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Abstract: The wave interaction with a vertical column shielded by an exterior porous shell is
studied within the framework of potential flow theory. The structures are fixed rigidly at the sea
bottom. The interior cylinder is impermeable, and the exterior shell is slightly porous and thin.
Additionally, the exterior shell is assumed to have fine pores, and a linear pressure drop is adopted
at the porous geometry. The mean drift wave force on the system is thereby formulated by two
alternative ways, based respectively on the direct pressure integration, i.e., the near-field formulation,
and the application of the momentum conservation theorem in the fluid domain, i.e., the far-field
formulation. The consistency of the two formulations in calculating the mean drift wave force is
assessed for the present problem. Numerical results illustrate that the existence of the porous shell
can substantially reduce the mean drift wave force on the interior column. It also appears that the
far-field formulation consists of a conventional part as well as an additional part caused by the energy
dissipation through the porous geometry. The mean drift wave force on the system is dominated by
the first part, which resembles that on an impermeable body. Local enhancements of the mean drift
wave force are found at some specific wave frequencies at which certain propagation modes of the
fluid satisfy a no-flow condition at the porous shell.
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1. Introduction

A geometry with slots or pores can be used to enhance energy dissipation and in turn reduce the
environmental impact. Currently, porous structures have been widely constructed in the coastal and
offshore industries for the purpose of shore production or reduction of the wave forces. To achieve
a good understanding of the hydrodynamic properties related to porous structures, the behavior of
a porous body in waves has attracted considerable interest among researchers.

So far, various studies have been conducted on this subject due to its importance in practical
engineering. The porous elements are included in many offshore structures, such as fish cages,
wave breakwaters, and offshore platforms equipped with damping devices. The porous geometry was
commonly assumed to be with fine pores and thin in thickness. A linear or quadratic resistance law
was used to relate the pressure drop to the crossflow velocity. Linear relations between the pressure
drop across the porous geometry and the traversing velocity were derived by researchers, e.g., by using
Darcy’s law [1] or by using the convection neglected and porous effect modelled Euler equation [2].
The linear laws were adopted in many studies in assessing the functional performance of porous
breakwaters of different types, such as vertical or submerged horizontal porous plates, perforated
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caissons, and porous columns [3–8]. Based on a linear resistance law, Zhao et al. [9] examined the
various hydrodynamic identities for porous structures. In addition, Dokken et al. [10] formulated the
wave diffraction/radiation problem of a porous geometry of an arbitrary shape by a set of integral
equations. On the other hand, to model the flow separation through porous materials, quadratic laws
were proposed in some studies, such as Molin [11] and An and Faltinsen [12]. The quadratic pressure
drops were considered by researchers in prediction of the added mass and the damping coefficients for
a porous stabilizer, plate, or disc undergoing forced motions as well as the wave force on thin porous
sheets. Examples include Molin and Remy [13] and Mackay et al. [14].

The application of a porous material can lead to a low level of wave transmission and reflection.
In the meantime, it can also reduce the wave impact on the enclosed structure. A vertical column has
been an essential component of various offshore structures. Previous studies indicated that the linear
wave force on an impermeable column can be reduced significantly by surrounding it with porous
geometries (see Wang and Ren [15] for example). Besides the linear wave force, the nonlinear wave
force is also closely relevant to the proper design of offshore structures. The nonlinear hydrodynamic
properties related to a vertical column or a column array in open seas has been investigated in
some studies spanning from analytical studies to model tests and numerical modelling, such as
references [16–20]. However, the nonlinear wave interaction with a vertical column shielded by
an exterior porous shell has been rarely investigated so far. The present study intends to contribute in
this direction.

