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Abstract: In contrast to either considering structures with full degrees of freedom but with wave
force on mooring lines neglected or with wave scattering and radiation neglected, in this paper, a new
analytic solution is presented for wave interaction with moored structures of full degrees of freedom
and with wave forces acting on mooring lines considered. The linear potential wave theory is applied
to solve the wave problem. The wave fields are expressed as superposition of scattering and radiation
waves. Wave forces acting on the mooring lines are calculated using the Morison equation with
relative motions. A coupling formulation among water waves, underwater floating structure, and
mooring lines are presented. The principle of energy conservation, as well as numerical results, are
used to verify the present solution. With complete considerations of interactions among waves and
moored structures, the characteristics of motions of the structure, the wave fields, and the wave forces
acting on the mooring lines are investigated.

Keywords: analytic solution; water waves; underwater floating structure; mooring forces; interaction

1. Introduction

With increasing development of ocean wave energy extraction, various types of underwater
ocean structures were used in these aspects [1]. As incident waves acting on underwater floating
structures, the wave forces in fact act on both main floating objects as well as the mooring deployments.
The reactive motions of the structure systems then feedback into the surrounding wave fields, thus
forming wave and structure interaction systems. The floating structures offer scattering and radiation
phenomena on water waves, whereas wave forces on mooring lines induce motions of the mooring
lines and cause motions of the floating structures and surrounding wave fields. In literature, most
studies on interactions of floating structures and incident waves consider either problems neglecting
wave forces on mooring lines [2] or problems with wave forces on mooring lines but without scattering
and radiation structural effects [3].

Numerical simulations are commonly used to calculate problems of ocean structures subjected
to incident waves. A three-dimensional finite element method was developed by Huang et al. [4]
to calculate wave diffraction, wave radiation, and body responses of multiple bodies of arbitrary
shape. Sannasiraj et al. [5] applied both experimental and finite element methods to study behaviors of
pontoon-type floating structures in waves. The slack mooring lines were idealized as spring coefficients
calculated from the catenary equation of cables. Chen et al. [6] used a boundary integral and Green’s
function to investigate floating breakwaters consisting of rectangular pontoon and horizontal plates.
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The mooring lines were calculated using the static catenary equation. Mohapatra and Sahoo [7] used
a Green’s integral to study the interaction problem of oblique surface gravity waves with a floating
flexible plate. In Cao and Zhao [8], a Computational fluid dynamics (CFD) numerical method was
used to study nonlinear dynamic behaviors of a two-dimensional box-shaped floating structure in
focused waves. Mohapatra and Soares [9] used linearized Boussinesq equations to study the wave
forces acting on a floating structure over a flat bottom. Kao et al. [10] used a boundary element
method to solve the problem of floating structures subjected to incident waves. Rivera-Arreba [11]
studied the dynamic response of the floating wind turbine subjected to wind and waves. On the other
hand, Guo et al. [12] used a linear wave theory to calculate the wave forces acting on the structure.
In numerical simulations for waves acting on floating structures with moorings, mostly the mooring
mechanisms were included and wave interferences were considered. However, wave forces acting on
mooring lines were not considered. The reason was that the calculation of wave forces on mooring lines
includes wave kinematics and motions of mooring lines, which complicated mathematical formulation
in the problem.

As for the analytic approach solving for interaction problems of wave and mooring floating
structures, in the analysis of waves interacting with moored floating structures, most researches
neglected wave forces acting on the mooring lines [2]. Lee [13] first considered a tension-leg floating
structure subjected to wave actions, in which the floating structure was assumed to have surge motion
only. The wave force acting on the tension leg was calculated by a linearized Morison equation,
and an analytic solution was proposed for the entire interacted problem. Lee et al. [14] applied
the interaction methodology of large and small structures, extending to tethered mooring tension
leg floating structures. Lee and Wang [15] extended the same technique to problems of tension leg
platforms with net cages. In the articles mentioned above, the floating structures allow only surge
motion; therefore, analytic solutions could be obtained without any difficulty.

If the structures are allowed to include heave and surge motions, one would then encounter the
typical heave radiation problem. Lee [16] proposed an easy-to-follow derivation to obtain an analytic
solution. Other than that, a particular solution approach has to be applied that was not convenient
to use in obtaining the solution. It could be said that, using Lee’s method, the radiation problem
of the two-dimensional structure can be obtained completely. Chen et al. [17] then investigated the
problem of wave interaction with a floating structure with moorings, and wave forces acting on the
mooring lines were included. In the two-dimensional problem, the floating structure had complete
three degrees of freedom, namely, surge, heave, and pitch.

In this study, an underwater floating structure with moorings subjected to incident waves is
considered. Zheng et al. [18] presented an analytic solution for oblique waves passing an underwater
floating rectangular structure. A particular solution was used to satisfy the nonhomogeneous boundary
value problem. However, the analytic solution could not be simplified to the case of normal incident
wave, as in the two-dimensional problem. The intention of this paper is to present a new analytic
solution to the problem. The significance of this paper is that the wave forces acting on the mooring
lines are considered in the coupling problems of waves and floating structures and the problems solved
analytically. The floating structure has motions with three degrees of freedom. The effects of the
mooring lines subjected to wave forces on the hydrodynamics of the wave and structure interaction
system are investigated.

