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Abstract: Maneuvering in waves is a hydrodynamic phenomenon that involves both seakeeping
and maneuvering problems. The environmental loads, such as waves, wind, and current, have
a significant impact on a maneuvering vessel, which makes it more complex than maneuvering in calm
water. Wave effects are perhaps the most important factor amongst these environmental loads. In this
research, a framework has been developed that simultaneously incorporates the maneuvering and
seakeeping aspects that includes the hydrodynamics effects corresponding to both. To numerically
evaluate the second-order wave loads in the seakeeping problem, a derivation has been presented
with a discussion and the Neumann-Kelvin linearization has been applied to consider the wave drift
damping effect. The maneuvering evaluations of the KVLCC (KRISO Very Large Crude Carrier) and
KCS (KRISO Container Ship) models in calm water and waves have been conducted and compared
with the model tests. Through the comparison with the experimental results, this framework had been
proven to provide a convincing numerical prediction of the horizontal motions for a maneuvering
vessel in waves. The current framework can be extended and contribute to the IMO (International
Maritime Organization) standards for determining the minimum propulsion power to maintain the
maneuverability of vessels in adverse conditions.

Keywords: second-order wave loads; flare angle effect; Neumann–Kelvin linearization;
maneuverability; numerical simulation; model test

1. Introduction

A ship’s maneuverability is typically only considered in calm water in most previous research [1],
while a seagoing vessel maneuvering in waves is more often the actual scenario. This research on
maneuvering in waves is practically significant, considering navigation safety. There are several
existing methods to study ship maneuverability in waves, such as model tests and numerical simulation
that can be generally classified as CFD methods, two-time scale methods, and hybrid approaches.

The experimental method is a practical and reliable methodology to investigate the ship’s
maneuverability in waves. Turning circles and zig-zag tests in regular waves have been conducted to
analyze various parameters such as wave length, wave direction and ship’s loading condition’s effects
on maneuvering motions [2,3]. However, specific model tests are time consuming, expensive, and
should only be considered for the validation of more general numerical approaches.

As for the numerical simulation, CFD methods in principle consider all physics facts but still
needs further development in order to reach the level of industrial applicability. Islam et al. [4]
applied an open source RANS solver, OpenFOAM to simulate hydrodynamic derivatives and his
results matched well with two sets of experimental data, with the exception of the pure yaw cases.
Uharek et al. [5] showed that the RANS code Neptuno was able to predict the mean drift loads for
vessels maneuvering in oblique regular waves and that the inertial contributions cannot be neglected.
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Wang et al. [6] applied a CFD solver based on OpenFOAM and applied the overset grid technique
and six DoF module to solve for the motion of the free-running ship with twin rotating propellers and
turning rudders. However, CFD’s current large requirement of computational resources and technical
difficulties has confined it to the research communities worldwide. The application to propellers and
rudder models under large attack angle suggest that fulfillment of the real time simulation requirement
is hardly to be satisfied from a realistic point of view [7]. An alternative to CFD methods are the
two-time scale method and the hybrid approach, both of which are based on potential flow methods
to consider the wave effect. As for the hybrid approach, it combines the maneuvering motion and
wave-induced motion into the rigid body motion equations to simulate a vessel’s maneuverability [8,9],
but ignores the effect of the second-order wave loads. Through the investigation by Lee et al. [10]
regarding the effects of waves on ship’s maneuverability, it can be concluded that the second-order
wave loads present a significant effect on the trajectory of turning and zig-zag tests. On the other hand,
the two-time scale method considers and separates the ship motions into the wave frequency and
low frequency components, and by doing this, it is possible to consider the second-order wave loads
and motions to enhance its accuracy. Skejic and Faltinsen [11] applied the two-time scale approach to
analyze ship maneuvering in regular waves, by evaluating the wave drift forces through four different
strip theory methods and considering that when the ship has a mean forward speed and undertakes
maneuvering in waves, the wave-frequency problem is affected by the slowly-varying maneuvering.
Seo and Kim [12] developed a coupled analysis of the maneuvering and seakeeping problems through
a two-time scale approach, where the wave loads were estimated using a Rankine panel method in the
time domain. Lee and Kim [13] used a 3D time-domain Rankine panel method to analyze the ship
motion due to the waves and near-field method to consider the wave drift loads. It can be concluded
that the seakeeping quantities, such as ship motion and wave drift force, are significantly affected by
both forward speed and side slip speed. Moreover, the accuracy of turning simulation results are also
closely related to the prediction of wave drift loads. Chillcce and Moctar’s [14] solution assumed that
the calm water hydrodynamic parameters and the wave induced forces do not interact and applied
a RANS approach to obtain the calm water forces and a 3D Rankine source boundary element method
to consider the wave-induced second-order loads. Their results showed that the ship’s drift in turning
circle can be accurately captured by considering the mean second-order wave loads.

