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Abstract: The ultimate limit state function is one of the premises for the assessment of structure
strength and the safety of ships under severe conditions. In order to study the residual strength
of damaged ships under the combined load of vertical and horizontal bending moments acting on
the hull girder, the ultimate limit state function of a damaged ship under combined load, and its
fitting methods are investigated in this paper. An improved Smith Method is adopted to calculate the
residual load carrying capacity of damage ships, where the rotation and translation of the neutral axis
of the damaged cross-section are obtained using a particle swarm optimisation method. Because the
distribution curve of the residual load carrying capacity of a damaged ship under combined load is
asymmetric, the application of traditional explicit polynomial fitting methods results in poor accuracy.
In this study, a piecewise weighted least square fitting method is adopted so as to guarantee the
continuity in the transitions, and a method is proposed for fitting the ultimate limit state function of a
damaged ship under combined load. Calculations of the residual strength show that the improved
Smith Method is more accurate than the original Smith Method for the accurate position of the neutral
axis. The error analysis of the fitting methods shows that the ultimate limit state function that is fitted
using a piecewise weight least square method is more accurate.

Keywords: PSO-based Smith method; ultimate limit state function; piecewise polynomial fitting;
damaged ship; combined loads

1. Introduction

Ships may encounter various types of dangers at sea; for instance, list due to stranding or hull
damage due to collision. The Ro-Ro ship Modern Express underwent an accident in 2016, and floated
at sea for more than one week with a list angle of 51 degrees. Compared to ships floating in the upright
position, the hydrostatic load acting on a damaged ship is very different. When a ship is in a listed
position, the horizontal bending moment, in addition to the vertical bending moment, must be also
considered in the body-fixed coordinate system. If the ship hull is also damaged, the strength of the
hull girder will be impaired, and the ship will be in a more dangerous situation. Researches have
shown that the horizontal load acting on a damaged ship may be as large as 1.73 times the vertical
load [1,2]. For this reason, the assessment of ship strength is more than just about dealing with the
vertical bending moment; in fact, the ultimate limit state function of the ship under the action of
combined loads must be assessed.

To investigate the ultimate limit state function, the ultimate strength must be calculated first.
The existing methods for calculating the ultimate strength of the hull girder can be categorised into
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two groups: analytical methods and progressive collapse methods [3]. The analytical methods include
the elastic analysis method (such as the initial yielding bending moment method) and fully plastic
bending moment method (Caldwell’s method [4]). The practices show that these methods are useful for
predicting the ultimate strength and residual strength of the hull girder in the early design stage. Based
on investigations of the collapse procedure of a ship undergoing the bending moment of a hull girder,
some progressive collapse analysis methods have been proposed, such as nonlinear finite element
analysis (including the Idealised Structural Unit Method) [5,6] and Smith’s method [7]. The nonlinear
finite element analysis, which can simultaneously consider yielding, buckling and the mixed failure
behaviour of structural elements constituting the hull girder, is recognised as the most reliable approach
for calculating the ultimate/residual strength. However, its application is limited due to the huge
modelling and computing time, and also the requirement of the engineer’s experience [8,9]. Meanwhile,
a progressive collapse method was proposed by Smith [7], by which, the cross-section of concern is
discretised into units of stiffened panels, then the curvature of the hull girder is increased step by step,
and the nonlinear behaviour of each unit is obtained by analysing its stress–strain relationship so as to
obtain the section bending moment at different curvatures of the hull girder. This method has been
widely used in the community, and is referred to as the Smith Method [10]. Hence, the simplified
progressive collapse method is adopted for the ultimate strength analysis in this study.

The accuracy of the Smith Method relies on the stress–strain relationship and the calculation
of the neutral axis. There exist quite a few researches on the stress–strain relationship. Hughes et
al. [11] investigated the failure behaviour of various types of stiffened panels using an incremental
iteration method, and the comparison with experiment showed fair accuracy. Yao [12] derived the
stress–strain relationship for the coupled flexural–torsional behaviour of angle bar stiffeners. HCSR [10]
also provided various stress–strain relationships for the calculation of the ultimate strength of hull
girders. However, the relationships provided by HCSR were derived using the compression and
tension equilibrium in the structure above and below the neutral axis that is parallel to the water line,
and they cannot be applied to asymmetric cross-sections due to inclination and/or hull damage. In the
case of an asymmetric stress–strain, the neutral axis does not only translate, but also rotate. Fujikubo et
al. [13] found that the influence of the rotation of the neutral axis on the accuracy of residual strength
may be as large as 8%. In order to account for the rotation, Joonmo et al. [14] proposed a force vector
equilibrium method where both the force and moment at the cross-section are in equilibrium.

