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Abstract: Vortex-induced vibrations (VIV) of hexagonal cylinders at Reynolds number of 1000 and
mass ratio of 2 are studied numerically. In the numerical model, the Navier–Stokes equations
are solved using finite volume method, and the fluid-structure interaction (FSI) is modelled using
Arbitrary Lagrangian Eulerian (ALE) Scheme. The numerical model accounts for the cross-flow
vibration of the cylinders, and is validated against published experimental and numerical results.
In order to account for different angles of attack, the hexagonal cylinders are studied in the corner and
face orientations. The results are compared with the published results of circular and square cylinders.
Current results show that within the studied range of reduced velocities (up to 20), unlike circular
and square cylinders, no lock-in response is observed in the hexagonal cylinders. The maximum
normalized VIV amplitudes of the hexagonal cylinders are 0.45, and are significantly lower than
those of circular and square cylinders. Vortex shedding regimes of the corner-oriented hexagons are
mostly irregular. However, in the face-oriented hexagons, the shedding modes are more similar to
the typical P + S and 2P modes.

Keywords: vortex-induced vibration (VIV); fluid-structure interaction (FSI); hexagonal cylinder;
RANS; vortex shedding mode

1. Introduction

Vortex-induced vibration (VIV) is a major concern in design of slender structures exposed to the
wind flow, such as: high-rise buildings [1,2] and bridges [3–5], or subject to water currents, such as:
offshore platforms [6,7] marine risers [8–10] mooring elements [11–13], free spanning pipelines [14–16],
or under action of other types of flow such as: heat exchanger tubes [17–19] and reactors [20,21]. As the
flow passes around the bluff body, vortices are created in the wake region. These vortices generate
pressure fluctuations because of a phenomenon known as “vortex shedding” that can cause bluff

bodies to vibrate [22]. Vibrations may lead to fatigue damage in structures that are exposed to dynamic
loads or flow-induced instabilities [23]. In the case of vortex-induced vibration, vibrations can be in
two dimensions because of time-dependent drag and lift forces, as the vortices are shed from the bluff

body [24].
Two fundamental experimental studies on cross-flow VIV of circular cylinders with one degree of

freedom (1-DOF) were conducted by Feng [25] and Khalak and Williamson [26]. These pioneering
studies showed that the VIV response is significantly related to the mass ratio, m* and the reduced
velocity Vr. Mass ratio is defined as m* = m/md (the structural mass m divided by the displaced fluid
mass md). The reduced velocity is defined as Vr = U/fnD, where U is the upstream velocity, D is the
cylinder diameter, and fn is the natural frequency of the structure (in air or in the water). Feng’s [25]
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study was conducted at very high mass ratio (m* = 248) and showed two branches of response, namely,
the initial and the lower branch. In the works done by Williamson et al. [26–28] and at low mass ratios
(m* < 10), in addition to the previously reported branches, an upper branch was observed. These
experimental studies showed that the vortex patterns in the initial branch comprised of “2S” modes
(two single vortices in one pair per vibration cycle), while those of upper and lower branches were “2P”
(two vortex pairs are shed in each cycle). Moreover, it was understood that in 1-DOF, the amplitude of
response in the upper branch gets as large as the diameter of the cylinder. It was shown that in the
upper and lower branches the VIV frequency coincides with the vibration frequency of the cylinder,
a phenomenon known as “lock-in.” Limited research conducted on 2-DOF flow-induced vibration of
circular cylinders [29,30], showed transverse vibration amplitudes of 1.5 times the diameter and 2P
vortex mode.

The VIV response of circular cylinders has been investigated using numerical simulations as
well [31–33]. Most of these studies use Reynolds-averaged Navier–Stokes (RANS) equations [34],
and model an elastically mounted cylinder subjected to flow using two-dimensional simulations.
The numerical simulations showed that the transition between the initial and upper branches is
hysteretic. Also, in the transition from the upper to lower branch, a change in phase φ = 180◦ (the delay
between the lift force and the cylinder response) is observed [35]. Prasanth et al. [36] studied the effect
of blockage ratio (B) on the VIV response of a circular cylinder with m* = 10 at Re < 150 using finite
element formulation. They carried out two sets of computations with B = 1% and 5%, where blockage
B = D/H, is defined as the ratio of the diameter of the cylinder (D) to the distance between the lateral
boundaries at the inlet (H). Their results showed that the hysteretic behavior between the lower and
upper limits is developed at B = 5%, and vanishes at B = 1%.