A derivation and full expression of the second-order wave loads acting on a floating body was
presented in our previous research [15] through a direct pressure integral method, in which both the
mean drift wave forces and moments coefficients and the full quadratic transfer function have been
presented. It also contained a comparison of Newman’s approximation [16] with an evaluation of
the off-diagonal elements in the full QTF matrix. This direct pressure integral method presented and
showed the importance and necessity of considering the off-diagonal elements, especially when the
difference wave frequency increases and water depth decreases. While considering the mean wave
forces and moments acting on a floating body with speed, multiple numerical solutions have been
proposed and applied including far field method and near field method. As for the far field method,
Aranha [17–21] proposed a formula to consider the effect of current or a floating body’s forward speed
on the mean wave forces and moments. Aranha’s method has been applied extensively in offshore
engineering field due to the relative simplicity of the final expression, but has a limitation of moderately
low current velocity or vessel forward speed. As for the near field methodology, Joncquez [22] discussed
two linearization methods, the Neumann-Kelvin and the Double-Body flow linearization. Through the
comparison, it was found that the Neumann-Kelvin works better for the Series 60 and Wigley hull III
and is more robust and less sensitive to the smoothness of the hull geometry. A similar conclusion was
drawn by Kim [23], who also indicated that Neumann-Kelvin linearization generally shows better
results in the case of high Froude numbers and slender bodies. Yu and Falzarano [24] conducted
a comparative study of the Neumann-Kelvin and Rankine source method for wave resistance and
found that the Rankine source method can give satisfactory results for a wider range of ship models,
but with a very expensive numerical calculation cost compared with Neumann-Kelvin linearization.



J. Mar. Sci. Eng. 2020, 8, 392 3 of 21

The research herein introduces and explains the theoretical derivations and the framework of
coupling the seakeeping and maneuvering modules to numerically model maneuvering vessel in waves
involving the second-order wave loads. The work of seakeeping problems herein is based upon our
original and systematic perturbation approach to derive the hydrodynamic forces acting upon the hull
of a floating body in waves. This approach has been validated for zero speed through a comparison to
the industry standard commercial code WAMIT [15]. The Neumann-Kelvin linearization method has
been applied to consider the vessel forward speed’s effect in the seakeeping problem and then coupled
with the maneuvering problems in the two-time scale method [25]. Moreover, this approach has been
applied to the KVLCC and KCS models as an example and compared to available experimental results
of maneuvering in waves. Through the comparison with the model tests, this framework herein
has been found to be an accurate and efficient approach to study maneuvering of ships in waves.
The current work will provide a meaningful numerical basis for our ongoing projects of seakeeping
and maneuvering in waves. Furthermore, this research can be also undertaken to expand its range of
applicability, including the minimum powering requirements for ships in adverse conditions [26].

2. Numerical Calculation of the 2nd-Order Wave Loads with Zero Speed

The full detailed derivation of the second-order waved loads with zero speed and the corresponding
analysis can be found in Appendix A.

To verify this approach through the direct pressure integral method, a vertical cylinder has been
selected as an example. The diameter of the vertical cylinder is 40 m and its draft is 10 m. The center of
the gravity is 5 m above the equilibrium free surface. The numerical model and panelization of the
vertical cylinder established by Rhino 3D have been shown in Figure 1. The incident wave direction
in this numerical evaluation is 180 deg and the water depth is 1500 m. The full quadratic transfer
function of the second-order wave loads were numerically estimated through our in-house code and
have been presented in Figure 2. The mean drift force coefficients, namely the diagonal elements
of the full quadratic function, have been presented and compared with the numerical results from
the industry standard commercial software WAMIT as a reference [27] but that code is limited to
zero speed. It can be seen from Figure 3 that our in-house code shows a good agreement with the
standard commercial software and provides a convincing numerical calculation basis of our approach
to calculate the second-order wave loads with zero forward speed.
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Figure 3. The comparison of the mean drift force coefficients with the standard commercial software:
(a) Amplitude of the mean drift force in X direction (kN/m2); (b) Amplitude of the mean drift force in Z
direction (kN/m2); (c) Amplitude of the mean drift moment in Y direction (kN/m).