2. Problem Description and Solution

The problem considered is an underwater floating structure moored to the sea bottom and
subjected to the action of incident waves, as shown in Figure 1. A Cartesian coordinate system is
adopted with the positive x pointed to the right and positive z pointed upward. The constant water
depth is h, the width of the structure is 2`, the structural submergence is d1, and the distance from
the structural bottom to the sea bottom is d2. The incident wave ηI is propagating from −x to the +x
direction. With the action of incident waves, the structure system does respond accordingly and also
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interferes with the surrounding wave field. In this two-dimensional problem, the floating structure has,
in general, three degrees of freedom, namely, surge, heave, and pitch motions. With the prerequisite
periodic motion, the displacement functions of the structure can be expressed as

ξ j = s j · e−iωt, j = 1, 2, 3 (1)

where the subscripts 1, 2, and 3 represent surge, heave, and pitch, respectively. s j represents amplitudes
of the structural motions. Since an analytic solution is pursued, and with a rectangular shape of the
structure, the method of separation of variables is used to solve the problem, and the domain is divided
into four regions, as indicated in Figure 1. Region 1 is in front of the structure, regions 2 and 4 are
above and beneath the structure, and region 3 is behind the structure.
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The interference wave field surrounding the floating structure needs to be solved, in addition to
the known incident wave, so that wave forces acting on the floating structure and the moorings can be
calculated, and so, to calculate structural motions.

A linear potential wave theory is used to describe the wave problem. The definition of the velocity
⇀
V related to the wave potential function Φ is written as

⇀
V = −∇Φ (2)

where ∇ is the gradient operator. Since steady and periodic problems are considered, the periodic time
function can be factored out and wave potential be expressed as

Φ(x, z, t) = φ(x, z) · e−iωt (3)

where ω = 2π/T, T is the wave period, and i =
√
−1. The incident wave potential is given as

ΦI(x, z, t) =
igAI

ω
·

cosh K(z + h)
cosh Kh

· ei (Kx−ωt) (4)

where g is the gravitational constant, AI is the wave amplitude, and K is the wave number that is
calculated by the dispersion equation

ω2 = gKtanhKh (5)
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The entire problem is decomposed into a scattering problem and radiation problems in the three
degrees of freedom [2]; i.e., the interference wave potential is expressed as

Φ(x, z, t) = ΦD +
3∑

j=1

s j ·Φ j (6)

where ΦD is the scattering wave produced by the incident wave acting on the structure with the
structure held fixed. On the other hand, Φ j corresponds to the radiation wave for the structure having
motion in the j-direction and with unit amplitude. For the problem here, surge, heave, and pitch
motions.

Now, the task becomes to obtain analytical solutions for the scattering wave and the radiation
waves and, particularly, the solution expression for each individual region. Since analytic solutions for
the problem of a surface-floating structure have been presented by Chen et al. [17], the solutions for
divided regions can be followed, except the region 2 for heave and pitch radiation problems. Further,
solutions for the pitch radiation problem are an application of heave and surge problems; therefore,
only derivation details of the region 2 in the heave problem will be shown here.

The boundary value problem for region 2 in the heave radiation problem can be written as:
The governing equation:

∇
2φ2

2 = 0, −d1 < z < 0, −` < x < ` (7)

The upper free surface condition:

∂φ2
2

∂z
=
ω2

g
φ2

2, z = 0 (8)

The lower boundary condition:

∂φ2
2

∂z
= iωs2, z = −d1 (9)

The left boundary condition:
φ2

2 = φ2
1, x = −` (10)

The right boundary condition:
φ2

2 = φ2
3, x = ` (11)

Note that it is the nonhomogeneous form shown in Equation (1) that poses the difficulty in
obtaining the solution. In this study, a method proposed by Lee [6] is used to derive the solution.
In Equations (7)–(11), the wave potential is divided into two parts:

φ2
2 = φ̃2

2 + φ̂2
2 (12)

where φ̃2
2 and φ̂2

2 satisfy vertically and horizontally homogeneous conditions, respectively, as shown in
Figure 2.

Following the standard method of separation of variables, one can obtain the solutions

φ2
2 = φ̃2

2 + φ̂2
2

=
∞∑

n=0

[
A2

2ne−k2n(x+`) + B2
2nek2n(x−`)

]
cos[k2n(z + d1)]

+
∞∑

n=1
D2

2n

(
µn1eγn(z−h) + µn2e−γn(z+h)

)
sinγn(x + `)

(13)
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in which the coefficients k2n, γn, µn1, µn2, and D2
2n are given in Appendix A. The way of obtaining the

solution for region 2 in the heave radiation problem can also be applied to obtain the solution for the
same region 2 in the pitch radiation problem.
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As for the rest of the scattering and the radiation problems, one can easily obtain the solutions.
For completeness, they are also listed here. For the wave scattering problem, solutions for the four
regions can be written as:

φD
1 =

∞∑
n=0

BD
1n cos[kn(z + h)]ekn(x+`) (14)