Although theoretically, the instantaneous position of the neutral axis can be accurately determined
by the equilibrium both in force and force vector, a proper numerical method is required for the
convergence of a solution. Li et al. [15] proposed a linear search method to obtain the solution.
However, the translation and rotation are dealt with separately in the iteration process, and certain
experience is needed to obtain reasonable results.

The solution to the instantaneous position of the neutral axis is a problem of seeking the optimum
solution, and for which there exist a number of algorithms, such as Particle Swarm Optimisation
(PSO) [16], ant colony optimisation [17], genetic algorithm [18] and simulated annealing [19].
Among these algorithms, the PSO algorithm was inspired by the social behaviour of bird swarms.
Massless and volumeless particles are adopted to represent individuals of the swarm, and each
individual is a solution. The motion of each of these particles obeys a simple law, and the global
optimum solution is searched in the solution space, accounting for the influences between the
particles. This algorithm is widely applied in many engineering areas for its simple implementation,
fast convergence, and excellent accuracy. Li et al. [20] applied the PSO algorithm to trace the
instantaneous position of the neutral axis, and both the translation and rotation are dealt at the same
time. Comparison of results showed that the accuracy is satisfactory.
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Among the researches on the fitting of ultimate limit state function under multiple loads, mostly
the combined load of vertical and horizontal bending moments [21–23], the following fitting equation
is often used.

γ1

(
MV

MUV

)α
+ γ2

(
MH

MUH

)β
= 1, (1)

where γ1, γ2, α and β are the fitting parameters of the function; MV and MH the vertical and horizontal
bending moment of the ship in the ultimate state, respectively; MUV the ultimate vertical bending
moment when the ship is in a sagging or hogging state; and MUH the ultimate horizontal bending
moment when included to port or starboard. These parameters vary from one to another, and Table 1
shows some of them used by researchers for intact ships.

Table 1. Fitting parameters used by researchers for intact ships.

Contributor γ1 γ2 α β

Gordo et al. [21] 1 1 1.5 < α = β < 1.66

Mansour et al. [22]

If∣∣∣∣ MV
MUV

∣∣∣∣ > ∣∣∣∣ MH
MUH

∣∣∣∣ 1 0.8 1 2

If∣∣∣∣ MV
MUV

∣∣∣∣ < ∣∣∣∣ MH
MUH

∣∣∣∣ 0.8 1 2 1

Khan and Das [23] 1 1 Not fixed Not fixed

It can be seen in Table 1 that attempts have been made to obtain a function to describe the coupling
relationship between the two bending moments. The fitting is satisfactory when the samples of bending
moments bear a negative relationship with the absolute values; however, if the samples bear a positive
relationship, it will be very difficult to obtain a fitting function with desired accuracy, as shown in
Figure 1, where the trend of the samples starts to change when approaching the x axis, and increasing
the number of samples is of little help, as shown in Figure 1.
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In order to improve the fitting accuracy of ultimate limit state function, Shahid [24] proposed a
polynomial fitting method for the case of damaged ships. The polynomial fitting method achieves a
quadratic fitting function using multivariable regression. However, it has been shown that there are
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still some errors in the results obtained with this method. Thus, a new fitting method is desired to
accurately describe the relationships between the vertical and the bending moment.

In this study, in order to derive a simple but accurate fitting method, the accuracy of the polynomial
fitting method is improved by the means of a piecewise weighted least squared method. With this
method, the sample points are divided into groups and fitted separately, then these functions are
adjusted by ensuring the continuity at the boundaries, and finally a set of explicit fitting functions
are obtained.

2. PSO-Based Smith Method for Ultimate Bearing Capacity Analysis of Damaged Hull Girder

2.1. Smith Method and the Neutral Axis of Asymmetric Section of Damaged Ship

The Smith Method is widely used for the assessment of the ultimate strength of ships, by which,
the cross-section of ship hull girder is discretised into units of stiffened panels and hard corner, and the
ultimate strength is obtained by an increase of the curvature of the hull girder step by step. The solving
process of the Smith Method is introduced in HCSR [10] in detail. The accuracy of the Smith Method
relies on the stress–strain relationship and the calculation of the neutral axis.

In most of the cases of an intact ship in an upright floating position, there exist three symmetries:
symmetry in geometry, symmetry in material, symmetry in load. Intact ships are usually symmetrical
in geometry and material, and the most common two types of asymmetry are:

(1) Geometrical asymmetry of damaged ships;
(2) Load asymmetry due to an uneven distribution of goods, the flooding when the hull is damaged,

or due to combination of the horizontal and vertical wave bending moments.