In this study, the mean drift wave force, which is of the second order from the perspective
of the wave steepness, on a system consisting of an interior impermeable cylinder and an exterior
porous shell is investigated. Definition of the concentric porous cylinder system is given in Figure 1.
The potential flow theory is adopted, and a linear resistance law is assumed at the porous shell.
Within the framework of the potential flow theory, a non-linear analysis can be achieved by applying
a perturbation procedure, in which the velocity potential, wave force, and other physical quantities of
interest are expressed in linear and higher-order components through some small parameters, and the
wave steepness is normally used as the perturbation parameter. Based on the idea of the perturbation
expansion, the mean drift wave force normally represents a time-independent force component which
is proportional to the square of the wave steepness. In this study, semi-analytical solutions to the
mean drift wave force on the system shown in Figure 1 are developed by two alternative ways. One is
based on the direct pressure integration, while the other is based on the application of the momentum
conservation theorem in the fluid domain. Unfortunately, solutions to the mean drift wave force on
a vertical column shielded by an exterior porous shell have been rarely developed in the previous
studies, and the research achievement in this study can help fill this gap. Based on the developed
solutions, detailed numerical studies are performed. The effect of the exterior porous shell on the mean
drift wave force on the interior column is examined, and the characteristics of the mean drift wave
force on such a system are explored.

Following the introduction, the mathematical model and the solution of the velocity potential
are introduced in Section 2, followed by a calculation of the mean drift wave force in Section 3.
The parametric study is carried out thereafter in Section 4, with conclusions drawn in Section 5.
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2. Mathematical Model and Solutions to the Velocity Potential

Let us consider a bottom-mounted, surface-piercing, and impermeable cylinder of radius a situated
in a water of a finite depth d. This cylinder is surrounded by an exterior cylindrical shell of radius b.
Both of them are fixed rigidly at the horizontal sea bottom. The exterior shell is porous and considered
to be thin in thickness. As shown in Figure 1, a cylindrical coordinate system is employed with its
origin located at the center of the interior cylinder and at the still free surface. The z-axis directs
vertically upward and coincides with the vertical axis of the cylinders.

Within the framework of the potential flow theory, the flow is assumed to be inviscid,
incompressible and irrotational. Thus, the flow field can be described by a scalar velocity potential Φ,
satisfying Laplace’s equation,

∇
2Φ(x, t) = 0. (1)

Regular incident waves are concerned in this study. The incident wave is time-harmonic with
an angular frequency ω. Then, the time factor can be separated out, and the velocity potential is
expressed as

Φ(x, t) = Re
[
φ(r, θ, z)e−iωt

]
, (2)

where “Re” denotes the real part of a complex expression; i =
√
−1.

The entire fluid domain is then divided into two sub-domains: the interior region Ω1 (a ≤ r ≤ b),
and the exterior region Ω2 (r ≥ b). Hereinafter, the velocity potentials in the interior and exterior
regions are denoted by φ1 and φ2, respectively. Besides Laplace’s equation, appropriate boundary
conditions on the free surface and the seabed are also required, given by

∂φ j
∂z = ω2

g φ j, on z = 0, j = 1, 2; (3)

∂φ j
∂z = 0, on z = −d, j = 1, 2, (4)

where g is the acceleration due to gravity.
The fine-pore assumption is adopted, and a linear pressure drop assumption (see references [1,2]

for example) is applied as in many previous studies. Then, the boundary condition on the porous shell
can be expressed as

∂φ1
∂r =

∂φ2
∂r = ikG0(φ1 −φ2), on r = b, (5)

where k is the wave number satisfying the dispersion relation ω2 = gktanhkd. G0 is a linearized porous
effect parameter. On the surface of the interior impermeable cylinder, it is required that

∂φ1
∂r = 0, on r = a. (6)
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A train of incident waves, of an amplitude A and an angular frequency ω, propagates in the
direction of the positive x-axis to encounter the system. The incident velocity potential is then
expressed as

φI = −
iAg
ω

Z(kz)
+∞∑

m=−∞

Jm(kr)imeimθ, (7)

in which Jm(kr) stands for the Bessel function of order m; Z(kz) is an orthonormal function given at the
interval [−d, 0] and defined by