In comparison with the VIV of circular cylinders, fewer studies are available for the VIV of bluff

bodies with sharp edges. For a square cylinder, most noticeable are the experimental works of Bearman
et al. [37], Amandolese and Hemon [38] and Zhao et al. [39], and the numerical study of Corless
and Parkinson [40] and Zhao et al. [41]. The experimental study by Zhao et al. [39] of a cylinder
with m* = 2.4 in water flow at angles of attack of α = 0◦ (square orientation) and α = 45◦ (diamond
orientation), showed a galloping response in the square orientation and a similar response to that of
a circular cylinder in the diamond orientation. Zhao et al. [41] conducted numerical simulations of VIV
of a square cylinder with m* = 3, Re = 100, and at angles α = 0◦, 22.5◦ and 45◦, using Petrov-Galerkin
finite element method. They reported 2S vortex shedding mode in all reduced velocities (1 < Vr < 30)
for α = 0◦. At α = 45◦, P + S mode and 2P modes were observed, with a maximum normalized
cross-flow vibration amplitude of 0.92 at Vr = 10.

Unlike square cylinders, the vortex-induced vibrations of polygonal cylinders have been marginally
studied in wind engineering such as in bridge decks Kawatani et al. [42] or in marine structures
such as bundled pipelines [43]. Limited studies are available on vortex-shedding from hexagonal
cylinders [44–46]. This study aims to investigate the cross-flow VIV response of hexagonal cylinders
with m* = 2 at Re = 1000. To do so, numerical models of one-degree-of freedom (1-DOF) vibration of
the hexagonal cylinders based on the solution of two-dimensional Reynolds-averaged Navier–Stokes
(RANS) equations and k-ω turbulence model are developed. As such, the in-line vibration and
flow-induced instabilities such as galloping are not investigated herein. The lift and cross-flow
vibrations as well as vortex shedding regimes at reduced velocities between 2 and 18 of face-oriented
and corner-oriented hexagonal cylinders are discussed.

2. Numerical Method: Governing Equations and the Computational Model

Incompressible Reynolds-averaged Navier–Stokes (RANS) equations are used to simulate the
flow. To avoid the mesh distortion, the moving boundaries of the cylinder surface are modelled with
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the Arbitrary Lagrangian Eulerian (ALE) scheme. Assuming u and p represent the time-average values
of velocity and pressure, the RANS equations in a Cartesian coordinate system are written as

∂ui
∂xi

= 0
∂
∂t (ρui) +

∂
∂x j

(ρuiu j) = −
∂p
∂xi

+ ∂
∂x j

(2νSi j − u′i u
′

j)
(1)

where ν is the viscosity and Sij is the mean stress tensor. The small-scale fluctuations of velocity relating
to the turbulence are reduced as u′iu′ j, which is referred to as the Reynolds stresses. Menter’s [47]
shear stress transport (SST) k-ω model, known to accurately capture the adverse pressure gradient
flows (because of the concept of elliptic relaxation of ω-equation in the near wall region) is used to
model the turbulence in Equation (1). The mean stress rate tensor Sij, and the Reynolds stress tensor
u′iu′ j are

Si j =
1
2 (
∂ui
∂x j

+
∂u j
∂xi

)

u′i u
′

j = −2νtSi j −
2
3 kδi j

(2)

where νt = k/ω is the turbulent viscosity and k is the turbulent energy. Menter’s [47] formulation uses
a k-ω model in the inner part of the boundary layer and a k-ε model in the free shear layer, where k is
the turbulent kinetic energy, ω is the dissipation rate, and ε is the isotropic dissipation of the turbulence
energy. The turbulence kinetic energy is given by

k =
3
2
(UI)2 (3)

where I is the turbulence intensity defined by

I = 0.16(Re)−
1
8 (4)

The specific dissipation rate (ω) is

ω =
k0.5

Cµ0.25l
(5)

where l = 0.07D is the turbulence length and Cµ is an empirical constant approximately equal to
0.09 [48].

