds 0.5 and 2.5%
In vivo mouse model

Method: 16S rRNA sequencing-based
Phylochip array of fecal samples.

↑ Bifidobacterium breve
↓ Clostridium septicum and

Streptococcus pneumonia

↑Acetic, ↑propionic
and ↑butyric acids in

faecal samples

Improvements in proximal
colon histo-morphology
↑ Plasma immunoglobulin
(IgA and IgG)

[105]

Gracilaria spp. (R),
Gelidium sesquipidale
(R) and Ascophyllum

nodosum (B)

agar and alginate Anaerobic fermentation
Method: Fluorescent in-situ

hybridization.
↑Bifidogenic effect

↑Acetic, propionic Not measured [106]
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Table 2. Cont.

Red seaweed

neo-agaro-
oligosaccharides

(NAOS) from
enzymatic

hydrolysis of agarose

2.5% and 5%
In vivo mouse model

Method: Microbiology culture
techniques using cecal and fecal samples.

↑Bifidobacteria and ↑Lactobacilli
Reduced putrefactive microorganisms.

Not measured
No side effects, such as
eructation and bloating,
were observed

[107]

Saccharina (Laminiaria)
japonica (B) alginate

4 mg/mL,
simulated oral, gastric

and small intestinal
digestion

Method: 16S rRNA sequencing-based
high throughput sequencing,

MALDI-TOF/MS.
Bacteroides (Bacteroides finegoldii)

↑Acetic acid and
↑propionic acid

Specific modulation of
Bacteroides by alginates [108]

Eisenia bicyclis
(B) laminarin 2% (w/w)

In vivo in rats

Method: 16S rDNA-DGGE and
Pyrosequencing.

↑ Catabacter hongkongensis
↑ Stomatobaculum longum

↓ Adlercreuzia
↓ Helicobacter

↓ Indole Not measured [109]

Ascophyllum nodosum
and Laminaria japonica Fucoidan 0.01% day−1

In vivo in mice

Method: 16S rRNA sequencing-based
high throughput sequencing.

↑ Lactobacillus
↑ Ruminococcaceae
↓ Peptococcus

Not measured
Reduced the antigen load
and the inflammatory
response

[110]

Ecklonia radiata (B)

Whole seaweed
and polysaccharide
fraction (fucoidan

and alginate)

5% (w/w) WS
5% (w/w) PF in vivo

in rats

Method: Real time Q-PCR.
↑F. prausnitzii
↑E. coli (PF)

↓ Enterococcus (WS)
↓Lactobacillus ↓Bifidobacterium
↓Firmicutes: Bacteroidetes

↑ Acetate
↑ Propionate
↑ Butyrate (PF)
↓ Valerate
↓ Hexanoate
↑ Total SCFA
↓ i-Butyrate
↓ i-Valerate

↓ phenol ↓ p-cresol

↑ Butyrate (PF)
Linked to
anti-inflammatory action

[111]
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7. Reduced Use of Antibiotics in Combination with Dietary Seaweeds

Antibiotics have been used as therapeutics for the treatment of animal and human diseases,
as prophylactics to prevent infection and as growth promoters in livestock production [112].
Sub-therapeutic levels of antibiotics (i.e., <200 g/ton of feed) have been included in animal diets
in order to achieve growth promoting effects (U.S. Food and Drug Administration, 2000). The selection
pressure on gut microbes caused by routine use of antibiotics has promoted the development of
resistance genes that are capable of horizontal gene transfer between different species of pathogenic
bacteria. This unfortunate situation has resulted in the uncontrolled multiplication of resistant bacterial
pathogens including Clostridium, Salmonella, and Campylobacter, which can cause harmful diseases in
the host. In addition, alterations in the microbiome within the host gut can lead to a predisposition
to infection by other environmental pathogens [113]. In the United States, the Food and Drug
Administration’s Center for Veterinary Medicine (CVM) has developed a five-year action plan (2018-23)
for supporting anti-microbial stewardship in veterinary settings in order to limit or reverse bacterial
resistance due to the overuse of antibiotics in food-producing animals. FDA/CVM has set limits on the
use of cephalosporin and has withdrawn approval for the use of fluoroquinolones in poultry, because
these antibiotics are also commonly used in human medical treatments. In North America and Europe,
there is a heightened public awareness of the negative effect of antibiotics in livestock production and
an increasing scientific and regulatory interest in developing alternatives to antibiotics [114]. However,
in developing countries, the use of antibiotics in animal production is unregulated. This has resulted
in sky-rocketing levels of anti-microbial resistance in many jurisdictions and increasingly worldwide.

The growing demand for animal protein in developing countries has resulted in a dramatic
increase in the administration of antibiotics to livestock [115]. Since 2000, the demand for protein from
meat plateaued in developed countries but grew significantly in developing countries, i.e., 68% in Asia,
64% in Africa and 40% in South America. An increase in animal production has resulted in increased
frequencies of infectious disease outbreaks within flocks and tripled the occurrence of antibiotic
resistant, zoonotic bacteria (E. coli, Campylobacter, Salmonella and Staphylococcus aureus). A comparison
between developing countries indicated that antibiotic resistance was most widespread in China and
India, followed by Brazil and Kenya [115,116].