To apply the Smith Method, the position of the neutral axis must be determined. The convergence
factor provided by HCSR for determining the position of the neutral axis takes the form

|Fc − Ft|

|Fc + Ft|
≤ ξT, (2)

where Fc is the sum of the compressive forces of all units, Ft the sum of the tensile forces of all units,
and ξT is the convergence factor for force equilibrium, which is usually smaller than 0.01.

It can be seen that Equation (2) is applicable only when all the three symmetries are present.
Absence of any of the three symmetries would result in an asymmetric cross-section. For instance,
in the case of a damaged hull, the cross-section is asymmetric due to flooding or loss of goods, and the
force acting on it will be as shown in Figure 2. The rotation of the neutral axis is not accounted for in
the original HCSR rules, and application of it with any correction will result in a wrong instantaneous
position of the neutral axis in this case, which will then introduce errors into the subsequent calculation
of the stresses in the units, and eventually lead to an inaccurate solution to the ultimate bending moment.

A new equilibrium criterion is required to determine the position of neutral axis of the asymmetric
cross-section. According to the research of Choung et al. [14], an additional force vector equilibrium
criterion, in addition to the force equilibrium shown in Equation (2), is to be satisfied:

π
2
− ξR ≤ cos−1


⇀
F ·

⇀
M∣∣∣∣∣⇀F ∣∣∣∣∣ ∣∣∣∣∣⇀M∣∣∣∣∣

 ≤ π2 + ξR, (3)

where
→

F is the sum of the forces acting on the cross-section,
→

M the total section bending moment,
and ξR the force vector convergence factor (usually smaller than 0.1◦).
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2.2. The PSO-Based Smith Method

The instantaneous position of neutral axis can be obtained once the equilibrium criteria are met.
Since both the transition and rotation need to be accounted for, an appropriate algorithm is required to
obtain the solution with fair accuracy. This, actually, is a problem to search for the optimum solution in
a given space [20].

In this study, the Particle Swarm Optimisation (PSO) method is used to obtain the solution.
The PSO method approaches the optimum solution by collaborating and sharing information between
the individuals of a group. Each particle has two properties: speed and location. Speed refers to the
speed at which the particle is moving, and location indicates the direction of the motion. The optimum
solution obtained for an individual particle is called individual best, while the optimum solution of all
the particles is referred to as the global best. According to the individual best and global best, a new
calculation is executed to update the speed and location of all the particles. This process is repeated
until the convergence criteria are satisfied.

By the Smith Method, the position and rotation of the neutral axis will vary every time the
curvature is increased, thus the two motions can be regarded as the two dimensions of the search space.
Then the PSO can be applied to seek for the optimum global solution to the objective function. Since the
translation and rotation vary at the same time instead of one by one, the actual instantaneous position
of the neutral axis at a particular curvature can be obtained in a more direct manner. The flowchart
of the PSO-based Smith Method, referred to as the improved Smith Method hereafter, is shown in
Figure 3.
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3. Fitting for the Ultimate Limit State Functions of Damaged Ships under Combined
Bending Moments

3.1. Explicit Ultimate Limit State Functions

The curve of the ultimate limit state function indicates the ultimate vertical and horizontal load
carrying capacity under combined load. It is difficult to accurately describe the curve in an explicit
form. For this reason, the function is usually obtained by fitting with a number of samples.

Since it is a load combined from bending moments in two directions, i.e., vertical and horizontal,
the rotation of the cross-section may be achieved by rotating the coordinate system. In this study,
the improved Smith Method is applied to obtain the ultimate bending moment at each rotation.
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The corresponding ultimate rotation can then be decomposed into components in the axis directions to
obtain the vertical and horizontal ultimate bending moment, as shown in Figure 4, where Y0OZ0 is
the global coordinate system; Y1OZ1 the body-fixed coordinate system; θ the rotation; M0 the total
bending moment; and MV , MH the vertical and horizontal bending moment respectively, which can be
calculated from M0 {

MV = M0 cosθ
MH = M0 sinθ

, (4)

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 7 of 23 

 

3. Fitting for the Ultimate Limit State Functions of Damaged Ships under Combined Bending 
Moments 

3.1. Explicit Ultimate Limit State Functions 

The curve of the ultimate limit state function indicates the ultimate vertical and horizontal load 
carrying capacity under combined load. It is difficult to accurately describe the curve in an explicit 
form. For this reason, the function is usually obtained by fitting with a number of samples. 