3. The Neumann-Kelvin and Double-Body Linearization

A well-known linearization scheme in ship hydrodynamics is the Neumann-Kelvin linearization
with respect to the forward speed U, whose assumption is that the radiation potential caused by the
floating body is less significant than the uniform flow [23]. Moreover, the Kelvin ship waves effects on
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the free surface and the impact on the flow potential due to the floating body’s shape are negligible,
which simplifies the boundary conditions. Therefore, it is also called uniform-flow linearization and
applicable for a slender floating body, whose total potential can be expressed as:

Φtotal(x, y, z, t) = −|U|·x·cosβ− |U|·y·sinβ+Φ(x, y, z, t) (1)

where:

Φ(x, y, z, t) =

ΦI(x, ω0, β) +ΦI(x, ω0, β) + iω
6∑

j=1

ηiψRj(x, ωe, U)

·eiωet (2)

In this scenario, Φ denotes the wave potential, ηi denotes the vessel’s motions in 6 degrees of
freedom, ω0 denotes the wave frequency while ωe is the encounter frequency. ψR denotes the radiation
wave potential, and β is the wave direction with respect to the vessel-fixed coordinate.

The double-body flow linearization was introduced by Dawson [28], who considers both
the forward speed U and the shape of the ship hull. The steady potential on the hull through
the Double-Body is calculated by assuming the symmetry of the ship hull with respect to the
free surface at z = 0 [23]. In the previous research, the numerically estimated added resistances
through these two methodologies show discrepancies, due to the radiation components from different
body-boundary conditions.

The total potential:
Ψ = Φ+ ϕ (3)

where Φ is the steady base flow that is of O(1) and ϕ is the perturbation potential, which is of O(ε).
The linearized boundary condition for the perturbation potential in the Neumann-Kelvin

linearization can be expressed as: [
∂
∂t
−W·∇

]
ζ =

∂ϕ

∂z
on z = 0 (4)

[
∂
∂t
−W·∇

]
ϕ = −gζ on z = 0

∂Ψ
∂n

=
6∑

j=1

(
∂η j

∂t
n j + η jm j

)
on SB

The linearized boundary condition for the perturbation potential in double-body flow linearization
can be expressed as: [

∂
∂t
− (W−∇Φ)·∇

]
ζ =

∂2Φ

∂z2 ζ+
∂ϕ

∂z
on z = 0 (5)[

∂
∂t
− (W−∇Φ)·∇

]
ϕ = −gζ+ W·∇Φ−

1
2
∇Φ·∇Φ on z = 0

∂Ψ
∂n

=
6∑

j=1

(
∂η j

∂t
n j + η jm j

)
on SB

where W = (U − ΩRy)i + (V + ΩRx)j, where U and V are the vessel’s forward and lateral speed,
respectively; ΩR is the vessel’s yaw’s angular speed; ζ is the wave elevation on the free surface. mi is
the m-term containing the interaction between the steady and unsteady solutions. In Neumann-Kelvin
linearization with only forward speed U for example: (m1, m2, m3, m4, m5, m6) = (0, 0, 0, 0, Un3, −Un2);
with only lateral speed V for example: (m1, m2, m3, m4, m5, m6) = (0, 0, 0, −Vn3, 0, Vn1). On the other
hand, in the double-body flow linearization, the m-terms can be expressed as:

(m1, m2, m3) = (n·∇)(W−∇Φ) (6)
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(m4, m5, m6) = (n·∇)(x× (W−∇Φ))

More details of the corresponding our forward speed derivations can be found in Appendix B.

