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Abstract: The real-time environmental surveillance of large areas requires the ability to dislocate
sensor networks. Generally, the probability of the occurrence of a pollution event depends on the
burden of possible sources operating in the areas to be monitored. This implies a challenge for
devising optimal real-time dislocation of wireless sensor networks. This challenge involves both
hardware solutions and algorithms optimizing the displacements of mobile sensor networks in large
areas with a vast number of sources of pollutant factors based mainly on diffusion mechanisms.
In this paper, we present theoretical and simulated results inherent to a Voronoi partition approach
for the optimized dislocation of a set of mobile wireless sensors with circular (radial) sensing power
on large areas. The optimal deployment was found to be a variation of the generalized centroidal
Voronoi configuration, where the Voronoi configuration is event-driven, and the centroid set of the
corresponding generalized Voronoi cells changes as a function of the pollution event. The initial
localization of the pollution events is simulated with a Poisson distribution. Our results could improve
the possibility of reducing the costs for real-time surveillance of large areas, and other environmental
monitoring when wireless sensor networks are involved.

Keywords: Voronoi partition; mobile sensor networks; wireless sensor networks; environmental
monitoring; marine environment; oil spills

1. Introduction

A growing number of applications, such as spatial distribution mapping, dynamic sensors
coverage, and environmental extensive area monitoring, have motivated the development of both
sensing hardware and algorithms for target-oriented mobile sensor networks [1,2]. Any such application
requires ad hoc customization of hardware and software solutions. Large area monitoring, for example,
presents the main problem for biasing certain regions of interest. Indeed, some parts might be
prioritized based on prior knowledge and due to an inherent time-constraint that prohibits an
exhaustive search of the area; for instance, in the case of emergencies and search and rescue operations.
This situation is met during the oil spill monitoring of large marine regions, and in general, in all
pollution events involving diffusion [3]. The most probable scenario is that areas in which human
beings, pollution activities, or hazardous materials are likely to be present should be searched first,
while regions with less probability of containing these features are searched later. Consequently,
both inferential statistical methods and mobile sensor networks able to navigate from an initial
configuration within a region containing shaped obstacles were developed [4]. In this paper, we focus
the attention on coordination algorithms to improve the capability of mobile sensors networks in
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covering and monitoring relevant portions of larger areas. Our proposed solution to this problem is
obtained using centroidal Voronoi partitions.

The centroidal Voronoi partition is a widely used scheme of portioning a given space, and finds
applications in many fields, such as image processing, sensor coverage, crystallography, and CAD [5–8].
The basic components of a Voronoi partition are:

(i) A space, which is to be partitioned;
(ii) A set of sites, or nodes or generators;
(iii) A distance measure, such as the Euclidean distance.

In the case of homogeneous sensors with a typical circular sensing area, the sensor located in
a Voronoi cell Vi is closest to all the points q ∈ Vi, and hence, by the strictly decreasing variation of
sensors effectiveness with distance, the sensor is most effective within Vi, provided the circular area
covered by the sensor does not cover the entire cell. Thus, the Voronoi decomposition leads to optimal
partitioning of the space, in the sense that each sensor is most effective within its corresponding
Voronoi cell. In the heterogeneous case too, it is easy to see that each sensor is most effective in its own
generalized Voronoi cell. Since the partitioning is optimal, it is necessary to find the location of each
sensor within its generalized Voronoi cell. Voronoi-based approaches have been used in the recent past
for optimizing the coverage of mobile sensor networks. For instance, in [9], the Maxmin-vertex and
Maxmin-edge algorithms are proposed to maximize the minimum distance of every sensor form the
vertices and edges respectively of its Voronoi cells. In [10], such results are improved by also taking
into consideration the adaptive ranges of sensors based on their respective residual energy. In [11],
the authors proposed to consider a heterogeneous network made of both static and mobile sensors,
and a bidding protocol for the placement of the mobile ones is proposed. Intuitively, mobile sensors
are treated as servers to heal possible coverage holes left by the network as a whole. In this framework,
optimization is also achieved through the distributed calculation of the Voronoi partition. With respect
to these previous works that have shown the powerfulness of the Voronoi-based approaches in coverage
improvement, in this paper, a further element is considered which is of relevance when dealing with
environmental monitoring; i.e., adaptive prioritizing of areas to be monitored.