φD
2 =

∞∑
n=0

[
AD

2ne−k2n(x+`) + BD
2nek2n(x−`)

]
cos[k2n(z + d1)] (15)

φD
3 =

∞∑
n=0

AD
3n cos[kn(z + h)]e−kn(x−`) (16)

φD
4 =

(
AD

40x + BD
40

)
+
∞∑

n=1

[
AD

4ne−k4n(x+`) + BD
4nek4n(x−`)

]
cos[k4n(z + h)] (17)

For the radiation wave problems, the three radiations surge, heave, and pitch are expressed,
respectively, as:

Surge radiation:

φ1
1 =

∞∑
n=0

B1
1n cos[kn(z + h)]ekn(x+`) (18)

φ1
2 =

∞∑
n=0

[
A1

2ne−k2n(x+`) + B1
2nek2n(x−`)

]
cos[k2n(z + d1)] (19)

φ1
3 =

∞∑
n=0

A1
3n cos[kn(z + h)]e−kn(x−`) (20)

φ1
4 =

(
A1

40x + B1
40

)
+
∞∑

n=1

[
A1

4ne−k4n(x+`) + B1
4nek4n(x−`)

]
cos[k4n(z + h)] (21)



J. Mar. Sci. Eng. 2020, 8, 146 6 of 18

Heave radiation:

φ2
1 =

∞∑
n=0

B2
1n cos[kn(z + h)]ekn(x+`) (22)

φ2
2 =

∞∑
n=0

[
A2

2ne−k2n(x+`) + B2
2nek2n(x−`)

]
cos[k2n(z + d1)]

+
∞∑

n=1
D2

2n

(
µn1eγn(z−h) + µn2e−γn(z+h)

)
sinγn(x + `)

(23)

φ2
3 =

∞∑
n=0

A2
3n cos[kn(z + h)]e−kn(x−`) (24)

φ2
4 =

(
A2

40x + B2
40

)
+
∞∑

n=1

[
A2

4ne−k4n(x+`) + B2
4nek4n(x−`)

]
cos[k4n(z + h)]

+
∞∑

n=1
F2

4n coshγn(z + h) sinγn(x + `)
(25)

Pitch radiation:

φ3
1 =

∞∑
n=0

B3
1n cos[kn(z + h)]ekn(x+`) (26)

φ3
2 =

∞∑
n=0

[
A3

2ne−k2n(x+`) + B2
2nek2n(x−`)

]
cos[k2n(z + d1)]

+
∞∑

n=1
D3

2n

(
µn1eγn(z−h) + µn2e−γn(z+h)

)
sinγn(x + `)

(27)

φ3
3 =

∞∑
n=0

A3
3n cos[kn(z + h)]e−kn(x−`) (28)

φ3
4 =

(
A3

40x + B3
40

)
+
∞∑

n=1

[
A3

4ne−k4n(x+`) + B3
4nek4n(x−`)

]
cos[k4n(z + h)]

+
∞∑

n=1
F3

4n coshγn(z + h) sinγn(x + `)
(29)

where kn, k4n, F2
4n, D3

2n, and F3
4n are listed in Appendix A. The undetermined coefficient shown in

Equations (18)–(29) are then obtained by solving simultaneous equations obtained from matching the
velocity and pressure conditions at the interfacial boundary of two neighboring regions and integration
of associated water depth multiplied by the orthogonal functions.

Once the decomposed wave scattering problem and the wave radiation problem of unit
amplitude are obtained, the unknown variables shown in the interference wave potential, Equation (6),
are amplitudes of the structural motion, which can then be solved by the equations of motion of
the structure.

The equations of motion of the underwater floating structure can be written as [19]:

[M]


..
ξ1..
ξ2..
ξ3

 =


F1

F2

F3

−


T1

T2

T3

+


FM

1
FM

2
FM

3

 (30)

where [M] is the mass matrix, {F} is the wave forces acting on the floating structure, {T} represents
the restoring force of the mooring springs, and

{
FM

}
is the wave forces acting on the mooring lines.

The mass matrix can be expressed as:

[M] =


m 0 0
0 m 0
0 0 I0

 (31)
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in which m is mass of the structure and I0 is moment of inertia.
Wave forces acting on the floating structure can be calculated using wave potentials surrounding

the structure, and be expressed as:
F1

F2

F3

 =
[

f R
]

s1

s2

s3

+


f D
1

f D
3

f D
3

 (32)

where
[

f R
]

and
{

f D
}

are calculated from radiated potentials of unit amplitudes and diffracted potentials,
respectively. Detailed expressions are given in Appendix B.