4. The 3D Maneuvering Mathematical Model

The mathematical model of the maneuvering motions of ships is now well established.
Linear equations of motions will be considered in this scenario, in motion modes of surge, sway,
and yaw, while the motions of roll, pitch, and heave are often neglected and not considered in such
analysis. Eulerian or vessel fixed coordinate systems with axes at the mid-point of the vessel hull can
be applied to describe the ship motions. The hydrodynamic forces and the modes of vessel motions
can be expressed as:

X = m
( .
u− rv− xGr2

)
(7)

Y = m
( .
v + ur + xG

.
r
)

N = IZ
.
r + mxG

( .
v + ur

)
where u and v are the longitudinal and lateral velocities and r is the yaw rate. Iz is the moment of
inertia with respect to the vertical axis going through the midship point, therefore the horizontal
distance between the center of gravity and the midship point is xG. The above hydrodynamics forces
and moments acting on the ship can be developed through perturbations, where the hydrodynamic
loads are proportional to the perturbation quantities. Xdrift stands for the longitudinal wave drift loads
in the seakeeping problem.

X = X .
u

.
u + Xu∆u + Xdrift (8)

Y = Y .
v

.
v + Yvv + Y .

r
.
r + Yrr + Ydrift

N = N .
v

.
v + Nvv + N .

r
.
r + Nrr + Ndrift

Combing the above sets of equations sets with only the linear terms, the linearized equations of
maneuvering ship’s motion can be expressed as follows.

(X .
u −m)

.
u + Xu∆u + Xdrift = 0 (9)

(Y .
v −m)

.
v + Yvv + (Y .

r −mxG)
.
r + (Yr −mu0)r + Ydrift = 0

(N .
v −mxG)

.
v + Nvv + (N .

r − IZ)
.
r + (Nr −mxGu0)r + Ndrift = 0

While numerically evaluating a maneuvering ship in waves, there are two modules, namely
the seakeeping module and the maneuvering module in each time step, which take the current
environmental parameters such as the vessel speed, vessel heading, and wave direction as the input
and output the updated input for the next time step. The numerically evaluated hydrodynamic
coefficients including the vessel hull, rudder induced loads and the drift loads considering the wave
drift damping are all considered as the internal parameters in these two modules. The flow chart of the
coupling effect of the seakeeping and maneuvering analysis in terms of slowly varying mean second
wave loads that also change the ship speed and wave heading is be presented in Figure 4.
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5. Simulation of Maneuvering in Waves

In this study, two vessels were selected, a KVLCC model and KCS model. For the KVLCC model:
the Lpp is 320 m, the draught is 20.8 m, and the displacement is 312,622 m3. Four regular waves
have been selected, whose ratios of the wave length and the vessel length are 1.25, 1, 0.75 and 0.5,
respectively. The vessel’s starting speed is 9.3 knots. Both the turning circle trajectory and zig-zag
test time series were numerically evaluated. For the KCS model: the Lpp is 230 m; the draught is
10.8 m; the displacement is 52,030 m3. The experimental maneuvering results carried out by Hiroshima
University [29] were chosen as the reference for the turning circle trajectory in both the calm water
and regular wave with wave direction of 180 degrees, whose wave length is equal to the vessel length.
The vessel’s starting speed in both the calm water and wave tests is Fn = 0.16 (corresponding to a full
scale 14.5 knots). In the wave test, the regular wave’s height is 3.61 m in the full scale with a full scale
wave period of 12.14 s.

Figures 5 and 6 present the KVLCC’s turning trajectories in regular waves with starboard rudder
of 35 degrees. In calm water, the turning trajectory will converge to a stable circle after continuous
turning. Compared with the turning trajectories in the calm water, the wave drift loads coupled with
wave drift damping drives the vessel turning trajectories to present a horizontal shift path, instead
of the stable converged circle. It can be seen that as the wave length decreases, this drifting path is
more obvious.
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Figure 5. KVLCC’s starboard-side 35 deg turning trajectories in regular waves with 180 deg at t = 0
and four different ratios between wave length and vessel length λ: (a) λ = 1.25; (b) λ = 1; (c) λ = 0.75;
(d) λ = 0.5.