Z(kz) =
cosh k(z + d)

cosh kd
. (8)

The presence of the system can result in diffraction of the incident waves in the exterior region.
Then, the velocity potential in the exterior region can be decomposed as

φ2 = φI + φD, (9)

in which φD denotes the diffraction potential in the exterior region. In addition to the boundary
conditions in Equations (3), (4), and (5), φD also needs to satisfy the Sommerfeld radiation condition in
the far field. That is,

lim
r→∞

√
r
(
∂φD

∂r
− ikφD

)
= 0. (10)

The solution of the velocity potential is then obtained following the way shown in [15].
The separation of variables method is used, and the expressions of φ1 and φ2 can be written as

φ1(r, θ, z) =
+∞∑

m=−∞

R1, m(r)Z(kz)eimθ; (11a)

φ2(r, θ, z) = φI(r, θ, z) + φD(r, θ, z) =
+∞∑

m=−∞

R2, m(r)Z(kz)eimθ, (11b)

in which

R1, m(r) = −
iAg
ω

im[Bm Jm(kr) + CmHm(kr)]; (12a)

R2, m(r) = −
iAg
ω

im[Jm(kr) + AmHm(kr)]. (12b)

In Equation (12), Am, Bm and Cm are unknown coefficients; Hm(kr) is the Hankel function of the
first kind of order m. The velocity potential given in Equation (11) satisfies Laplace’s equation and
Equations (3) and (4). The unknown coefficients in these expressions can be determined by imposing
the boundary condition at r = a and r = b (see Equations (5) and (6)). Then, Am, Bm and Cm are derived as

Am = −
βm J′m(kb) + 2G0 J′m(ka)
βmH′m(kb) + 2G0H′m(ka)

; (13a)

Bm =
2G0H′m(ka)

βmH′m(kb) + 2G0H′m(ka)
; (13b)

Cm = −
2G0 J′m(ka)

βmH′m(kb) + 2G0H′m(ka)
, (13c)

in which
βm = πκb[J′m(kb)H′m(ka) − J′m(ka)H′m(kb)]. (14)

In Equations (13) and (14), the prime appearing in the superscript denotes the derivative with
respect to the argument.
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3. Calculation of the Mean Drift Wave Force Based on Direct Pressure Integration

Based on the derived velocity potential, various quantities of engineering interest can be
determined. The mean drift wave force can be computed from the quadratic products of the quantities
derived from the linear wave theory. The calculation of the mean drift wave force based on the
direct pressure integration, i.e., the near-field formulation, is quite straightforward. Referring to the
well-established second-order theory, the mean drift wave fore on the interior column, f (2)−c , can be
determined according to

f (2)−c = −
ρ

4

x

Sc

∇φ1 · ∇φ
∗

1nxds +
ρω2

4g

∮
Γc

φ1φ
∗

1nxdl. (15)

In Equation (15), Sc stands for the undisturbed wetted surface of the column; Γc denotes the
intersection of Sc with mean free surface (z = 0); n = (nx, ny, nz)T is the normal vector on the boundary
surface which is positive when pointing out of the fluid domain. The analysis of the mean drift force
on a porous geometry is similar to that of an impermeable one. This was done by some researchers,
such as the authors of references [9,10]. As for the present system, the mean drift wave force on the
porous shell, f (2)−s , is due to the difference between the fluid pressure on its outer and inner surfaces.
Then, we have

f (2)−s = −
ρ

4

x
S−s

∇φ1 · ∇φ
∗

1nxds +
x

S+s

∇φ2 · ∇φ
∗

2nxds

+ ρω2

4g


∮
Γ−s

φ1φ
∗

1nxdl +
∮
Γ+

s

φ2φ
∗

2nxdl

, (16)

in which an asterisk in the superscript represents the complex conjugate; S+
s and S−s represent the outer

and inner undisturbed wetted surfaces of the porous shell; Γ+
s and Γ−s stands for the intersection of S+

s
and S−s with the mean free surface (z = 0). For vertically axisymmetric bodies, the surface integrals in
Equations (15) and (16) can be simplified by integrating in θ and applying the orthogonality. Making
use of Equations (5), (6), and (11), we can have

f (2)−c =
ρπa

2
Re

 +∞∑
m=−∞

R1, m(a )R∗1, m+1(a )
[ 1
a2 m(m + 1) − k2

]
N(kd)