In the specific case of marine monitoring, adaptability is necessary to deal with (i) changing
conditions in maritime traffic, weather and currents, and (ii) available knowledge of pollution events
that have already taken place. This variable information should be put in relation to the variable
impacts that events can have on different areas; e.g., due to the existence of marine parks, the presence
of endangered animal species and proximity to shores.

Indeed, spills of oil and related petroleum products in marine environments can have a severe
biological and economic impact [12,13]. With modern remote sensing instrumentation, such pollution
events can be monitored on the open ocean around the clock. The monitoring of large marine areas
generally involves complex marine information systems [14], which act as catalysts to integrate data
from multiple and disparate data sources. Each source provides a specific piece of information,
and through a suitable fusion and correlation process, they offer as a whole, a comprehensive
characterization of the status of a marine area in terms of pollution events, maritime traffic, weather,
and oceanic currents. In this process, key sources are SAR and optical satellite imaging to discover and
quantify both oil slicks and real vessel traffic; the Automatic Identification System (AIS) for real-time
identification and trajectory analysis of vessels passing through an area; and airborne hyperspectral
sensors for detection and precise characterization of oil spills.

Sensorized buoys and surface and underwater vehicles can also be used to enforce remote
monitoring. Indeed, autonomous underwater vehicles (AUVs) and mobile buoys equipped with
different sensor devices are excellent candidates for real-time monitoring of oil spills through areas
where the pollution events can take place. A new generation of buoys dedicated to oil spill monitoring
is becoming available in a prototypal shape [15] or in their commercial evolution. Other interesting
sources of information are based on crowd-sensing methodologies [16].
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Environmental decision support systems (EDSS) are employed to orchestrate and make optimal
and sustainable use of available monitoring and interventional resources. According to the survey [17],
routine goals are (i) to actuate policies for confirming partial observations obtained by one source
by collecting further information and (ii) to prioritize monitoring according to an adaptive risk map.
For instance, if a slick is detected by remote sensing, in situ sensors such as buoys or AUVs can be
deployed to assess its presence. Additionally, marine currents and weather conditions can increase the
impact and the area affected by the possible pollution events.

The results presented in this paper were obtained having in mind (but are not limited to) the
monitoring of large marine areas where oil spill events can take place, and where the diffusion evolution
of any oil slick is known a priori. In addition, we consider marine sensors equipped with sensing
hardware to consist mainly of an electronic nose, a bathymetric sensor, a GPS device, an anemometer,
a motor for self-dislocation depending on a pollution event, and a complete communication set up
with a remote station.

Actually, our simulation considers minor influences of weather and low marine waves, and low
velocity for pollution event drift, so that the diffusion dynamics can be considered slow with respect to
the sensor network’s self-dislocation, which can be considered fast. The pollution events have been
considered uncorrelated and were simulated with a Poisson distribution. Similar results were obtained
with non-Poisson distributions.

The results show the capacity and the limits of event-dependent real-time monitoring of a sensor
network. One of the limiting aspects is due to the real hardware facilities, especially for what regards
real-time communication between the sensors and a remote station. The communication set up as
considered in this paper is rather idealized; nevertheless, it is in line with the recent communication
capabilities that will be available on sensorized devices for real-time monitoring of large marine areas.

The paper is organized as follows. In Section 2, we introduce the modeling of pollution events
using a Poisson distribution and describe the Voronoi tessellation arising from a number of geolocalized
events. In Section 3, details about Voronoi partitions, both classical and generalized, are given.
In Section 4, we introduce an objective function to be maximized for optimal monitoring of an area
subject to a static risk of pollution events. In this scenario, mobile sensors should follow a certain
physical velocity field to move from their initial configurations to the optimal one. In Section 5,
we assume that the risk of pollution changes over time in response to external events, diffusion and
weathering; in this scenario, an iterative algorithm is proposed for letting the sensor network dislocate
itself in an optimal way. Further, experimental simulations are described. Finally, in Section 6 we
derive our conclusions.