A recent report from the Infectious Diseases Society of America (IDSA) indicated that there were
only ten new drugs in the pipeline (in phase 2 or phase 3 trials) for the treatment of infections caused
by pathogens. These drugs, which are under development, might fail to receive regulatory approval
by the FDA and are furthermore not guaranteed to be effective against certain antibiotic-resistant
pathogens [112].

Potentiating the activity of existing antibiotics using combination therapies could be an alternative
strategy to discovering new antibiotics. A range of anti-microbial peptides, molecules, plant extracts
and essential oils, all with anti-microbial activity, have demonstrated such combination effects [117,118].
Similarly, seaweeds have been tested in combination with antibiotics to extend the lifespan of
fading (off-patent) antibiotics which are utilized in animal production. For example, alginates from
certain brown seaweeds have been shown to potentiate the anti-microbial activity of specific antibiotics
(i.e., macrolides, β-lactams and tetracyclines) that are efficacious against pathogens such as Pseudomonas,
Acinetobacter and Burkholderia spp. [119]. Functional extracts from the brown seaweeds Laminaria japonica
and Sargassum horneri and the red seaweeds Gracilaria sp. and Porphyra dentata potentiated the
activity of macrolides such as clarithromycin against antibiotic-resistant E. coli. Ethanolic extracts
of some seaweeds, in combination with clarithromycin, were observed to synergistically inhibit
bacterial growth by inhibiting the activity of efflux pumps [120]. Water extracts of two red
seaweeds, e.g., Chondrus crispus and Sarcodiotheca gaudichaudii (SG), in combination with tetracycline
and streptomycin, significantly enhanced anti-bacterial activity against Salmonella Enteritidis. A water
extract from SG at 400 and 800 µg/mL, in combination with sub-lethal concentrations of tetracycline
(1 and 1.63 µg/mL), showed complete inhibition of bacterial growth, comparable to full strength
tetracycline (23 µg/mL) [121]. The proposed mode of action of the combined effect was the inhibition
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of quorum sensing in SE Salmonella, thereby repressing efflux-related gene expression, resulting in
the accumulation of tetracycline within the bacterial cell, ultimately leading to cell death [121].
These findings confirmed the in vitro activities of certain seaweeds and their extracts, which can be
employed to increase the lifetime of existing antibiotics. Further research needs to be carried out to test
such combinatorial effects in in vivo models such as rats and mice, and then in livestock, to validate
these findings. Reduced antibiotic consumption in farm animal production is highly desirable and this
may be eventually achieved by feed supplementation of probiotic seaweeds.

8. Commercialization of Various Seaweeds for Animal Feeds

The global commercial market for seaweeds provides a broad range of products for direct or
indirect human uses. This was valued at USD 11.48 Billion in 2017, with a CAGR of 8.42% [122].
The growing scope of seaweed-based applications in food, agricultural fertilizers, animal feed
additives, pharmaceuticals, cosmetics and personal care is expected to significantly boost market
demand. Additionally, rising demands for seaweed-derived hydrocolloids such as agar, alginates and
carrageenans also contribute significantly to the total volumes and values of the commercial seaweed
market (Agriculture and animal feed applications held the second largest seaweed market share in
2017 [123], and these are anticipated to reach much higher values by 2024, due to the impacts of
current R&D (research and development) targeting enhanced animal health and productivity [123].
Table 3 collates information provided by various producers of poultry products with respect to
seaweed-based products.

Challenges and Future Prospects

(a) The effect of seaweed harvesting on the environment: The global seaweed industry largely
relies on harvesting seaweed as a natural resource. Over-harvesting due to increases in seaweed
demand could negatively impact the environment and the sustainability of supply. Science-based
management plans to maintain a sustainable cultivation and collection/ harvest strategy for seaweed
biomass are critical, particularly since some seaweeds have growth rates which exceed those of many
terrestrial crop plants, indicating that the selection and domestication of such seaweeds for cultivation
would be an ideal direction for future sustainability [124].

(b) Macroalgal cultivation systems: A sound production strategy is vital to improve supplies of
selected seaweed biomass due to the predicted growing market demand over the next 5 years [122].
However, reliable, sustainable and economically viable cultivation of seaweeds represents a major
challenge due to the high costs and labor associated with establishing large-scale industrial plants.
Current large-scale facilities do not have sufficient capacity to produce the huge quantities of seaweed
biomass that are necessary to meet global demand by the animal feed industry [125]. One major
roadblock is the inadequate numbers of commercial seaweed farms with on-land tank facilities.
One solution would be to establish large-scale production facilities in low-income countries [126].
In 2014, Asian countries collectively produced more than 10 million metric tonnes of cultivated
seaweeds, whereas European nations produced comparatively limited quantities (10,000—100,000
metric tonnes) [127]. Integrated multi-trophic aquaculture (IMTA), which involves the co-cultivation
of macroalgae with other livestock such as fish and molluscs, could be a viable commercial alternative.
This could also create a balanced ecosystem between seaweed crops and aquatic life [128].
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Table 3. Summary of major seaweed companies supplying poultry feed and additives.