, (17)

and

f (2)−s =
ρπb

2
Re

 +∞∑
m=−∞

[
R2, m(b)R∗2, m+1(b) −R1, m(b)R∗1, m+1(b)

][ 1
b2 m(m + 1) − k2

]
N(kd)

. (18)

In Equations (17) and (18), N(kd) is defined by

N(kd) =

0∫
−d

[Z(kz)]2dz =
1

cosh2 kd

d
2

(
sinh2kd

2kd
+ 1

)
. (19)

Then, the total mean drift wave force on the system, f (2)−, can be expressed as a sum of f (2)−c and f (2)−s ,
i.e.,

f (2)− = f (2)−c + f (2)−s . (20)
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4. Calculation of the Mean Drift Wave Force Based on the Application of the Momentum
Conservation Theorem

Besides the approach of direct pressure integration, the mean drift wave force can also be obtained
by applying the momentum conservation theorem in the entire fluid domain, namely the far-field
formulation. By using the kinematic transport theorem and Gauss’ theorem, the total linear momentum
along the direction of wave propagation can be expressed as

dM̃
dt

= −
x

Sb∪S∞∪Sd∪S f

[Pnx + ρu(u · n−Un)]ds, (21)

in which M̃ is the momentum; P is the fluid pressure; Sb represents a summation of the wetted
surface of the column as well as the inner and outer wetted surface of the porous shell, respectively,
i.e., Sb = Sc + S+

s + S−s ; S∞ is a circular cylindrical control surface at a large distance from the system;
S f and Sd represent the overall free surface and the overall sea bed in the entire fluid domain,
respectively; u = ∇φ = (u, v, w)T is the vector of the fluid particle velocity; Un denotes the normal
velocity of the boundary surface. On Sf and Sd, it is required that u·n − Un = 0. In addition, the entire
system and the control surface at infinity are fixed, yielding Un = 0 on Sb and S∞. On Sd, we have
nx = 0. In the meantime, on the free surface, the fluid pressure P is equivalent to the atmospheric
pressure which is assumed zero. Then, based on Equation (21), the wave force on the system, F, can be
related to the total linear momentum in the fluid domain. That is,

F =
x

Sb

Pnxds = −
x

Sb

ρu(u · n)ds−
x

S∞

[Pnx + ρu(u · n)]ds−
dM̃
dt

. (22)

When the time average is taken, and the periodicity is invoked, the last term on the right-hand
side of Equation (22) gives no contribution. Then, the mean drift wave force on the system is

f (2)− = f (2)−f + f (2)−n , (23)

in which
f (2)−f = −

x

S∞

[Pnx + ρu(u · n)]ds; (24a)

f (2)−n = −
x

S+s +S−s

ρu(u · n)ds. (24b)

In Equation (24), an over bar indicates averaging over a wave period. In the far field, using
asymptotic expressions for Hankel functions, the diffraction potential for large r can be expressed in
an asymptotic form. Then, we have

φ2 = −
iAg
ω

[
eikr cosθ +

√
2

2kr ei(kr− π4 )
+∞∑

m=−∞
Λmeimθ

]
Z(kz), as r→ +∞, (25)

in which
Λm = imAme−

mπ
2 i. (26)