The main contributions of the paper can be summarized as follows:

- A solution for the optimal displacement of a sensor network is proposed for the monitoring
of large areas. The solution is based on formalized geometrical methods using Voronoi
centroidal tessellation.

- The proposed solution is fitted into an iterative algorithm, which can evolve in real-time and
continuously, the displacement of the network in response to dynamic events and changes in risk.

- The results are proven theoretically and with numerical simulations.

2. Modeling of Pollution Events

The first approach for monitoring a large area is given by the regular and symmetric dislocation of
the sensors. Nevertheless, this approach is not practicable if the number of sensors with a finite radius
of sensing power is not enough to cover the large area to be monitored. In addition, we have to consider
the dislocation as event-dependent; i.e., considering the possible pollution source. An unwanted event
is a random variable. Therefore, the immediate suggestion for a suitable event-dependent dislocation
of a number of sensor networks is given by the Voronoi tessellations. A great number of natural
phenomena are described by Voronoi tessellations; in this section, we try to respond to the main
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question: why should the optimal dislocations in a large area of a network composed by sensors with
circular sensing power follow a centroidal Voronoi tessellation? To give an answer to this question,
the starting point is to introduce the probability density function (PDF) for the occurrence of a pollution
event, x. The reasonable shape of a PDF for a stochastic event is a Poisson distribution:

H(x) = λ exp(−λx)dx (1)

where λ is the hazard rate of the exponential distribution. Let us consider the sum of two uncorrelated
events, y, the variable change, y = 2x, and x = 1/λ. The PDF (Equation (1)) can be written as:

H(x) = 2xexp(−2x)d(2x) (2)

The result in Equation (2) can be written using a gamma variate distribution [18,19] as a function
of the space dimension d; in our case d = 2.

H(x; d) =
2d

Γ(2d)
(2dx)2d−1 exp(−2dx) (3)

where, now, 0 ≤ x <∞, and Γ(2d) is the gamma function with argument 2d. That PDF (Equation (3))
has a mean of µ = 1 and variance σ2 = 1/d. The gamma PDF can be generalized by introducing new
additional parameters that take into account the complexity of the real situation, pollution sources,
environmental weather, etc. In this paper, we restrict ourselves to gamma PDF as in Equation (3).
Figure 1 shows the distribution as given by Equation (3) of pair events distance; i.e., the distance
between two events close one each other.
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Figure 1. Distribution of pair events distance as given by a Poisson probability density function (PDF),
Equation (3).

Let us consider n pollution events, distributed randomly in a square area. The monitoring of such
diffusion processes can be made considering the equivalent Voronoi diagram, where the vertexes are
coincident with the pollution events coordinates (see Figure 2). Similar results are obtained when the
events are located using a Gaussian distribution. This is the case of pollution events with a correlation,
anywhere the result does not present a significant difference.
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3. Basic Properties for a Voronoi Partition

A standard Voronoi partition can be introduced as follows: A collection {Wi}, i ∈ {1,2, . . . ,N} of
subsets of a space X with disjoint interiors is said to be a partition of X if ∪iWi = X. Let Q ⊂ <d be a
convex polytope in d-dimensional Euclidean space. Let P = {p1, p2, . . . , pN}, pi ∈ Q be the set of nodes
of generators in Q. The Voronoi partition generated by P with respect to the Euclidean norm is the
collection {Vi(P)}, i ∈ {1, 2, . . . , N}, and is defined as:

Vi(P) =
{
q ∈ Q

∣∣∣‖q− pi‖ ≤ ‖q− pj‖,∀pj ∈ P
}

(4)

where ‖ · ‖ denotes the Euclidean norm. The Voronoi cell Vi is the collection of those points that are
closest (with respect to the Euclidean metric) to pi compared to any other point in P. In<2, the boundary
of each bounded Voronoi cell is the union of a finite number of line segments forming a closed ◦C
curve. For example, the intersection of any two Voronoi cells can be null, a line segment, or a point.
In d-dimensional space, the boundaries of the Voronoi cells are unions of convex subsets of at most
d-1 dimensional hyperplanes in<d, and the intersection of two Voronoi cells can be a convex subset
of a hyperplane or a null set. Each of the Voronoi cells is a topologically connected non-null set.
Generalizations of the above Voronoi basic partition to suit specific applications can be found in the
literature [12,13]. A possible generalization of the Voronoi partition can be introduced considering
a space Q ⊂ <d, sand et of points called nodes or generators P = {p1, p2, . . . , pN}, pi ∈ Q, with pi ,

pj, whenever i , j, and monotonically decreasing analytic functions fi: < +→<, where fi is called a
node function for the i-th node. It is possible to define a collection {Vi}, i ∈ {1, 2, . . . ,N}, with mutually
disjoint interiors, such that Q = ∪iVi, where Vi is now defined as:

Vi(P) =
{
q ∈ Q

∣∣∣∣fi
(
‖pi − q‖

)
≥ fi

(
‖pj − q‖

)
,∀j , i, j ∈ {1, 2, . . . , N}

}
(5)

We call {Vi}, i ∈ {1, 2, . . . , N} a generalized Voronoi partition of Q with nodes P and node functions
fi. In this application, it should be noted that Vi can be topologically non-connected and may contain
Voronoi cells. In addition, it should be noted that q ∈ Vi means that the i-th sensor is the most effective
in sensing at point q. In a standard Voronoi partition used in a homogeneous case, the ≤ sign for
distances ensures that i-th sensor is most effective in Vi. Finally, the condition that fi is analytic implies
that for every i, j ∈ {1, 2, . . . , N}, fi-fj is analytic. By the properties of a real analytic function, it derives
that the set of intersection points between any two-node functions is a set of measure zero. This ensures
that the intersection of any two cells is a set of measure zero; that is, the boundary of a cell is a set is
made up of the union of at most d-1 dimensional subsets of<d; otherwise, the requirements that the
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cells should have mutually disjoint interiors may be violated. The analyticity of the node functions {fi}
is a sufficient condition to avoid this possibility.

4. Optimization in the Localization of Event-Dependent Mobile Sensors Network

In this Section, a solution to optimal monitoring of an area by means of mobile sensors with
limited radial sensing ranges is proposed. Such sensors can either be mounted on buoys with motion
capabilities or full-fledged AUVs or unmanned surface vehicles (USVs). As stated in the introduction,
it is assumed that sensors can navigate quite fast with respect to the evolution of a pollution event by
diffusion, marine currents, and weathering.

Let us consider a large area to be monitored by N sensors; the cost of real-time monitoring is
rather high. Unwanted events to be monitored trigger a sensor network to navigate from an initial
configuration towards a specific region within the large area where the probability of encountering
unwanted events is higher.

Let Q ⊂ <d be a convex polytope, the space in which the sensors have to be deployed, and Vi ⊂

Q be the generalized Voronoi cell corresponding to the i-th node; we introduce a continuous density
distribution function ϕ: Q→ [0,1], where the density ϕ(q) is the probability of an event of interest
occurring in q ∈ Q, and P = {p1, p2, . . . , pN}, pi ∈ Q is the configuration of N sensors [20].

It is well known that the generalized Voronoi decomposition splits the objective function into a
sum of contributions from each generalized Voronoi cell. As a consequence, the optimization problem
can be solved in a spatially distributed manner; i.e., each sensor solving the part of objective function
corresponding to its cell using only local information can achieve the optimal configuration.