The computational mesh with a corner-oriented hexagonal cylinder is shown in Figure 1. The length
of the computational domain in the in-line and cross-flow directions are 50D and 40D, respectively [41].
The cylinder is located 20D downstream of the inlet. A free-stream velocity of u = U, v = 0 and in the
x-direction is defined at the inlet. The pressure gradient and gradient of the fluid velocity at the outlet
reduce to zero and the symmetry boundary conditions are imposed to the top and bottom surfaces.
The fluid velocity along the cylinder wall surface is assumed to be the same as the structural speed of
vibration of the cylinder (no-slip boundary condition).

The equation of motion of the cylinder in the cross-flow direction (Y) is

m
d2Y
dt2 + C

dY
dt

+ KY = FL (6)

where C and K are the structural damping and lateral stiffness constants of the cylinder, respectively
and FL is the fluid force on the cylinder in the cross-flow direction (lift force). To get the most adverse
vibration responses, the damping constant is set to zero in the current study. In the computational
model, a moving mesh zone (dynamic zone) with a diameter of 5D around the cylinder is adopted,
and is allowed to move with the cylinder in the cross-flow direction as a rigid body. Transient
ANSYS-Fluent [49] package is used to solve the fluid-structure interaction model (Equations (1)–(6))
using an iterative approach. After each time-step, the cylinder and the dynamic zone move in
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the cross-flow direction, and the displacements of the nodes are calculated based on the Laplace
equation [50]

∇·(γ∇Sy) = 0 γ =
1
A

(7)

where Sy represents the nodal displacement in the cross-flow direction, γ is a parameter used to avoid
excessive deformation of the near-wall elements, and A is the area of the element. No-slip boundary
condition on the cylinder surface is adopted [51]. Selection of the time-step in a numerical simulation
is a compromise. Trying to cut the time step to achieve a better temporal view would of course
increase the computational resources demand. Trying to do so on a coarser mesh would mean fine
scale structures would not be captured. Moreover, to get a Courant number less than or equal to 1,
a normalized time step of 0.02 is calculated from ∆t = 0.02 D

U [52].
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3. Numerical Results

3.1. Validation of the Numerical Model

Numerical results from VIV of a circular cylinder with m* = 2.0 and at Re = 1000 using the model
described in the previous section are shown in Figure 2. The normalized amplitudes of vibration (A/D)
are plotted against the reduced velocities in Figure 2a. Current results agree well with the published
numerical 2D and 3D results in the initial (Vr < 4) and upper branches (4 < Vr < 12). At Vr > 12,
the amplitudes calculated from the current and published 2D numerical results [53,54] are lower than
the experimental [28] and 3D numerical [32] results.
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As can be seen in Figure 2a, most of the numerical models fail to capture the large amplitudes
observed in the experimental study of Khalak and Williamson [28] within the upper branch. There are
some exceptions to this. In a recent effort by Nikoo et al. [54] (not shown in Figure 2), the RANS-SST
k-ω method with low-Re correction was used, and amplitudes of vibration closer to the experimental
results within the upper branch were calculated. Pan et al. [51] used a fourth-order Runge-Kutta
scheme to integrate the equation of motion (Equation (6)), and used a RNG k-ε turbulence model
to solve the governing equations of Equation (1). They report that by reducing the normalized
velocity Vr step to increments of 0.025, a normalized amplitude as high as A/D = 0.7 can be reached
at Vr = 4.2 [53]. However, they argued that this maximum amplitude did not correspond to a stable
state [53]. The current study aims to demonstrate the overall response of hexagonal cylinders with
respect to cross-flow vibrations, and to compare it against that of a circular cylinder. Thus, Vr steps of
one is used herein.

Knowing that the normalized time is (t∗ = tU/D), the normalized frequencies (f* = fo/fn) of the
circular cylinder as a function of the reduced velocity are plotted in Figure 2b. The vibration frequency
(fo) is obtained by FFT analysis of the lift force. The lift frequencies are dominated by the natural
frequency (fn) and the Strouhal frequency (fst) of the rigid cylinder. The dimensionless Strouhal
frequency (fst) (or Strouhal number by adopting D = 1, and U = 1) is equal to fsD/U, where fs is the
shedding frequency, and is shown with dashed line. Current results are consistent with experimental
results of Khalak and Williamson [28]. At 4 < Vr < 12 (the upper branch), the cylinder vibrates at
a constant frequency, which is almost equal to its natural frequency (lock-in region). Outside this
region, the vibration frequency follows the Strouhal law. It should be noted that using a smaller
reduced velocity step (0.025), Pan et al. [51] observed the lock-in phenomenon at Vr between 4.4 and 11
(similar to the current results).