Business Organization Product/Source/
Description

Stage of Development/
Operation Level

Product Function/
Claims Animal Health Sector Web Address

Ekogea, UK

-BCxF®, prebiotic poultry water
additive (comprised of Ascophyllum
Nodosum).
-BCxS, animal housing sanitizer, 100%
Ascophyllum Nodosum

Commercialized market,
industrial scale

-Reduces mortality;
-Improves feed conversion,
weight gain and overall bird
health, gut health;
-Reduces ammonia emission and
Campylobacter levels.

Poultry, pigs and
other animals

http:
//www.ekogea.co.uk/

Ocean Harvest
Technology, Ireland

-OceanFeedTM

-Ocean Poultry contains a complex
blend of seaweeds (red, green and
brown) based feed additive

Commercialized market,
industrial scale

-Improves body weight gain;
-Increases breast meat yield
increased.

Poultry, pigs and
canines (dogs)

https://www.
oceanharvesttechnology.

com

Olmix Group

Mycotoxin risk:
-MT.X+
-MMI.S Digestive efficiency:
-MFeed+
-DigestSea Immunity:
-Searup
-Algimun

Commercialized market,
industrial scale

-Reduces mycotoxins in feed;
-Immune modulation;
-Improves feed efficiency.

Poultry, pigs
and canines

https:
//www.olmix.com

Algea, The Arctic
Company, Kristiansund

- Omagata

AlgaeFeed 1.4
AlgaeFeed 3.5
Brown seaweed meal containing
mineral macro and micro elements

Commercialized market,
industrial scale

-Improves animal metabolism
and performance;
-Improves eggshell quality and
production of eggs.

Poultry, pigs, cattle,
fish and equines

https:
//www.algea.com/

FutureFeed,
Australia Asparagopsis seaweed-based diet

Conducting trials for
commercialization/

pilot scale

-Anti-bacterial properties;
-Methane reduction in livestock
digestive fermentation.

Livestock

https://www.csiro.au/
en/Research/AF/

Areas/Food-security/
FutureFeed

SeaLac, Seaweed
production

Ascophyllum nodosum-based seaweed
supplement- organic dried
seaweed-food grade

Commercialized market,
industrial scale

-Improves feed absorption,
weight gain in broilers;
-Natural alternative to antibiotics;
-Improves egg production, egg
quality and immune response.

Poultry, pigs and cattle http://www.sealac.eu/

There is no implied support for any specific product or manufacturer. Information was gathered from a search of web sites in Sept-Nov, 2019.
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(c) Heavy metals, mineral, plastic and other safety hazards: Marine algae tend to concentrate
heavy metals and other mineral contaminants [129,130]. Seaweeds for food and feed are always
tested to measure levels for trace elements (As, Cd, Pb, Sn and Hg) in order to meet national and
international regulation and safety standards [126,131]. Other safety hazards for seaweeds may include
anti-nutritional factors, radioactive isotopes, ammonium, dioxins and pesticides. In addition, there are
reports that seaweeds increasingly contain traces of plastic particles which might affect the utilization
of specific seaweeds for human and animal food [132]. Cultivation of specific seaweed species and
or their selected cultivars, targeting specific applications, might be necessary in order to guarantee
contaminant-free materials [133].

(d) Seasonal variability, harvesting, processing variability: Seasonal variability affects the
nutritional profile of seaweeds [133]. Nutritional and biological activities of seaweeds are primarily
due to the presence of compounds such as polysaccharides, carotenoids, fatty acids, proteins, peptides,
vitamins, minerals and dietary polyphenols. Seaweeds synthesize several of these compounds in
response to complex environmental conditions. Thus, the composition of these varies with seasonal
variability. Controlling seasonal variability is a major challenge to maintain consistency in the bioactive
compounds as nutrients for feed supplement. Effective measures should be implemented for seaweed
harvesting and processing in order to maintain consistency in composition of bioactive material [132].

9. Conclusions

This review highlights recent developments in research on selected seaweeds as a valuable and
sustainable feed additive for multiple poultry applications. Utilization of selected seaweeds in animal
feeds and supplements will improve animal food security and welfare. Advances in scientific evidence
from both in vitro and in vivo studies provides promising data to support the utilization of certain
seaweeds and their derived compounds to modulate gastrointestinal microbiome and the gut short
chain fatty acids (SCFAs).

Dietary polysaccharides from seaweeds are not only a source of anti-microbials but also function
as prebiotics and improve the growth of beneficial microflora in gastrointestinal tract. The encouraging
data presented in this review supports the need for further research on the use of seaweeds to combat
the increasing pressure for an antibiotic-free poultry industry by providing alternatives in the form of
natural prebiotics.
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