Besides, another essential characteristic of the sensor network, as considered in this paper, is that
any sensor possesses a limited range of action; with the sensing capability that decreases as a logarithm
of the distance from the centroid. This limitation must be taken in due consideration. Let Ri be the
limit on the range of the sensors and f (pi, Ri) be a closed disk centered at pi with a radius Ri. The i-th
sensor has access to information only from points in the set Vi ∩ f (pi, Ri).

Let us consider the following objective function to be maximized:

H(P) =
∑

i

∫
Vi∩f(pi,Ri)

fi
(
‖q− pi‖

)
ϕ(q)dQ (6)

where || . || is the Euclidean distance and fi = 0 if ||q-pi|| > Ri. It is possible to define the derivative of H
(P) as follows.

∂H(P)
∂pi

=
∑

j

∫
Vi

∂fj

(
‖q− pi‖

)
∂pi

ϕ(q)dQ (7)

In addition, it is possible to introduce the critical points defined as the points mass and the centroid
of the Vi cells.

∂H(P)
∂pi

=
∑
j

∫
Vj

[
∂fj(‖q−pi‖)
∂pi

]
ϕ(q)dQ =

∑
j

∫
Vj

[
∂fj(ri)

∂r2
i

(
pi − q

)]
ϕ(q)dQ =∑

i
MVi

(
p̂i − pi

) (8)

where p̂i is the set of centroids where the mobile sensors must be dislocated, defined later. The centroids
set has the property p̂i∈Q because Q is an invariant set for Equation (8), while on the contrary, it is not
guaranteed that p̂i∈Vi. The dynamical properties of the mobile sensors network to be dislocated in an
optimal configuration make it possible to write the basic control law as

.
pi = −k

(
pi − p̂i

)
(9)
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where the single mobile sensor moves toward p̂i for k > 0. Using the properties of the gradient with
respect to pi as in Equation (8), we can write

∂H(P)
∂pi

=
∑

i

MVi∩f(pi,Ri)

(
p̂i∩f(pi,Ri)

− pi

)
(10)

One main problem for the optimal dislocation of the mobile sensors is the convergence to the ideal
centroid locations when a pollution event must be monitored. In this case, the uncovered area could
generate more difficulties in producing a real convergence, but this problem can be dropped using
effective k parameters in Equation (9). The problem of an effective convergence of a common radius
sensor network that is unable to cover a large area is very close to that of the class of heterogeneous
sensor networks [20]. In our case, the effective k parameter implies that the mobile sensors have
higher dislocating speed with respect to the evolution velocity of a pollution event. The pollution
event, for example, an oil spill, modifies its shape on the marine surface due to weather conditions:
if the event time-scale, τ, is τ < <1/k, then it is reasonable to expect a fast convergence to the optimal
centroids. The control law, Equation (9), drives the sensors towards their optimal configurations that
correspond to the arrangement that guarantees the maximum sensing power at the lowest cost. This is
because the closed-loop system for the sensors networks is modeled using a first-order dynamical
system that is globally asymptotically stable for an effective choice of k parameters; this is translated in
the time property of H (P), which we supposed to be continuous.

dH(P)
dt

=
∑

i

∂H(P)
∂pi

.
pi = 2

∑
i

αiMVi∩f(pi,Ri)

(
p̂i∩f(pi,Ri)

− pi

)2
(11)

The Equation (11) assures that the initial configurations of localized sensors converge to the
optimal centroids p̂i.

One special problem is the ability of the sensors network to relocate themselves as a function
of a pollution event (for example, an oil spill) whose shape changes in time due to diffusion and
weathering. If the velocity of the sensor network is faster than the characteristic oil slick time diffusion,
the sensing power of the sensors network is hugely enforced. Suppose a diffusion process evolves in
the convex polytope space Q: Q ∈ <2, where ρ (x, y): Q→<+ can be used to represent the pollutant
concentration over Q, where the dynamic process is modeled by a partial differential Equation (PDE).
The possibility to reorganize the sensors, relocating them to enforce their sensing power, is generally
energy consuming; for this reason, the control law for the converge of the sensors toward their final
centroids location must be constrained to the sensing power, which in this work we consider as Esensing