J. Mar. Sci. Eng. 2020, 8, 392 9 of 21

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 22 

 

Figure 5. KVLCC’s starboard-side 35 deg turning trajectories in regular waves with 180 deg at t = 0 
and four different ratios between wave length and vessel length λ: (a) λ = 1.25; (b) λ = 1; (c) λ = 0.75; 
(d) λ = 0.5. 

  

(a) (b) 

  

(c) (d) 

Figure 6. KVLCC’s starboard-side 35 deg turning trajectories in regular waves with 90 deg at t = 0 and 
four different ratios between wave length and vessel length λ: (a) λ = 1.25; (b) λ = 1; (c) λ = 0.75; (d) λ 
= 0.5. 

Figures 7 and 8 present the 20/20 deg zig-zag turning test in regular waves with various wave 
lengths. Compared with the cases in heading sea at the beginning point where the vessel heading 
presents symmetry characteristic about positive and negative headings, the vessel heading in the 
cases of beam sea at the starting point presents asymmetric characteristic. In Figure 7, it can be 
observed that the period of the rudder angle fixed at the 20 deg presents an increasing trend with the 
zig-zag round. When the wave length is equal to the vessel length in Figure 7b, the vessel turning 
rate is higher than the cases with other wave lengths. In Figure 8, as the wave length decreases in 
beam sea, the period of the fixed rudder angle is unbalanced about the positive and negative sides, 
presenting an asymmetric characteristic. 

Figure 6. KVLCC’s starboard-side 35 deg turning trajectories in regular waves with 90 deg at t = 0
and four different ratios between wave length and vessel length λ: (a) λ = 1.25; (b) λ = 1; (c) λ = 0.75;
(d) λ = 0.5.

Figures 7 and 8 present the 20/20 deg zig-zag turning test in regular waves with various wave
lengths. Compared with the cases in heading sea at the beginning point where the vessel heading
presents symmetry characteristic about positive and negative headings, the vessel heading in the cases
of beam sea at the starting point presents asymmetric characteristic. In Figure 7, it can be observed
that the period of the rudder angle fixed at the 20 deg presents an increasing trend with the zig-zag
round. When the wave length is equal to the vessel length in Figure 7b, the vessel turning rate is
higher than the cases with other wave lengths. In Figure 8, as the wave length decreases in beam sea,
the period of the fixed rudder angle is unbalanced about the positive and negative sides, presenting
an asymmetric characteristic.

As shown in Figures 9–13, the numerically simulated turning trajectories for the KCS vessel have
been presented and compared with the model test results in both calm water and regular waves.

In calm water, as can be seen in Figure 9, the numerically simulated turning trajectory shows
an excellent match with the experimental results, providing a convincing comparison basis: the
diameter of the turning circle through the numerical simulation is 397.3 m, only 8.64% higher than that
of the model test, which is 365.7 m.
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Figure 9. KCS’s experimental and numerical starboard-side 35 deg turning trajectories in calm water.

To precisely describe the turning trajectories in waves, multiple parameters including the diameter,
the drift angle and the drift distance have been selected in present study. The drift angle is defined
as the angle between wave propagating direction and vessel traveling direction in which the wave
encounter angle is −90 deg, while the drift distance is defined by successive positions with a wave
encounter angle of −90 deg [2]. Two measures of diameter have been considered, namely the diameter
measured along with the wave direction (V1 and V2) and the diameter measured perpendicular to the
wave direction (H1, H2). These parameters are illustrated in Figure 10.
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In Figures 11–13, a turning trajectory that presents a horizontal shift path due to the waves is
observed in the KVLCC model and can also be observed in both the KCS model’s numerical and
experimental results. It can be seen in Figure 11 that there is a relatively obvious trajectory shift
at the early stage between the numerical and experimental results, which leads to the difference of
the corresponding drift angle and drift distance. A similar shift between these two methods can be
also found in the calm water results as shown in Figure 9. One reason for this phenomenon is the
physical model’s sensitivity to the rudder, which contributes to the discrepancy of the horizontal
hydrodynamic loads due to the rudder perturbations, and leads to a shift between the numerical and
experimental trajectories. Another reason is the variance of the wake fraction being dependent on the
propeller side-wash angle [30], which thus changes the propeller surge force in the model test, while
this component was considered as a constant value in the numerical simulation.
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Similar discrepancies between the model tests and numerical simulations can also be found
in Zhang’s research [7], as well as Lee and Kim’s research [13] through the double-body linearization
results with and without a vortex sheet. Also, this is the case in Chillcce and Moctar’s work [14]
who applied a RANS computer code to obtain calm water forces and a 3D RANKINE source method
to consider the second-order wave forces. It should also be noted that the discrepancies between
the numerical and experimental results in most recent research also increase in the later stage of the
turning trajectory. As is the case in the present study, after the early stage of the turning trajectory, the
numerical simulation matches well with the experimental data, accurately capturing the main turning
trajectory’s drifting path. Moreover, the numerically simulated turning trajectory’s diameters have
shown a good match with the model test within a 7% discrepancy as presented in Table 1: the H1, V1,
H2, and V2 present −2.47%, 6.94%, 0.65%, and −3.48% discrepancies from the model test, respectively.