The restoring forces produced by the mooring springs can be calculated according to orientations
of the springs AB and CD, and be expressed as:

TAB =


KAB

11 KAB
12 KAB

13
KAB

21 KAB
22 KAB

23
KAB

31 KAB
32 KAB

33



ξ1

ξ2

ξ3

 (33)

TCD =


KCD

11 KCD
12 KCD

13
KCD

21 KCD
22 KCD

23
KCD

31 KCD
32 KCD

33



ξ1

ξ2

ξ3

 (34)

in which the expressions of the stiffness matrices are given in Appendix C.
The wave forces acting on the mooring lines are calculated using a linearized Morison [3]. Using

the present analytic solutions for the wave fields and the associated geometrical deployments of the
mooring lines, the wave forces can be calculated. Detailed derivations are given in Appendix D.
The induced forces acting on the floating structure can then be written as

FM
1

FM
2

FM
3

 =
[

f MR
]

s1

s2

s3

+


f MD
1

f MD
3

f MD
3

 (35)

in which
[

f MR
]

is the radiation wave generated coefficient matrix.
Having the required expressions of all forces acting on the floating structure, including scattering

and radiation waves, mooring restoring forces, and effects of wave forces on mooring lines, the equations
of motion of the structure, Equation (30), can be solved and expressed as:

s1

s2

s3

 =
[
K̃
]−1

−iωρ


f D
1

f D
3

f D
3

+


f MD
1

f MD
2

f MD
3


 (36)

where the general stiffness matrix is

[K̃] =
(
−ω2[M] + iωρ

[
f R

]
+ [K] −

[
f MR

])
(37)

Once amplitudes of the structural motion can be calculated, then the wave potentials of the entire
problem domain can then be determined via Equation (6). The reflected wave in front of the structure
ηR and the transmitted wave behind the structure ηT can then be calculated using the Bernoulli’s
equation. So far, the entire coupling problem is solved. A consideration of wave forces calculated
from incident wave, scattering wave, radiation wave, and wave forces on the mooring lines, then the
motions of the structure with moorings, are solved.
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3. Results and Discussion

In this paper, the problem of moored underwater floating structures with motions of full degrees of
freedom subjected to incident waves is investigated, and an analytic solution is presented. The present
analytic solution is first validated by conservation of wave energy with no energy dissipation. In the
present theory, the only energy loss in the problem is the drag forces acting on the mooring lines;
therefore, if the drag coefficient is specified zero, CD = 0, then the energy conservation of the system
should satisfy. Figure 3 shows reflection and transmission coefficients and total wave energy, K2

r + K2
t ,

versus relative water depth, Kh, and as is expected, the wave energy conserved to unity. The conditions
used are water depth, h = 10 m, and incident wave amplitude, AI = 0.5 m; other parameters used are
d1/h = 0.2, `/h = 0.5, a/h = 0.3, and the virtual coefficient CM = 2.0. The corresponding result for the
case considering the drag coefficient, CD = 2.0, is shown in Figure 4. It is reasonable to identify that,
with the drag effect, the total energy indicates dissipation. With energy dissipation, the total energy
curve decreases about 10% at resonant frequency, the reflection coefficient decreases from 1.0 to 0.94,
and the transmission coefficient increases from zero to 0.13. The present analytic solution is further
applied to calculate a wave scattering problem of an underwater plate, and the results compared
with that calculated using a numerical finite element method (Cheong et al. [20]). The conditions
used are water depth, h = 10 m, and incident wave amplitude, AI = 0.5 m; other parameters used are
d1/h = 0.3, `/h = 0.5, and a/h = 0.025. The comparisons of the reflection and transmission coefficients
versus dimensionless water depth are shown in Figure 5, in which good agreements are indicated.J. Mar. Sci. Eng. 2020, 8, 146 9 of 22 
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Figure 3. Reflection coefficient; transmission coefficient; and total energy versus relative water depth,
Kh (CD = 0.0, d1/h = 0.2, `/h = 0.5, a/h = 0.3, and CM = 2.0).
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Figure 4. Reflection coefficient; transmission coefficient; and total energy versus relative water depth,
Kh (CD = 2.0, d1/h = 0.2, `/h = 0.5, a/h = 0.3, and CM = 2.0).
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Figure 5. Reflection coefficient versus dimensionless water depth, h/λ, for a fixed underwater plate
(h = 10 m, d1/h = 0.3, `/h = 0.5, and a/h = 0.025).

In the present theory, the wave forces acting on the mooring lines are considered. To comply
with motions of the mooring lines, in the wave force calculation, a relative flow velocity is used in
the Morison equation. Since the motions of the mooring lines are not known a priori, an iteration
algorithm is used in the calculation. Figure 6 shows the iteration times versus relative water depth,
Kh. The conditions used are water depth, h = 10 m, and incident wave amplitude, AI = 0.5 m; other
parameters used are d1/h = 0.25, `/h = 0.2, and a/h = 0.3, and the drag coefficient and the virtual
mass coefficient, CD = 2.0 and CM = 2.0, respectively. The iteration number can be as high as 14 times
at the resonant frequency and only one time at other frequencies. Additionally, with a higher drag
coefficient, a higher iteration number is required.
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Figure 6. Iteration number versus relative water depth for different drag coefficients (d1/h = 0.25,
`/h = 0.2, a/h = 0.3, CD = 2.0, and CM = 2.0).