(ri) = a·ri, for ri < Ri and Esensing (ri) = 0 otherwise, where a is constant and i is referred to the i-th sensor.
If the pollution event velocity in a given direction is vevent; then the control law (9) must be

written as

.
pi =

 −α
(pi−p̂i)
‖pi−p̂i‖

if ‖pi − p̂i‖ ≥ µ

−α
(
pi − p̂i

)
/µ otherwise

(12)

where α = vsensor/vevent is a parameter denoting how much faster the mobile sensor must be with
respect to pollution velocity vevent; µ is a positive defined value taking into account the distance from
the centroids to which converge. The control law (Equation (12)) makes the sensors move toward their
respective centroids with a constant speed vsensor when they are at a distance further than µ from the
corresponding centroids and slow down as they approach them. The control law (Equation (12)) is
calculated at regular steps using new centroids p̂i as a function of the event. Suppose that at time t = 0,
a pollution event is located at x0, y0: the initial shape ρ0 is a point. Under the effects of environmental
parameters, ρ changes with time, and then at regular time steps, the centroids set is recalculated and
the re-dislocation of mobile sensors occurs, consequently, until the highest sensing activity is made
when two centroids set are coincident during two subsequent time steps checks.
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Let us consider now, the possibility of a dislocation of the sensors network from an initial set
of centroids to a new set of centroids when an unwanted event must be taken into consideration.
When the time evolution of pollutant concentration ρ (x, y, t) is known, it is possible to calculate masses
and centroids on region Vi at regular time steps as

MVi =

∫
Vi

ρ
(∣∣∣q− pi

∣∣∣)dq and p̂i =

∫
Vi

qρ
(∣∣∣q− pi

∣∣∣)dq∫
Vi
ρ
(∣∣∣q− pi

∣∣∣)dq
(13)

The masses and centroids are recalculated using a sampling time, generally a fraction of α using
an algorithm very close to Lloyd Centroidal algorithm [21–24] applied to sensors with a limited sensing
radius, as in Figure 3. When possible, the dynamical changes of ρ(|q-pi|,t) are usually modeled by a
partial differential equation [13]. Because in many real situations the shape of ρ(|q-pi|,t) is unknown,
we advance the idea that ρ(|q-pi|,t) could be substituted by a Poisson distribution of random events,
so that ρ(|q-pi|,t) can occur in one point, as described by Figure 2, and evolve with low dynamics. In this
manner, the n sensors can dislocate themselves to develop higher sensing power, thereby neutralizing
the pollution as quickly as possible without making the area of interest overdosed.J. Mar. Sci. Eng. 2020, 8, 132 8 of 12 
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Figure 3. On the left, dislocations of n = 20 sensors, as in Figure 2; on the right, the representation of the
power monitoring using the same dislocation configuration, where the sensors having common limited
range R are located on the points defined by the Poisson distribution, Equation (3); the pollution event
occupies one site. The blue domains represent the highest sensing power, and the black circles denoted
the centroid set p̂i. Note that the area on the right image is slightly larger with respect to the left image.

5. Numerical Results and Discussion

Our method is based on the assumption that the occurrence of a random pollution event is an
element of a more general class of events that follows a Poisson distribution, as described in Figures 1–3.
The sensors’ capability can be considered more effective if they can be located in a general configuration,
where the pollution event occupies one site, and the sensors the other ones. Figure 3 represents both
the Voronoi diagram and the corresponding power sensing using sensors with limited sensing radii.
As the pollution event, described by ρ(|q-pi|,t), changes due to environmental conditions, the sensors
must be re-dislocated on the positions coinciding with the centroids calculated using Equation (13).
Because the shape of ρ(|q-pi|,t) is generally unknown, we can hypothesize that at regular time steps,
the new location of ρ(|q-pi|,t) is on a position still described by the same Poisson distribution, that in
our model represents a primitive partitions of space, which the Voronoi diagram represents the most
effective operability of the sensors networks (Figure 3).