Table 1. Parameters of the turning trajectories in calm water and waves.

D H1 V1 H2 V2 Drift Angle Drift Distance

Unit m m m m m deg m

Model test 365.7 339.8 344.3 396.1 396.5 51.9 82.6
Numerical simulation 397.3 331.4 368.2 393.5 382.7 65.6 72.5

Therefore, the current framework of coupling the seakeeping and maneuvering modules provides
a practical and accurate numerical methodology through the experimental validation, to predict the
unconstrained vessel’s maneuvering in waves. Compared with the most recent research [7,13,14], this
framework presents a comparatively accurate prediction of the later stage of the turning trajectory
in waves. Moreover, with a thorough physical model and explanation of the second-order wave loads
through the potential flow theory, this framework is numerically efficient, especially considering CFD’s
current large requirement of computational resources [4–6]. In the future research, the sensitivity of the
physical model in this framework to various hydrodynamic and wave parameters can be conducted
and extended for the design of vessels [26,31].

6. Conclusions

In this paper, a framework that considers the coupled maneuvering and seakeeping problems
that involves an accurate prediction of the second-order wave loads of a maneuvering vessel in
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waves has been introduced and validated. An original and systematic perturbation approach to
derive the 2nd-order wave loads without and with a vessel’s forward speed have been presented.
Moreover, this approach has been validated for zero speed through a comparison to the industry
standard commercial code. With the help of the established framework through the two-time scale
method and the Neumann-Kelvin linearization, the numerical simulations of maneuvering vessels
in waves have been conducted to obtain the turning trajectories and the zig-zag test time series for
the KVLCC and KCS models. According to the numerical simulations, the wave drift loads with
wave drift damping drives the vessel turning trajectory away from the calm water trajectory, resulting
in a drifting path. As the wave length decreases, this drifting phenomenon is more pronounced. It can
also be concluded that maneuvering in beam seas also presents an asymmetric characteristic for the
vessel heading in the zig-zag tests. Through the comparison with the KCS model test and other recent
approaches, the corresponding numerical result accurately captures the main characteristic of the
turning trajectory, especially in the later stage. Therefore, the framework herein is an accurate and
efficient approach to study the maneuvering of ships in waves. In future work, the current framework
can be extended and contribute to the IMO standards for determining the minimum propulsion power
to guarantee the maneuverability of vessels in adverse conditions.
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Nomenclature

X: global coordinate.
X’: vessel-fixed coordinate.
X0: the origin of the vessel-fixed coordinate in the global coordinate.
S: the exact wetted surface of the floating structure.
SM: the equilibrium wet surface of the floating structure.
p: wave pressure.
Φ denotes the wave potential.
ζ denotes the wave elevation on the free water surface.
n denotes the normal vector of the panel.
ηi denotes the 6 degrees of freedom motions: surge, sway, heave, roll, pitch and yaw.
η = (η1, η2, η3)T

α = (η4, η5, η6)T

U and V are the vessel’s forward and lateral speed, respectively
ΩR is the vessel’s yaw speed
W = (U − ΩRy)i + (V + ΩRx)j

H = 1
ε2


−
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Appendix A. Derivation of the 2nd-Oder Wave Loads without Forward Speed

A point fixed on the floating structure’s surface can be studied both in the global coordinate and the
vessel-fixed coordinate. Assuming small amplitude of the floating structure’s angular motion, the transformation
between the global coordinate and the vessel-fixed coordinate can be approximated as:

X−X0 = η+ X′ + α×X′ + ε2HX′ (A1)
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n = n′ + α× n′ + ε2Hn′ (A2)

Through the perturbation theory, we can determine the wave pressure, the normal vector, the floating
structure’s motions, the wave potential and the wave elevation into the form of a summation of different orders:

p = p(0) + εp(1) + ε2p(2) + o
(
ε3

)
(A3)

n = n(0) + εn(1) + ε2n(2) + o
(
ε3

)
(A4)

η = εη(1) + ε2η(2) + o
(
ε3

)
(A5)

α = εα(1) + ε2α(2) + o
(
ε3

)
(A6)

Φ = εΦ(1) + ε2Φ(2) + o
(
ε3

)
(A7)

ζ = εζ(1) + ε2ζ(2) + o
(
ε3

)
(A8)

Through the coordinate transformation, we have:

X−X′ −X0 = ε
(
η(1) + α(1) ×X′

)
+ ε2

(
η(2) + α(2) ×X′ + HX′

)
(A9)

Φ
∣∣∣∣S = Φ

∣∣∣∣SM + [(X−X′ −X0).∇]Φ
∣∣∣∣SM + o

(
ε3

)
(A10)

Therefore, we could obtain:

Φ
∣∣∣∣S = εΦ(1)

∣∣∣∣S + ε2Φ(2)
∣∣∣∣S + o

(
ε3

)
= εΦ(1)

∣∣∣∣SM + ε2Φ(2)
∣∣∣∣SM + ε2

[(
η(1) + α(1) ×X′

)
.∇

]
Φ(1)

∣∣∣∣SM + o
(
ε3

)
(A11)

By applying the Bernoulli equation,

p = −ρ

(
gz +

∂Φ
∂t

+
1
2
∇Φ.∇Φ

)
(A12)

the pressure on the floating structure can be expressed as:

p|S =

−ρ

 gz + ε ∂Φ
(1)

∂t + ε2 ∂Φ(2)

∂t
+ε2 1

2∇Φ
(1).∇Φ(1)

|SM

+

 ε
(
η(1) + α(1) ×X′

)
+ε2(η(2) + α(2) ×X′

+HX′)

.∇[−ρ

 gz + ε ∂Φ
(1)

∂t
+ε2 ∂Φ(2)

∂t

]|SM

(A13)

Therefore, by collecting the ε0, ε, and ε2 terms, we could obtain the wave pressure in different orders:

p(0)
∣∣∣∣S = −ρgz

∣∣∣∣
SM

(A14)

p(1)
∣∣∣∣∣∣S = −

[
ρ
∂Φ(1)

∂t
+ ρgk.

(
η(1) + α(1) ×X′

)]∣∣∣∣∣∣
SM

(A15)

p(2)
∣∣∣∣S =

(
ρ ∂∂t∇Φ

(1)
)
.
(
η(1) + α(1) ×X′

)
]
∣∣∣∣SM −

1
2ρ∇Φ

(1).∇Φ(1)

−ρgk.
(
η(2) + α(2) ×X′ + HX′

)
− ρ ∂Φ

(2)

∂t

(A16)

Similarly, the normal vector of the floating structure’s wetted surface pointing into the fluid field can also be
expressed in both global and vessel-fixed coordinate:

n = n′ + α× n′ + ε2Hn′ = n′ +
(
εα(1) + ε2α(2)

)
× n′ + ε2Hn′

= n(0) + εn(0) + ε2n(0)
(A17)
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Therefore, we could obtain:
n(0) = n′ (A18)

n(1) = α(1) × n′ (A19)

n(2) = α(2) × n′ + Hn′ (A20)

Then, we obtain the expression of wave load in various orders:

F = F(0) + εF(1) + ε2F(2) = −
x

S

pndS = −
x

SM

pndS−
x

∆S

pndS (A21)

where:
pn = p(0)n(0) + ε

(
p(1)n(0) + p(0)n(1)

)
+ ε2

(
p(2)n(0) + p(0)n(2) + p(1)n(1)

)
(A22)

Now, we discuss the term
s

∆S pndS:

x

∆S

pndS =

∫
WL

dl
∫ ζ−(x−x′−x0)z

0
pn

dz√
1− n′3

2
(A23)