3.2. Mesh Sensitivity Analysis

In order to obtain the optimum mesh size of the computational model, mesh sensitivity analyses
of a rigid circular cylinder at Re = 100, and rigid circular and corner-oriented hexagonal cylinders at
Re = 1000 were conducted. Results are represented in Table 1 for four different mesh types. The number
of divisions per the length parameter (Li), defined in Figure 1, and the total number of elements for
each mesh are given in Table 1. As represented in Table 1 at both Re = 100 and Re = 1000, reasonable
accuracy is observed using mesh 3. It can be seen that the root-mean-square lift, mean drag and
Strouhal number of mesh 3, agree well with the previously reported results of circular cylinders at
Re = 100 [55–57]. At Re = 1000 and using mesh 3, Strouhal number of the corner-oriented hexagon is
only 0.3% different from the value reported by Khaledi and Andersson [46], using a DNS approach [58].
Moreover, St and CD results obtained with mesh 3 at Re = 1000 agree well with previously reported
results. Thus, mesh 3 is adopted herein, and is used to model the vibration response of hexagonal
cylinders in corner and face orientations.
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Table 1. Mesh dependence study of circular and hexagonal rigid cylinders using the computational model of Figure 1.

Case Number of Divisions Total Number of
Elements Re = 100 Circular Cylinder Re = 1000 Circular

Cylinder
Re = 1000 Corner-Oriented

Hexagonal Cylinder

L0 L4 L5 L6 RMS CL Mean CD St St Mean CD St Mean CD
Linnick and Fasel [55] - - - - - 0.333 1.340 0.166 - - - -

Berthelsen and Faltinsen [56] - - - - - 0.340 1.380 1.169 - - - -
Williamson and Roshko [57] - - - - - - - 0.164 - - - -

Khaledi and Andersson (DNS) [46] - - - - - - - - - - 0.1718 -
Roshko (Exp) [59] - - - - - - - - 0.21 1.2 - -

Ku [60] - - - - - - - - 0.233 1.17 - -
Zukauskas and Ziugzda [61] - - - - - - - - 1.20 - -

This study (mesh 1) 20 25 30 35 13,382 0.347 1.381 0.161 - - 0.1732 2.145
This study (mesh 2) 25 30 35 40 18,140 0.339 1.363 0.163 - - 0.1729 1.716
This study (mesh 3) 30 40 45 50 30,520 0.333 1.352 0.163 0.220 1.200 0.1724 1.492
This study (mesh 4) 35 45 55 55 35,950 0.330 1.348 0.163 - - 0.1723 1.427

Note: in Figure 1: L1 = 2 × L0, L2 = L1, L3 = 6 × L0, L7 = L4, L8 = L5, L9 = L7.
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4. One-Degree-of-Freedom Responses of the Hexagonal Cylinders

The VIV responses of circular and hexagonal cylinders with face and corner orientations are
plotted in Figure 3 at reduced velocities from 2 to 12, at steps of one, and at steps of two for reduced
velocities from 12 to 18. It should be noted that in a corner-orientation, the hexagon has smaller frontal
area and therefore a lower corresponding Reynolds number (Re = 867). The difference in Re is reflected
in the reduced velocity as well. Therefore, in the corner-oriented hexagon the reduced velocities do not
correspond to the exact integers. The normalized amplitudes and frequencies are plotted in Figure 3.
It is meaningful to compare the current amplitudes and frequencies with those of a square cylinder at
flow approaching angles α of 0◦ and 45◦. For this purpose, the two-degrees-of-freedom response of
a square cylinder with m* = 2.0 and Re = 100 conducted by Zhao et al. [41] is selected, and is plotted in
Figure 3a.
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Figure 3. The VIV response of a circular and hexagonal cylinder at different reduced velocities,
(a) normalized amplitudes, (b) normalized frequency for corner-oriented hexagon, and (c) normalized
frequency for face-oriented hexagon.