The new algorithm proposed for the control made by a mobile sensors network of a pollutant
event occurring in a large environment can be described as follows:
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(1) Initial setting of the sensors pi ∈ {p1, . . . , pn}; response time t = 0, coincident with a Poisson
distribution of locations.

(2) Computation of the Voronoi region Vi. All the sensors denoted by a standard limit range radius
are defined as Ri = A1/2/(n + m), where A = [0,1] × [0,1] is the area to be monitored, n is the number
of sensors, and m is an entire number taking into account the range of the uncontrolled area.

(3) A pollution event takes place at time t = 0, located at a point as described by a Poisson distribution
and the diffusion process described by ρ(x, y, t); or equivalently ρ(|q-pi|,t), changes slowly.

(4) Computation of centroid set p̂i using Equation (13).
(5) Mobile sensor networks move towards pollution location with a velocity described by α,

considering the closer sensors located in the direction of less pollution shape variation using the
control law (Equation (12)).

(6) Iterative computations of new centroid sets p̂i−j are made at regular times j, j < i. At any new
estimate, the sensor nearest the slick is fixed and all the other sensors are moved following the
new centroids set.

(7) The optimal final configuration embedding the diffusion pollution event is reached.

The numerical results were obtained using a node function coinciding with power sensing as
fi(ri) = (R− ri)

2 for r < Ri, and fi(ri) = 0; otherwise, at any time step when the centroids set is
recalculated, all the sensors are denoted by a common limit range radius defined as Ri = A1/2/(n + m),
where n is the number of sensors and m is an entire number taking in account the uncontrolled area. For
example, in Figure 3, we have considered n = 20 sensors distributed following the PDF (3), with m = 1.
m being strictly connected to different hardware power sensing, running service, and environmental
conditions, other than aging. It can be expressed by the empirical relation:

m �
ω×

〈
l2vor

〉
ddiff

(14)

whereω is rate of possible pollution event due to ship traffic; for example, ddiff is a diffusion coefficient
and describes the mobility of the sensor.

〈
l2vor

〉
denotes the averaged Voronoi cells’ area.

The darker areas denote the areas monitored by the sensor network and the brighter regions the
portion that is not effectively covered by the sensor monitoring. It is evident that while increasing
the number of sensors, the area monitored increases, but this involves significant costs, reducing the
benefits due to mobile sensors.

In many real applications, the area to be monitored is more extensive with respect to sensor
network power sensing, m > >n. This leads to an initial dislocation that we can consider blind,
because in our polytope space, Q ⊂<2, we suppose the equiprobability for the occurrence of a pollution
event. For example, in Figure 4 is shown a linear dislocation of seven sensors with a limited sensing
radius (gray circles). We want to cover the maximum area with the lowest number of wireless sensors
moving in a large area. The general characteristics of the mobility for the wireless sensors should
meet this general requirement; nevertheless, large portions of the unchecked areas must be taken
into consideration.

When a pollution event takes place, the sensors move in the direction of the pollutant slick,
re-dislocating themselves in a Voronoi set centroid given by the knowledge of some environmental
information. The environment changes the shape of the slick, expressed by ρ(|q-pi|,t), making it
asymmetrical; consequently, the new dislocation implies that the new centroids overlap the individual
sensing radii; i.e., Ri − Rj < R, with i, j = 1 . . . n, enforcing their power sensing in one direction rather
than another one. The first step is a fast dislocation of a single sensor; for example, the sensor nearest to
the pollution event. The control law (Equation (12)) is integrated calculating the centroids p̂i at regular
steps, once a pollution event has been located. The convergence is guaranteed by choosing an effective
α parameter as ≥ 10 and time steps for the calculation of the new centroids set proportional to α/5.
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Figure 4. Dislocation of initial n = 7 sensors located in a blind linear configuration on a large area.
The circle denotes the sensed area, m = 16n. A blind dislocation made by regular and equidistant
positions provides equiprobability for the occurrence of a pollution event on the area to be monitored.