∫ ζ−(x−x′−x0)z
0 pn dz√

1−n′3
2

=
∫ ζ−(x−x′−x0)z

0

{
−ρgzn′ − ε[ρ ∂Φ

(1)

∂t +ρgk.
(
η(1) + α(1) ×X′

)
]n′

−ερgzα(1) × n′
}

dz√
1−n′3

2

=
∫ ζ−(x−x′−x0)z

0 {−ρgzn′ − ε[−ρgζ(1)+ρg(η(1)3 + x′2η
(1)
4

−x′1η
(1)
5 )]n′−ερgzα(1) × n′} dz√

1−n′3
2

(A24)

The integration of ερgzα(1) × n′ is of order 3 and thus out of consideration in this scenario.

∫ ζ−(x−x′−x0)z
0 pn dz√

1−n′3
2
=

(∫ ζr

0 (−ρgzn′)dz +
∫ ζr

0 ερgζ(1)r n′ dz
)

1√
1−n′3

2

=
(
−

1
2ρgn′ζ2

r + ερgn′ζrζ
(1)
r

)
1√

1−n′3
2

=
(
−ε2 1

2ρgn′ζ(1)r
2 + ε2ρgn′ζ(1)r

2
)

1√
1−n′3

2

= ε2 1
2ρgn′ζ(1)r

2 1√
1−n′3

2

(A25)

Therefore, we could obtain:

x

∆S

pndS = ε2 1
2
ρg

∫
WL

ζ
(1)
r

2 n′√
1− n′3

2
dl (A26)

This term will be taken into consideration while evaluating the second-order wave loads. It should be
noted that the normal vector in z-direction plays an important role that is also called the flare angle effect [32]
determining the whole term’s contribution, where n′3 is the normal vector of the waterline panel towards the fluid
field. For a wall-sided waterline panel, the amplification of the flare angle effect is 1. However, as the normal
vector’s z-direction component increases from 0 to 1, this amplification increases significantly. In such treatment
situations, caution should be taken.
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According to our previous study on the numerical evaluation of the full quadratic transfer function, the full
expression of the second-order wave loads on a floating body can be expressed as:
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Appendix B: The 2nd-Order Wave Loads with Forward Speed 
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Appendix B. The 2nd-Order Wave Loads with Forward Speed

The boundary condition has been modified, due to the vessel’s forward speed. The scattered wave potential
ΦS in this scenario and the Green function G should be evaluated in ω0 and ωe, respectively.

2πΦS(x,ω0) +
x

SM

ΦS(x, ω0)
∂G(x, ωe)

∂nξ
dS = −

x

SM

G(x, ωe)
∂ΦI(x, ω0)

∂nξ
dS (A31)
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Through Greens identity and a variant of Stokes theorem that the forward speed boundary value problem
can be solved through obtaining the boundary condition in zero speed and modification [33]. The wave loads
from the scattered wave potential can be evaluated.

∂Ψ
∂n

=
6∑

j=1

(
∂η j

∂t
n j + η jm j

)
on SB (A32)

For normal vectors direction towards the fluid domain, the above equation can be written as:

∂ϕR

∂n
=

6∑
j=1

(
iωn j + m j

)
(A33)

where:

ΦR =
6∑

j=1

ϕRjη j (A34)

To evaluate the 1st-order wave forces and moments due to the scattered potential, its expression through
direct pressure integration can be written as:

F(1)sca =
x

Sb

−pndS =
x

Sb

ρ
∂Φ

(1)
sca
∂n

n(0)dS = iωρ
x

Sb

Φ
(1)
sca n(0)dS (A35)

Therefore, while there is an arbitrary basis flow including head seas and quartering seas, F(1)
sca in jth mode

can be so thus expressed as:

F(1)sca ( j)= −ρ
s

Sb
ϕ
(1)
Rj

∂ΦI
∂n dS for j = 1, 2, 3 (A36)
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According to Kim and Kim [23], the added resistance due to the forward speed or current in waves is the
longitudinal component of the mean drift force, whose expression based on the double-body linearization scheme
can be written as:
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By substituting Φ as zero, the mean drift force of the Neumann-Kelvin linearization scheme can 
be obtained. 
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