It can be seen from Figure 3a, that the amplitudes of the hexagonal cylinders are in between
those of the squares cylinders with α = 0◦ (lower bound) and α = 45◦ (upper bound). At Vr > 14,
the amplitudes of the hexagonal and corner-oriented square (α = 45◦) cylinders plateau at A/D around
0.4. Whereas, in the circular and face-oriented square (α = 0◦) cylinders, the vibration amplitudes show
a significant drop. The maximum normalized cross-flow amplitude of a square with α = 0◦ is equal
to 0.35 and occurs at Vr = 5. A normalized amplitude equal to 0.35 is observed in the face-oriented
hexagon at Vr = 5 in Figure 3a. Current results show that compared to the corner-oriented square,
at Vr < 16, the corner-oriented hexagon has diminished VIV response.

In the corner-oriented hexagon, the amplitude response is comprised of three branches: (a) A lower
branch at 3 < Vr < 6, (b) an upper branch at Vr > 12, and (c) a transition zone at reduced velocities
between 6 and 12. Normalized amplitudes range from 0.1 to 0.4 in the corner-oriented hexagon.
In the face-oriented hexagon, normalized amplitudes as large as 0.2 are observed at reduced velocities
as low as Vr = 2. At Vr > 3, the normalized amplitudes fluctuate between 0.3 and 0.45. At Vr < 9,
the face-oriented hexagon has larger amplitudes than the corner-oriented hexagon. It is worth to
mention that Kumar et al. [62] observed a new extended initial branch in the VIV response of elliptical
cylinder at low Re and low mass ratio.

The normalized frequencies of the corner- and face-oriented hexagons are shown in Figure 3b,c,
respectively. Vibration frequencies of the hexagonal and face-oriented square cylinders follow the
Strouhal law (i.e., the cross-flow vibration frequency is equal to the vortex-shedding frequency) for the
entire range of the reduced velocity, and no lock-in is observed. At Vr > 4, the normalized frequencies
of the corner-oriented hexagon are above the Strouhal line, whereas, those of the face-oriented hexagon
are below it. It should be noted that in the square study [41], lock-in response was only observed in the
response of the corner-oriented square (α = 45◦) and at 3 < Vr < 10. However, no lock-in response is
seen in the hexagonal cylinders.

Time histories of the lift coefficients and vibration amplitudes of the corner-oriented hexagon
cylinder are shown in Figure 4 for selected reduced velocities. The normalized time is t∗ = t fn.
In calculation of the lift coefficients, Reynolds numbers, normalized time, and reduced velocities,
the projected frontal areas of the cylinders are used. The projected frontal area of the face-oriented
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hexagons is equal to D, and that of the corner-oriented hexagon is equal to
√

3
2 D based on a cylinder

of unit length. As shown in Figure 4a, at small reduced velocities (Vr < 5), the mean value of the
lift coefficient is zero throughout. At larger reduced velocities, although the cylinder configuration
is symmetric, the mean value of the lift is non-zero. At Vr = 11.41, the non-zero lift fluctuates from
one side of the cylinder to the other side. However, at Vr = 20.57, the mean lift has a negative value.
Normalized amplitudes are shown in Figure 4b for selected time domain. Apart from Vr = 2.28, at other
reduced velocities regular responses are observed.
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The lift time histories of the face-oriented hexagonal cylinders are shown in Figure 5a. At Vr = 2
the mean value of the lift force is non-zero, and is on the positive side of the curve for the timespan
considered. However, at Vr = 5 the non-zero lift changes from a positive mean value (32 < t* < 34)
to a negative mean value (34 < t* < 36). At larger reduced velocities, the lift force becomes irregular.
This irregular behavior is observed in the time history of the vibration amplitudes at larger reduced
velocities (Vr = 10, 18), as well (Figure 5b). This phenomenon is related to the vibration modes and will
be discussed later.
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The phase difference (φ) between the lift coefficient and the cross-flow displacement is determined
by the FFT analysis of each cylinder at different reduced velocities, and is shown in Figure 6. The phase
difference corresponds to the delay between the peak in the amplitude and the peak in the lift force
component at the same frequency, and is calculated from the amplitude spectra of the lift force and
cross-flow displacement (not shown herein). Phase differences of square cylinders are taken from [41],
and are plotted as well. It should be noted that in the corner and face-oriented hexagons, the force and
vibration responses are irregular at some reduced velocities (refer to Figures 4 and 5). Therefore, in
calculating the phase angles, effort was made to capture a time domain that corresponded to a regular
response, when possible. The most distinctive difference between the phase responses of the hexagonal
cylinders and the rest, is the emergence of the out of phase response (φ , 0) at low reduced velocities.
Similar behavior was reported in the response of a faceted cylinder (textured pipe) [63]. At reduced
velocities of 5 and above, the lift force becomes out of phase (φ ≈ 180) with the cross-flow amplitude.
The out of phase response was reported to occur at Vr = 7 and Vr = 9, in the flat and corner-oriented
squares, respectively (Figure 6). Fluctuations in the phase angles of the hexagonal cylinders are
observed at 10 < Vr < 16. This is more evident in the face-oriented hexagon, where a phase angle of
φ = 165◦ is seen at Vr = 14.
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5. Vortex Shedding Regime