In Figure 5 the main results of our procedure are represented. The blind dislocation is changed as
a function of pollutions events. In our case, we limited ourselves to a single pollution event moving
but unchanging shape. The two localizations and the correspondent dislocations of sensor networks
are displayed in Figure 5A and zoomed-in in Figure 5B. In a first approach, the blind dislocation is
changed considering that the pollution event is localized at a point described by a Poisson distribution,
where the pollution event and the other ones by the sensors occupy one site, following the Voronoi
tessellation. The sensor nearest to the pollution event is locked and the other sensors are moved to be
collocated at the positions identified by the centroids set calculated with the Equation (13). As the
slick moves, the configuration of the sensor network is defined by the new centroids set, where at any
new calculation, the nearest sensors are locked. The final result is reached when the sensing power
is maximal. The sensing power is defined by the functions fi(ri) = (R− ri)

2 for r < Ri, and fi(ri) = 0
otherwise. In Figure 5B, the final configuration is obtained by the five sensors forming a pentagon;
the blue point denotes the sensors that in the preview centroids set were locked because of being
nearest to the slick. The results in Figure 5 were obtained taking the parameter α = 10; i.e., the sensor
velocity has been taken to be ten times the slick velocity, a slow diffusion regime. This guarantees
the fast converge to the centroids set without complicating the configuration due to the slick shift
during the sensor dislocation. It is evident that the parameter α includes the main characteristics of
the diffusion process. Fast dynamics of the slick, with fast changes of position and shape of the slick,
would be useless without our algorithm.

All the numerical results were obtained by writing an original Matlab program. The presented
results are rather general and they can be applied to many real situations when a priori knowledge of
the environments to be monitored is unavailable. If a priori knowledge on where a pollution event can
take place and the diffusion process, expressed by ρ(|q-pi|,t), is not available, the initial configuration
of the sensors can be well simulated using the Poisson distribution of the random events for the
centroids set. In such situations of real uncertainty, some improvements for our algorithm can be made
conjugating the centroidal Voronoi tessellations with an inferential approach, but this is beyond the
scope of the present paper.
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Figure 5. Evolution of the swarm composed by n = 7 sensors on large area starting from an initial
set of blind positions as in Figure 4 and moving around a pollution events located at two different
positions between the initial pollution occurrence and the final location when the sensors’ power is
maximal and real time monitoring is reached (initial and final black slick are indicated by the arrow
in (B), and sensors are denoted by blue color in the intermediate configuration and red in the final
configuration). The initial configuration changes are re-dislocating themselves in a new set of positions
given by the centroids calculated with Equation (13) and using the control law Equation (12), α = 10.
(B) is a zoom-in of the (A).

6. Conclusions

The real-time surveillance of large areas requires the ability to dislocate sensor networks. Generally,
the probability of the occurrence of a diffusion-based pollutant event depends on the burden of possible
pollution sources and the spreading of pollution with time. This represents a challenge for devising
real-time dislocation of the sensor network.

In this paper, we have presented the oretical and simulated results inherent to a centroidal Voronoi
partition for the optimized dislocation of a set of heterogeneous buoys and similar sensor networks in
a large area. The optimal deployment was found to be a variation of the generalized centroidal Voronoi
configuration, where the sensors are located at the centroids of the corresponding generalized Voronoi
cells. In turn, we provided a control law that under some constraints on the sensor velocity guarantees
immediate results on stability and convergence of the centroids to the final position where the sensing
power is higher. The generality of our findings could improve the possibility to apply our approach
to reduce the costs of the real-time surveillance of large areas. The proposed solution has been fitted
into an iterative algorithm that allows for evolution constantly, in real-time for the displacement of
the network in response to dynamic events and changes in risk. Numerical simulations have been
conducted to show the efficacy of the approach, while tests in a realistic scenario, consisting of areas of
the Mediterranean Sea, are foreseen in the near future.
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