Using the same conditions as those in Figure 6, effects of the drag coefficient on wave reflection
and wave transmission are shown in Figures 7 and 8, respectively. With the increase of the drag
coefficient from zero to 2.0, the reflection coefficient at the first resonant peak at a lower frequency drops
from 1.0 to 0.94, while the second peak at a higher frequency drops from 1.0 to 0.48. It is reasonable
that the drag force acting on mooring lines can dampen only high-frequency short waves; rather, it is
not sufficient in reducing wave energy of long waves. Therefore, high-frequency waves at resonant
peaks are damped and decrease the reflection coefficient. The results also indicate that the increase of
the drag coefficient from zero to 2.0 can dampen out 50% of the reflected waves. The tendency reverses
for the transmission coefficient. The effects of the drag coefficient on structural motions are shown
in Figures 9–11 for surge, heave, and pitch motions, respectively. Similar trends can be observed.
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The increase of the drag coefficient reduces amplitudes of surge and pitch motions at high-frequency
peaks, whereas it is not obvious at low-frequency resonant peaks. In this study, since it is difficult to
obtain experimental results for comparison, numerical results using a boundary element method [21]
for the case of CD = 2.0 are also plotted for comparison. The comparisons also validate the present
analytic solution for the problem.
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Figure 7. Reflection coefficient versus relative water depth for various drag coefficients (d1/h = 0.25,
`/h = 0.2, a/h = 0.3, and CM = 2.0).
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Figure 8. Transmission coefficient versus relative water depth for various drag coefficients (d1/h = 0.25,
`/h = 0.2, a/h = 0.3, and CM = 2.0).
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Figure 9. Surge motion amplitude versus relative water depth for various drag coefficients (d1/h = 0.25,
`/h = 0.2, a/h = 0.3, and CM = 2.0).
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Figure 10. Heave motion amplitude versus relative water depth for various drag coefficients
(d1/h = 0.25, `/h = 0.2, a/h = 0.3, and CM = 2.0).
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Figure 11. Pitch motion amplitude versus relative water depth for various drag coefficients (d1/h = 0.25,
`/h = 0.2, a/h = 0.3, and CM = 2.0).

Figure 12 shows dimensionless horizontal and vertical forces versus relative water depth, that
the horizontal force is divided by ρgAIa and the vertical force is divided by 2ρgAI`. FM

AB,1
represents

the horizontal force, while FM
AB,2

represents the vertical force on the spring AB. FM
CD,1

represents the

horizontal force, while FM
CD,2

represents the vertical force on the spring CD. For the given conditions

d1/h = 0.25, `/h = 0.2, a/h = 0.3, CD = 2.0, and CM = 2.0, wave forces acting on the upwind mooring
lines, AB, are obviously smaller than the mooring line, CD, on the lee side. Additionally, the horizontal
component of the forces are bigger than vertical ones. The maximum wave forces can reach up to 12%
of the incident wave forces.

The present analytic solution is used to study the submerged depth of the structure on reflection
and transmission coefficients and motions of the structure. The conditions used are water depth,
h = 10 m, incident wave amplitude, AI = 0.5 m, and width and height of the structure, `/h = 0.4 and
a/h = 0.3. The submerged depths considered are near the water surface; one-fourth the water depth;
and one-half the water depth (d1/h = 0.10, d1/h = 0.25, and d1/h = 0.50). The dimensionless water
depth related to the wave length covers the range from shallow water, Kh < π/10, up to the deep water,
Kh < π. Variations of the reflection coefficient and the transmission coefficient versus Kh for various
structural submergences d1/h = 0.10, 0.25, and 0.50 are shown in Figures 13 and 14, respectively.
It can be expected that, since the underwater structure is blocking the incident wave while located
under the water surface, the nearer the structure is close to the water surface, the structure can block
more surface waves, except the longer waves can have less effect from the structure. Figure 13 also
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shows the structure can have a total reflection for short waves and near the free surface. Furthermore,
at the resonant frequency, there exists a total reflection. Figure 14 indicates a reverse tendency for the
transmission coefficient versus dimensionless water depth.
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Figure 12. Wave forces on the mooring lines versus relative water depth (d1/h = 0.25, `/h = 0.2,
a/h = 0.3, CD = 2.0, and CM = 2.0).
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Figure 13. Reflection coefficient versus relative water depth for various submerged depths of the
structure (d1/h = 0.10, 0.25, and 0.50).
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Figure 14. Transmission coefficient versus relative water depth for various submerged depths of the
structure (d1/h = 0.10, 0.25, and 0.50).

Effects of various submerged depths of the structure on the motions of the structure, namely,
surge, heave, and pitch, are shown in Figures 15–17, respectively. The surge and pitch amplitudes
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decrease with the increasing relative water depth (the shorter waves), as the shorter waves induce
less structural motions. In general, the structure located near the free surface can get bigger motions.
The same tendency applies to the heave motion, but there exists a resonant frequency due to the
hydrostatic restoring force of the water buoyancy. The resonant frequency shifted for different structural
submergence due to different hydrodynamic forces acting on the structure.
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Figure 15. Dimensionless surge amplitude versus relative water depth for various submerged depths
of the structure (d1/h = 0.10, 0.25, and 0.50).

J. Mar. Sci. Eng. 2020, 8, 146 15 of 22 

 

Figure 14. Transmission coefficient versus relative water depth for various submerged depths of the 
structure (𝑑ଵ/ℎ = 0.10,   0.25,  and 0.50). 