Inserting Equation (25) into Equation (24a) and applying the stationary phase method to the
double integral, Equation (24a) can be rewritten as

f (2)−f = −
ρgA2

k
2kd + sinh2kd

2sinh2kd
Re

 +∞∑
m=−∞

2
(
ΛmΛ∗m+1 + Λm

). (27)
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Combining Equations (5), (6), and (11), Equation (24b) can be rewritten as

f (2)−n =
ρ

2
Re

N(kd)iπkG0

+∞∑
m=−∞

[(2m + 1)δ∗mδm+1]

, (28)

in which

δm = R1, m(b) −R2, m(b) = −
2Ag
πkbω

imβm

βmH′m(kb) + 2G0H′m(ka)
. (29)

From the derivation of Equations (23), (27), and (28), it is noted that when a vertical column is
shielded by an exterior porous shell, the far-field formulation consists of a conventional part similar to
that on an impermeable body, i.e., f (2)−f , as well as an additional part caused by the energy dissipation

through the external porous shell, i.e., f (2)−n .
In this section, solutions to the mean drift wave force on the system are derived by applying the

momentum conservation theorem in the entire fluid domain. Actually, if the momentum conservation
theorem is applied in a finite fluid domain surrounding the structure, solutions can also be derived.
Then, the quantities on a control surface, which is a distance away from the structure, are involved
in the calculation. The derivation of the semi-analytical solutions to the mean drift wave force on
structures using control surfaces can be found in some previous studies, such as Cong et al. [21].

5. Numerical Results and Discussion

In the previous sections, two different formulations have been proposed for the mean drift
wave force on a concentric porous cylinder system. When the near-field formulation is used,
the mean drift wave force on the interior column and the exterior shell can be evaluated based
on Equations (17) and (18), respectively. The force components involved in the far field formulation
can be evaluated according to Equations (27) and (28), respectively. Hereinafter, the factor ρgaAA*
is introduced for the normalization, and the symbols f−c , f−s , f−f , f−n and f− are used to denote the
normalized mean drift wave force. The convergence of the wave force based on the two proposed
formulations both depends on the number of Fourier modes. In the numerical algorithm, in total, 2M + 1
Fourier modes (from the order (−M) to the order M) have been included. To examine the convergence
of the present solution with respect to M, calculations are performed for the case of b = 2a, d = 3a and G0

= 0.1. Tables 1 and 2 list the normalized mean drift wave force on the interior column, i.e., f−c , and the
exterior porous shell, i.e., f−s , as a function of M for a set of wave frequencies. The variation of f−f and
f−n , which are the force components involved in the far-field formulation, with respect to M are given in
Tables 3 and 4. In these tables, “NF” and “FF” refer to the results evaluated according to the near-field
and the far-field formulations, respectively. Moreover, the term ka represents the product by the wave
number k and the radius a. In addition, in the tables, positive and negative signs mean that the mean
drift wave force is along the positive and negative x-directions, respectively. Inspecting the results listed
in these tables, it appears that the two models both possess good convergence characteristics. Thirty-one
Fourier modes (M = 15) is sufficient to achieve a convergent result, and therefore, M = 15 is adopted
in the subsequent computations. Meanwhile, in order to confirm the validity of the present solution,
a comparison between the results based on the two formulations is made (see Table 5). Comparison
confirms the good agreement between the convergent results based on the two formulations.
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Table 1. Variation of the normalized mean drift wave force on the interior column, f−c , with respect to
M (d = 3a, b = 2a, and G0 = 0.1).

M =

ka = 1.0 1.5 2.0 2.5 3.0

NF NF NF NF NF

5 0.294 × 10−1 0.214 × 10−1 0.291 × 10−1 0.218 × 10−1 0.554 × 10−1

10 0.294 × 10−1 0.214 × 10−1 0.291 × 10−1 0.225 × 10−1 0.585 × 10−1

15 0.294 × 10−1 0.214 × 10−1 0.291 × 10−1 0.225 × 10−1 0.585 × 10−1

20 0.294 × 10−1 0.214 × 10−1 0.291 × 10−1 0.225 × 10−1 0.585 × 10−1

30 0.294 × 10−1 0.214 × 10−1 0.291 × 10−1 0.225 × 10−1 0.585 × 10−1

Table 2. Variation of the normalized mean drift wave force on the exterior porous shell, f−s , with respect
to M (d = 3a, b = 2a, and G0 = 0.1).