Figure 7 shows the vorticity contours of the corner-oriented hexagon at Vr = 2.28, at four instants
in one vibration period during which the normalized vibration frequency is 0.346 and the normalized
amplitude is 0.03. The trajectory of the cylinder in the xy plane, and its instant position are depicted next
to each vortex contour. The legends are provided for comparison between the vorticity magnitudes.
Vortex C is shed from the top of the cylinder as it is moving from the top to the bottom of the trajectory.
At this instant two positive vortices (A and B) are already shed from the bottom of the cylinder, and
are located between 2–4 D in the wake. As the cylinder moves down the trajectory, the vortices A and
B merge and move further down the wake. While the cylinder is at its lowest trajectory position, three
vortices (one positive and two negative) are being shed. At the end of the vibration period, vortices
A and B are merged into a single vortex, and are followed by vortex C. As can be seen in Figure 7,
the vortex regime of the corner-oriented hexagon at this small reduced velocity changes from a P + S
mode (pair A + B and single C), to a 2S mode (C and A + B).
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Figure 7. Vorticity contours at four instants in a vibration period of the corner-oriented hexagonal
cylinder at Vr = 2.28 at 93.02 < t* < 95.92.

Vortex regimes of the corner-oriented hexagon at Vr = 11.41, corresponding to frequency and
amplitude of 2.4 and 0.35, respectively, are shown in Figure 8. One pair (B and C) and one single (A)
vortex are shed in each vortex shedding period, describing a P + S mode. The shedding frequency is
twice the vibration frequency. When the cylinder moves down the trajectory, the P + S is shed from the
top, and when the cylinder moves upward, a new P + S is generated from the bottom. The P and S
vortices have different sizes but similar strengths. As predicted from Figure 3b, the vibration frequency
is smaller than the Strouhal frequency.
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Figure 9 shows the vortex regime of the corner-oriented hexagon at Vr = 20.57. At this reduced
velocity, the vibration frequency is significantly lower than the Strouhal frequency and is 3.5 times
larger than the natural frequency of the cylinder. The vibration amplitude (Figure 3a) at Vr = 20.57 is
not much different from the amplitude at Vr = 11.41. However, the vortex regimes at those reduced
velocities are dissimilar. As shown in Figure 9, four vortices (labelled by A-D) are shed from the
cylinder in each vibration period. These vortices have different sizes and magnitudes and do not pair
up behind the cylinder. Zhao et al. [41] reported similar vortex regime in a square cylinder at α = 22.5◦,
with Vr = 7 (outside the lock-in region).
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Figure 9. Vorticity contours at four instants in a vibration period of the corner-oriented hexagonal
cylinder at Vr = 20.57 at 9.25 < t* < 10.40.