Effects of various submerged depths of the structure on the motions of the structure, namely, 
surge, heave, and pitch, are shown in Figures 15–17, respectively. The surge and pitch amplitudes 
decrease with the increasing relative water depth (the shorter waves), as the shorter waves induce 
less structural motions. In general, the structure located near the free surface can get bigger motions. 
The same tendency applies to the heave motion, but there exists a resonant frequency due to the 
hydrostatic restoring force of the water buoyancy. The resonant frequency shifted for different 
structural submergence due to different hydrodynamic forces acting on the structure. 

 
Figure 15. Dimensionless surge amplitude versus relative water depth for various submerged depths 
of the structure (𝑑ଵ/ℎ = 0.10,   0.25,  and 0.50). 

 
Figure 16. Heave amplitude versus relative water depth for various submerged depths of the 
structure (𝑑ଵ/ℎ = 0.10,   0.25,  and 0.50). 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 1.0 2.0 3.0 4.0 5.0

A
BS

( s
1 

/ A
I )

Kh

10.01 =hd
25.01 =hd
50.01 =hd

0.0

3.0

6.0

9.0

12.0

15.0

0.0 1.0 2.0 3.0 4.0 5.0

A
BS

( s
2 

/ A
I )

Kh

10.01 =hd
25.01 =hd
50.01 =hd

Figure 16. Heave amplitude versus relative water depth for various submerged depths of the structure
(d1/h = 0.10, 0.25, and 0.50).
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In this study, we emphasize that the moored underwater structures with motions of full degrees of
freedom subjected to actions of incident waves and present an analytic solution. However, the solution
is restricted to geometrical deployment and a linear assumption. Nevertheless, the methodology can
be expanded to nonlinear problems via a higher-order solution; the linear solution can be applied as
a preliminary identification of the characteristics of the practical problems.

4. Conclusions

With considerations of wave forces acting on mooring lines, a new analytic solution is presented
for the problem of an underwater moored floating structure with motions of full degrees of freedom
subjected to incident waves. A coupling formulation among water waves, underwater floating
structure, and mooring lines is presented. Iterations for the drag coefficients, energy conservation
without drag loss, reflection and transmission coefficients, and comparisons of wave scatterings with
a finite elements result, as well as motion amplitudes in comparison with a numerical boundary element
model, provide valid validation of the present solution. With additional considerations of wave forces
acting on the mooring lines, the drag dampening significantly decreases wave reflections and the
motions of the structure at the high-frequency resonance. The magnitudes of the wave forces acting on
the mooring lines can reach up to 12% of the incident wave forces. The study of the submerged depth
of the structure indicates that the structure deployed nearer the free surface can induce bigger motions.
The analytic solution is very much dependent on the geometry of the structure; however, the interaction
formulation in this paper can be applied to practical problems for more complete considerations.
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Appendix A. Definitions of Coefficients

Definitions of coefficients kn, k2n, k4n, γn, µn1, µn2, D2
2n, F2

4n, D3
2n, and F3

4n.

ω2 = −gkn tan knh, n = 1, 2, · · ·∞, k0 = −iK (A1)

ω2 = −gk2n tan k2nd1, n = 1, 2, · · ·∞ (A2)

k4n = nπ/d2, n = 1, 2, · · ·∞ (A3)

γn = nπ/2`, n = 1, 2, · · ·∞ (A4)

µn1 = γn +ω2/g, n = 1, 2, · · ·∞ (A5)

µn2 = γn −ω
2/g, n = 1, 2, · · ·∞ (A6)

D2
2n =

iωs2(1− cos 2γn`)

`γn2
(
µn1eγn(−d1−h) − µn2e−γn(−d1+h)

) , n = 1, 2, · · ·∞ (A7)

F2
4n =

iωs2(1− cos 2γn`)

`γn2sinhγnd2
, n = 1, 2, · · ·∞ (A8)

D2
3n =

−iωs3(1 + cos 2γn`)

γn2
(
µn1eγn(−d1−h) − µn2e−γn(−d1+h)

) , n = 1, 2, · · ·∞ (A9)
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F3
4n =

−iωs3(1 + cos 2γn`)

γn2sinhγnd2
, n = 1, 2, · · ·∞ (A10)

Appendix B. Wave Forces Acting on the Floating Structure

Wave forces acting on the floating structure in the direction of each degree of freedom can be
calculated as:

f1 = −iωρ · e−iωt
{∫
−d1
−h+d2

[ (
φI + φD

1

)∣∣∣∣
x=−`

− φD
3

∣∣∣
x=`

]
dz

+s1 ·
∫
−d1
−h+d2

[
φ1

1

∣∣∣
x=−` − φ

1
3

∣∣∣
x=`

]
dz + s3 ·

∫
−d1
−h+d2

[
φ3

1

∣∣∣
x=−` − φ

3
3

∣∣∣
x=`

]
dz

} (A11)

f2 = −iωρ · e−iωt
[∫ `
−`

(
φD

4

∣∣∣
z=−h+d2

− φD
2

∣∣∣
x=−d1

)
dx

+s2 ·
∫ `
−`

(
φ2

4

∣∣∣
z=−h+d2

− φ2
2

∣∣∣
z=−d1

)
dx

] (A12)