M =

ka = 1.0 1.5 2.0 2.5 3.0

NF NF NF NF NF

5 1.083 1.057 1.091 1.031 0.940
10 1.083 1.068 1.116 1.075 1.035
15 1.083 1.068 1.116 1.075 1.035
20 1.083 1.068 1.116 1.075 1.035
30 1.083 1.068 1.116 1.075 1.035

Table 3. Variation of the normalized mean drift wave force component involved in the far-field
formulation, f−f , with respect to M (d = 3a, b = 2a, and G0 = 0.1).

M =

ka = 1.0 1.5 2.0 2.5 3.0

FF FF FF FF FF

5 1.328 1.297 1.218 1.068 1.068
10 1.328 1.301 1.274 1.272 1.294
15 1.328 1.301 1.274 1.272 1.294
20 1.328 1.301 1.274 1.272 1.294
30 1.328 1.301 1.274 1.272 1.294

Table 4. Variation of the normalized mean drift wave force component involved in the far-field
formulation, f−n , with respect to M (d = 3a, b = 2a, and G0 = 0.1).

M =

ka = 1.0 1.5 2.0 2.5 3.0

FF FF FF FF FF

5 −0.214 −0.197 −0.612 × 10−1
−0.518 × 10−1

−0.494 × 10−1

10 −0.216 −0.212 −0.129 −0.174 −0.201
15 −0.216 −0.212 −0.129 −0.174 −0.201
20 −0.216 −0.212 −0.129 −0.174 −0.201
30 −0.216 −0.212 −0.129 −0.174 −0.201

Table 5. Comparison of the normalized mean drift wave force on the concentric porous cylinder system,
f−, based on different formulations (d = 3a, b = 2a, and G0 = 0.1).

M =

ka = 1.0 1.5 2.0 2.5 3.0

NF FF NF FF NF FF NF FF NF FF

5 1.112 1.113 1.078 1.100 1.120 1.157 1.053 1.016 0.995 1.018
10 1.112 1.112 1.089 1.089 1.145 1.145 1.098 1.098 1.094 1.094
15 1.112 1.112 1.089 1.089 1.145 1.145 1.098 1.098 1.094 1.094
20 1.112 1.112 1.089 1.089 1.145 1.145 1.098 1.098 1.094 1.094
30 1.112 1.112 1.089 1.089 1.145 1.145 1.098 1.098 1.094 1.094
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With the validation of the developed model, a parametric study is then performed. The far-field
formulation is adopted firstly. As shown in Equation (23), if the far-field formulation is used, the total
mean drift wave force on the system consists of a component associated with the quantities in the
far-field, i.e., f−f , as well as an additional component caused by the energy dissipation through the
porous shell, i.e., f−n . The effect of the porous parameter G0 on f−f , f−n , and f− is shown in Figure 2 with
b = 2a and d = 3a. In Figure 2, G0 = 0 corresponds to the situation when the exterior shell becomes
impermeable. When G0 = 0, f−n remains zero, and f−f coincides with f−. As shown in Figure 2a,b,
when G0 > 0, f−f and f−n in general make opposite contributions to the total force on the system in
which the dominant part is f−f . In the meantime, from Figure 2c, it is found that, when the exterior
shell becomes porous, i.e., G0 > 0, the trend of the mean drift wave force on the system is different from
that when G0 = 0, as there are a series of small peaks appearing around ka = 0.678, 1.341, 1.979, 2.588,
etc. The occurrence of these small peaks is explained as below. The continuity of the fluid velocity
between the inner and the outer regions is fulfilled by Equation (5). Based on Equation (5), the normal
fluid velocity across the porous shell can be expressed as