Figure 10 shows vortex regime of the face-oriented hexagon at Vr = 2, at which the normalized
amplitude and frequency of vibration are 0.17 and 0.79, respectively. As the cylinder moves down
from the peak point, a pair of vortices (A + B) are shed from the top. This pair follows two vortices
(labelled by C and D) at the bottom. At the end of the vibration period, a new pair of vortices is being
shed from the bottom of the cylinder. The P + 2S formation observed here is significantly different
from that of the corner-oriented hexagon at the same reduce velocity. The four vortices progress slowly
in the rear of the cylinder (almost 1D in a vibration period). The pair (A + B) has larger vorticity and is
shed while the cylinder moves down the trajectory. The single vortices (C and D) are not as strong and
move below y = 0 line, throughout the wake. This P + 2S mode is different from typical mode. As seen
in Figure 10, another single vortex of smaller vorticity is detached from the pair (A + B), at half-period.
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The vortex regime of the face-oriented hexagon at Vr = 10, is shown in Figure 11, and clearly
depicts a P + S mode in one vibration period. The already generated single vortex at the bottom (A),
moves in the bottom rear wake of the cylinder, while a pair (C + B) is shed from the top. It can be seen
that at the end of the period, a new pair of vortices are being developed at the bottom of the cylinder.
Comparison between Figures 8 and 11 at (10 < Vr < 12) shows that in a P + S vortex regime mode,
the amplitudes and frequencies of vibration of the hexagons in corner and face orientations are almost
equal. At similar amplitudes (0.2 < A* < 0.3), Zhao et al. [41] reported a 2S mode for a circular cylinder
with α = 0◦.
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6. Conclusions 

Figure 11. Vorticity contours at four instants in a vibration period of the face-oriented hexagonal
cylinder at Vr = 10 at 21.32 < t* < 21.92.

Figure 12 shows the vortex regime of the face-oriented hexagon at Vr = 18. Four vortices in two
pairs (2P mode) are shed within each vibration cycle. The current regime is a typical 2P mode, and the
two pair of vortices that are shed from the cylinder in each vibration period, are symmetric about
an imaginary y = 0 line. Toward the end of the vibration cycle, and at a distance of 8D in the rear
wake, the pair of vortices still have high vorticity. This explains the high amplitude and frequency
of vibration, and the irregular lift and amplitude responses of the face-oriented hexagon at large
reduced velocities.
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6. Conclusions

One degree of freedom VIV response of hexagonal cylinders in corner and face orientations at
Re = 1000 and at low mass ratio of m* = 2 were investigated using numerical simulations at reduced
velocities up to 20. Results were compared against a published numerical work on VIV of square
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cylinders at low Reynolds number and mass ratio [41]. Unlike square cylinders, no lock-in region was
observed in the VIV responses of the hexagonal cylinders at the studied reduced velocities. Normalized
frequencies (vibration frequency divided by the natural frequency) of the corner-oriented hexagon
were found to be dominantly below the Strouhal frequency (fs), whereas, in the face-oriented hexagon,
the normalized frequencies were slightly larger than fs.

Within the studied reduced velocity range, the maximum normalized cross-flow amplitude of
vibration of the hexagonal cylinders were shown to be around 0.45. This is significantly lower than
the reported maximum amplitudes of 0.96 for circular cylinder [28] and 0.925 for corner-oriented
square cylinder [41]. At large reduced velocities, similar amplitudes (around 0.4) were observed in the
corner-oriented square and hexagonal cylinders. Unlike other cylinders, phase differences between
amplitude and lift forces (φ , 0) were seen in the hexagonal cylinders, at low reduced velocities.
The phase difference settled at φ ≈ 180 in the corner-oriented hexagon at large reduced velocities.
However, fluctuations were seen in the phase differences of the face-oriented hexagon.

The vortex shedding regimes of the face-oriented hexagons were more similar to the typical modes
reported in the literature, compared with the corner-oriented hexagon. At low reduced velocities
(and low amplitudes), P + S modes were observed in the corner-oriented hexagon. At large amplitudes,
four non-pairing vortices of different sizes and magnitudes were observed in the corner-oriented
hexagon, similar to observations of Zhao et al. [41] of a corner-oriented square at large amplitudes.
P + 2S modes were observed in the face-oriented hexagon, and explained the existence of sizeable
vibration amplitudes at low reduced velocities. At larger reduced velocities, P + S modes were observed,
and clarified the larger amplitudes of face-oriented hexagon compared to flat square cylinders with
2S modes reported in [41]. At very large reduced velocities distinct 2P modes were seen, and were
shown to have significant vorticity magnitudes in a distance as far as 8D in the rear wake of the
face-oriented cylinder.
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