f3 = −iωρ · e−iωt
{ ∫
−d1
−h+d2

(z− z0)
[ (
φI + φD

1

)∣∣∣∣
x=−`

− φD
3

∣∣∣
x=`

]
dz

−

∫ `
−`

x
[
φD

4

∣∣∣
z=−h+d2

− φD
2

∣∣∣
z=−d1

]
dx + s1 ·

∫
−d1
−h+d2

(z− z0)
[
φ1

1

∣∣∣
x=−` − φ

1
3

∣∣∣
x=`

]
dz

−s1 ·
∫ `
−`

x
[
φ1

4

∣∣∣
z=−h+d2

− φ1
2

∣∣∣
z=−d1

]
dx + s3 ·

∫
−d1
−h+d2

(z− z0)
[
φ3

1

∣∣∣
x=−` − φ

3
3

∣∣∣
x=`

]
dz

−s3 ·
∫ `
−`

x
[
φ3

4

∣∣∣
z=−h+d2

− φ3
2

∣∣∣
z=−d1

]
dx

} (A13)

Integrations shown in Equations (A11)–(A13) can be calculated, and the equations be rewritten, as:
f1
f2
f3

 =
[

f R
]

s1

s2

s3

+


f D
1

f D
3

f D
3

 (A14)

where
[

f R
]

and
{

f D
}

can be expressed as:

[
f R

]
=


f R
11 0 f R

13
0 f R

22 0
f R
31 0 f R

33

 (A15)

with the components expressed as:

f R
11 =

∞∑
n=0

(
B1

1n −A1
3n

)sin kn(h− d1) − sin knd2

kn
(A16)

f R
13 =

∞∑
n=0

(
B3

1n −A3
3n

)sin kn(h− d1) − sin knd2

kn
(A17)

f R
22 =

(
2`B2

40

)
+
∞∑

n=1

(
A2

4n + B2
4n

)
cos k4nd2

(1−e−2k4n`)
k4n

+
∞∑

n=1
F2

4n coshκ4nd2
(1−cos 2κ4n`)

κ4n
−

∞∑
n=0

(
A2

2n + B2
2n

) (1−e−2k2n`)
k2n

−

∞∑
n=1

D2
2n

(
µn1e−κ2n(d1+h) + µn2e−κ2n(−d1+h)

)
(1−cos 2κ2n`)

κ2n

(A18)

f R
31 =

∞∑
n=0

(
B1

1n −A1
3n

)
C16

n −
2
3`

3A1
40

−

∞∑
n=1

(
A1

4n − B1
4n

)
cos k4nd2 ·C17

4n +
∞∑

n=0

(
A1

2n − B1
2n

)
C17

2n

(A19)
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f R
33 =

∞∑
n=0

(
B3

1n −A3
3n

)
C16

n −
2
3`

3A3
40

−

∞∑
n=1

(
A3

4n − B3
4n

)
cos k4nd2 ·C17

4n −
∞∑

n=1
F3

4n coshκnd2 ·C18
n

+
∞∑

n=0

(
A3

2n − B3
2n

)
C17

2n −
∞∑

n=1
D3

2n

(
µn1e−κ2n(d1+h) + µn2e−κ2n(−d1+h)

)
C18

n

(A20)

f D
1 =

igAIe−iK`

ω cosh Kh
sinhK(h−d1)−sinhKd2

K

+
∞∑

n=0

(
BD

1n −AD
3n

)
·

sin kn(h−d1)−sin knd2
kn

(A21)

f D
2 = 2`BD

40 +
∞∑

n=1

(
AD

4n + BD
4n

)
cos k4nd2

(1−e−2k4n`)
k4n

−

∞∑
n=0

(
AD

2n + BD
2n

) (1−e−2k2n`)
k2n

(A22)

f D
3 =

igAIe−iK`

ω cosh Kh C16
0 +

∞∑
n=0

(
BD

1n −AD
3n

)
C16

n −
2
3`

3AD
30

+
∞∑

n=1

(
AD

4n − BD
4n

)
cosk4nd2 ·C17

4n +
(
A3

2n − B3
2n

)
C17

2n

(A23)

And the constants C16
n , C17

2n, C17
4n, and C18

n are:

C16
n =

∫ 0
−d1

(z− z0) cos[kn(z + h)]dz

=
(h−d2−z0) sin knd2−(d1+z0) sin kn(h−d1)

kn

+
cos kn(h−d1)−cos knd2

k2
n

(A24)

C17
2n,4n =

∫ `
−`

xe−k2n,4n(x+`)dx = −
∫ `
−`

xek2n,4n(x−`)dx

= 1−e−2k2n,4n`

k2n,4n2 −
`
(
1+e−2k2n,4n`

)
k2n,4n

(A25)

C18
n =

∫ `
−`

x sinγn(x + `)dx

=
sin 2γn`
γn2 −

`(1+cos 2γn`)
γn2

(A26)

Appendix C. Stiffness Matrix of the Mooring Springs

The components of the stiffness matrices for the springs AB and CD are calculated according to
the geometrical orientations of the springs and can be expressed as:

KAB
11 = KCD

11 = Ks cos2 θ (A27)