∂φ1

∂r

∣∣∣∣∣∣
r=b

=
∂φ2

∂r

∣∣∣∣∣∣
r=b

=
+∞∑

m=−∞

ub, m = −
2Ag
πbω

Z(kz)
+∞∑

m=−∞

im+1βmG0

βmH′m(kb) + 2G0H′m(ka)
eimθ, (30)

in which

ub, m =
∂ϕ1, m

∂r

∣∣∣∣∣∣
r=b

=
∂ϕ2, m

∂r

∣∣∣∣∣
r=b

= ikG0 (ϕ1, m −ϕ2, m)
∣∣∣
r=b. (31)
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In Equations (30) and (31), ub, m is the mth order Fourier component of the normal fluid velocity
across the porous shell;ϕ1, m andϕ2, m are the Fourier components of the velocity potential in the interior
and the exterior domains, respectively. It is interesting to find that as ka gets close to 0.678, 1.341, 1.979
and 2.588 (when b = 2a and d = 3a), ub,±1, ub,±2, ub,±3, and ub,±4 approach zero, respectively. Equation (5)
ensures the continuity of the fluid velocity between the inner and outer regions. From Equation (31),
it is found that at these wave frequencies, Fourier components of the velocity potential of the order
±1, ±2, ±3, ±4, etc. are continuous as well between the inner and outer regions. It means that to
these components of the incoming waves, the porous shell is no longer a barrier but, on the contrary,
thoroughly “transparent,” permitting them to transmit across without any diffraction or dissipation.
In this mechanism, the porous shell acts as a “wave filter” for special frequencies, thereby certain
components of the incident waves cannot be dissipated by the shell. Then, the dissipation effect of the
porous shell is significantly weakened at these wave frequencies, triggering an apparent diminishment
of f−n in magnitude (see Figure 2b). In the meantime, as not all the components of the incoming waves
can be diffracted by the shell around these special wave frequencies, the diffracted waves in the far filed
would be affected, leading to the small oscillations of f−f around these wave frequencies (see Figure 2a).
As a result, due to the aforementioned large diminishment of f−n , local enhancements of the total mean
drift wave force on the system arise at these wave frequencies.

The near-field formulation is then adopted. The effect of the porous parameter G0 on the mean
drift wave force on the interior column and the exterior shell, i.e., f−c and f−s , is shown in Figure 3 with
b = 2a and d = 3a. In Figure 3a, “SC” corresponds to the situation when the exterior shell is removed
and the interior column is exposed directly to the action of the incoming waves. Figure 3a illustrates
that with the shielding of a slightly porous shell, the mean drift wave force on the interior column is
significantly reduced in comparison to that without the shell. In addition, in Figure 3a, peaks can be
observed around ka = 1.341, 1.979, and 2.588. As mentioned before, this is due to the reason that around
these wave frequencies, certain components of the incoming waves can completely transmit into the
inner region. Then, the wave action upon the interior column is enhanced, as demonstrated by the
peaks. From Figure 3a, it is also interesting to find that around ka = 0.678, f−c is close to zero, which can
be explained as below. Around ka = 0.678, the waves transmitting into the inner region are dominated
by the Fourier components of the order ±1, resulting in a phase difference of π between the lee side and
the weather side of the interior column. In addition, at ka = 0.678, the wave length is long enough when
compared to the radius of the interior column, and the wave diffraction by the column is relatively
negligible in comparison to the incident waves. Therefore, at this wave frequency, the wave run-up
along the column distributes almost anti-symmetric with respect to the y-axis. Then, the quadratic
fluid pressure, which is proportional to the square of the fluid velocity, on the lee side of the column is
almost the same as that on the weather side, leading to that the mean drift wave on the column is close
to zero. In Figure 3b, it appears that the mean drift wave force on the shell is much larger in magnitude
than that on the column, and the results of f−s are close to those of f−. It suggests that if the near-filed
formulation is adopted, the total force on the system is dominated by f−s . The effect of G0 on f−s is not
apparent for long incident waves. However, for short incident waves, the effect is notable since f−s in
general decreases as G0 increases.
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The effect of the radius of the exterior porous shell and the effect of the water depth on the mean
drift wave force acting on the impermeable column, the porous shell and the system as a whole are
shown in Figures 4 and 5, respectively. As shown in Figure 4, the total mean drift wave force on the
system increases with the increase of b. This is due to that the system interacts with more incoming
waves as the radius of the exterior porous shell increases. It is also found that the frequencies of
the small peaks move to the high-frequency region as the shell gets closer to the enclosed column.
In Figure 5, the effect of the water depth gets less apparent as ka increases. This is due to the fact that in
short incident waves, the fluid velocity decays quickly downward along the gravity direction.
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Figure 4. Effect of the radius of the exterior porous shell on the mean drift wave force on the interior
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6. Conclusions

The wave interaction with a concentric porous cylinder system, consisting of an interior
impermeable column and an exterior slightly porous thin shell, is described. The exterior shell
is assumed to have fine pores, and a linear resistance law is used to relate the pressure drop across the
porous shell with the normal velocity. This study aims to investigate the effect of the exterior porous
shell on the nonlinear mean drift wave force on the interior column. The main conclusions of this
study are summarized as follows:

(1) Two different formulations have been derived for the calculation of the mean drift wave force
on such a system. One is based on the direct pressure integration, i.e., the near-field formulation,
and the other is based on the application of the momentum conservation theorem in the fluid domain,
i.e., the far-field formulation. It is found that the results based on the two formulations agree exactly
with each other.

(2) The far-field formulation of the mean drift wave force for the present problem consists of two
parts, i.e., a conventional part, which is contributed by the quantities in the far field (similar to that on
impermeable bodies), as well as an additional part caused by the energy dissipation across the porous
shell. The former part dominates the total mean drift wave force on the system.

(3) The mean drift wave force on the interior column shielded by an exterior porous shell can be
largely reduced when compared to that without the exterior porous shell. With the exterior shell being
porous, the trend of the mean drift wave force on the system is different from that when the exterior
shell is impermeable, as there is a series of small peaks riding on the main trend. It is found that these
small peaks occur when certain propagation modes of the fluid velocity satisfy a no-flow condition
at the porous shell. Then, the porous shell cannot dissipate energy from these modes, enhancing the
wave impact upon the system.
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The characteristics of the mean drift wave force on concentric porous cylinders are explored in
this study. This reveals that, due to the presence of the porous shell, the interior column does not
experience any mean drift wave force at specific conditions. The conclusions achieved in the present
study are important references to subsequent studies concerning floating systems, which can be further
explored as a future work.
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Nomenclature

a radius of the interior column
A complex incident wave amplitude
b radius of the exterior porous shell
d water depth
f− mean drift wave force on the total system
f−c mean drift wave force on the interior column
f−s mean drift wave force on the exterior porous shell
f−n force component in the far-field formulation caused by the energy

dissipation through the external porous shell
f−f force component in the far-field formulation contributed by the

quantities at the far field
φ1, φ2 velocity potential in the interior and exterior regions
φI incident velocity potential
φD diffraction velocity potential in the exterior region
g gravitational acceleration
G0 porous effect parameter
Hm Hankel function of the first kind of order m
i imaginary unit, i2 = −1
Jm Bessel function of order m
k wave number
P fluid pressure
r, θ, z cylindrical coordinates
R1, m(r), R2, m(r) radial functions for the velocity potentials
Z(kz) vertical functions for the velocity potential
ρ density of water
ω wave frequency
x, y, z Cartesian coordinates
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