KAB
12 = KAB

21 = −KCD
12 = −KCD

21 = Ks cosθ sinθ (A28)

KAB
13 = KAB

31 = KCD
13 = KCD

31 = Ks
[
0.5(h− d1 − d2) cos2 θ− ` cosθ sinθ

]
(A29)

KAB
22 = KCD

22 = Ks sin2 θ (A30)

KAB
33 = KCD

33 = Ks[0.5(h− d1 − d2) cosθ− ` sinθ]2 (A31)

Appendix D. Wave Forces Acting on Mooring Lines

Wave forces acting on the mooring springs are calculated using the linearized Morison equation
(Lee, 1994):

dFM =
ρCD`DS

2

(
U −

.
ς
)
dS +

ρπCMD2
S

4

( .
U −

..
ς
)
dS (A32)
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where ρ is fluid density, DS is the diameter of the spring, U and
.

U are the flow velocity and acceleration
in the direction normal to the mooring line, CM is the added mass coefficient,

.
ς and

..
ς are the velocity

and acceleration of the mooring line, and the linear drag coefficient is expressed as:

CD` =
4CD

3πω

∫
−h+d2

−h

∣∣∣U − .
ς
∣∣∣3dz∫

−h+d2

−h

∣∣∣U − .
ς
∣∣∣2dz

(A33)

Note that motions of the mooring lines are not known in priori until the problem solved: therefore,
a complete solution will contain an iteration procedure until a 0.5% convergent criteria is reached.
Furthermore, the springs are not subjected to forces in a transverse direction; therefore, the wave forces
calculated are transferred to the attached points A and C. Thus,

FM
A =

cscθ
d2

∫
−h+d2

−h

ρCD`DS

2

(
U1 −

.
ςAB

)
+
ρπCMD2

S
4

( .
U1 −

..
ςAB

)dz (A34)

FM
C =

cscθ
d2

∫
−h+d2

−h

ρCD`DS

2

(
U3 −

.
ςCD

)
+
ρπCMD2

S
4

( .
U3 −

..
ςCD

)dz (A35)

where the subscripts 1 and 3 stand for regions 1 and 3, while subscripts AB and CD stand for the spring
AB and CD. The corresponding expressions are:

U1 = −

(
ΦI

x + ΦD
1x + s1 ·Φ1

1x + s2 ·Φ2
1x + s3 ·Φ3

1x

)
sinθ

−

(
ΦI

z + ΦD
1z + s1 ·Φ1

1z + s2 ·Φ2
1z + s3 ·Φ3

1z

)
cosθ

(A36)

U3 = −

(
ΦD

3x + s1 ·Φ1
3x + s2 ·Φ2

3x + s3 ·Φ3
3x

)
sinθ

−

(
ΦD

3z + s1 ·Φ1
1z + s2 ·Φ2

3z + s3 ·Φ3
3z

)
cosθ

(A37)

With substitutions of Equations (A36) and (A37) into Equation (A33) and Equation (A35), one
can obtain

FM
A = FMw

A + FMs
A (A38)

FM
C = FMw

C + FMs
C (A39)

in which
FMw

A = cscθ
d2

(
ρCD`DS

2 −
iωρπD2

SCM
4

){(
KgAIe−iK` sinθ
ω cosh Kh

)(Kd2sinhKd2−cosh Kd2+1
K2

)
+

(
iKgAIe−iK` cosθ

ω cosh Kh

)(Kd2 cosh Kd2−sinhKd2
K2

)
+ sinθ

[
∞∑

n=0

(
BD

1n + s1B1
1n + s2B2

1n + s3B3
1n

)(
−knd2 sin knd2−cos knd2−1

kn

)]
+ cosθ

[
∞∑

n=0

(
BD

1n + s1B1
1n + s2B2

1n + s3B3
1n

)(
− sin knd2+knd2 cos knd2

kn

)]}
(A40)

FMs
A = cscθ

d2

(
iωρCD`D2

S
2 +

πρCMω
2D2

S
4

)
{

s1
(

sinθ
d2

) d2
3

3 − s2
d2

2

2 cosθ− s3

[
(h−d1−d2) sinθ

2d2

d2
3

3 + ` d2
2

2 cosθ
]} (A41)

FMw
C = cscθ

d2

(
ρCD`DS

2 −
iωρπD2

SCM
4

)
·

{
sinθ

[
∞∑

n=0

(
AD

3n + s1A1
3n + s2A2

3n + s3A3
3n

)( knd2 sin knd2+cos knd2−1
kn

)]
+ cosθ

[
∞∑

n=0

(
AD

3n + s1A1
3n + s2A2

3n + s3A3
3n

)(
sin knd2−knd2 cos knd2

kn

)]} (A42)
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FMs
C = cscθ

d2

(
iωρCD`DS

2 +
πρCMω

2D2
S

4

)
{

s1
(

sinθ
d2

) d2
3

3 + s2
d2

2

2 cosθ− s3

[
(h−d1−d2) sinθ

2d2

d2
3

3 + ` d2
2

2 cosθ
]} (A43)

Note that the spring CD is located at the lee side of the structure; therefore, there is no incident
wave in the expression.
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