Since it is a load combined from bending moments in two directions, i.e., vertical and horizontal, 
the rotation of the cross-section may be achieved by rotating the coordinate system. In this study, the 
improved Smith Method is applied to obtain the ultimate bending moment at each rotation. The 
corresponding ultimate rotation can then be decomposed into components in the axis directions to 
obtain the vertical and horizontal ultimate bending moment, as shown in Figure 4, where 0 0Y OZ  is 
the global coordinate system; 1 1Y OZ  the body-fixed coordinate system; θ  the rotation; 0M  the total 
bending moment; and VM  , HM  the vertical and horizontal bending moment respectively, which 
can be calculated from 0M   

0

0

cos
sin

V

H

M M
M M

θ
θ

=
 =

, (4) 

 

Figure 4. Decomposition of the bending moment. 

The double hull Very Large Crude Container (VLCC) model provided by ISSC [25] is used in 
this study. In order to guarantee the accuracy, the calculation is performed at every 10 degrees of 
rotation, and the result obtained for the total ultimate bending moment is decomposed into a vertical 
bending moment and a horizontal bending moment. The definitions of the horizontal bending 
moment components are shown in Figure 5. The vertical bending moment iy  and the horizontal 
bending moment ix  are obtained for each sample point. 

 
Figure 5. Definition of the horizontal bending moment. 

Figure 4. Decomposition of the bending moment.

The double hull Very Large Crude Container (VLCC) model provided by ISSC [25] is used in
this study. In order to guarantee the accuracy, the calculation is performed at every 10 degrees of
rotation, and the result obtained for the total ultimate bending moment is decomposed into a vertical
bending moment and a horizontal bending moment. The definitions of the horizontal bending moment
components are shown in Figure 5. The vertical bending moment yi and the horizontal bending
moment xi are obtained for each sample point.
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The following equation [23,26] is often used for the explicit fitting.(
MH

MUH

)α1

+

(
MV

MUV

)α2

= 1, (5)

where MUV and MUH are the ultimate bending moment resulted from pure vertical and horizontal
bending in the global coordinate system, respectively. It can be written in the form

xα1 + yα2 = 1, (6)
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where x = MH/MUH and y = MV/MUV.
It can be seen that this is a nonlinear function, and which will be fitted using a nonlinear least

square method in this study. This fitting method seeks the best match for the fitting function and
determines the unknown coefficients via the least square of errors.

3.2. The Polynomial-Fitting-Based Ultimate Limit State Functions

A polynomial fitting method was proposed by Shahid [24] for the fitting of relationship between
bending moments in different directions. Equation (7) shows the general form of the polynomial
fitting function:

Y = C0 +
n∑

i=1

CiXi +
n∑

i=1

n∑
j=1

Ci jXiX j + ε, (7)

where Y is the estimate of the fitting function for the n random variables Xi, C0 an independent
regression coefficient, Ci the coefficient of the first order term, Ci j the coefficient of the cross-quadratic
term, and ε the error between the estimate and the real response.

In this study, the third-order polynomial fitting function is adopted.

y = a + bx + cx2 + dx3, (8)

where x = MH/MUH and y = MV/MUV. Since concave curves, i.e., multiple-value functions,
may appear in some cases, the following form is used instead.

x = a + by + cy2 + dy3, (9)

Determination of the unknown coefficients is the key to the solution when applying the method,
and, for which, the least square method is usually used.

3.3. The Improved Polynomial-Fitting-Based Ultimate Limit State Functions

For highly nonlinear systems, fitting with a single function usually results in poor accuracy,
and increasing the order of the fitting function does not always help. Since the local variations of the
samples are relatively small, a piecewise regression method is adopted to improve the accuracy of the
polynomial fitting function, i.e., piecewise functions are used to describe the response relationship.

The accuracy can be improved by fitting with piecewise functions, but there still might be some
large errors in some cases. For this reason, weights are introduced in order to obtain the optimum fit.
To be specific, weights are used to improve the local fitting accuracy of each piece. The unknowns in
Equation (8) can be calculated as follows.

{N} j =
(
XTwX

)−1
XTwY, (10)

where
{N} = {a, b, c, d}T, (11)

[X] =


1 X1 X1

2 X1
3

1 X2 X2
2 X2

3

...
...

...
...

1 Xm Xm
2 Xm

3

 , (12)

{Y} =
{
y1, y2, . . . , ym

}T , (13)

where w is the weight.
Then the weights are modified repeatedly until the accuracy requirement is satisfied. Once the

fitting is done for all of the pieces, the values of the fitting functions at both ends of the piece, yi1 and
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yi2, are obtained, and so are the slopes y′i1 and y′i2. In order to ensure that the two fitting functions
of the two adjacent pieces have the same curvature at the joint, the following boundary conditions
are applied:

yi2 = y(i+1)1 = yi, (14) y′i1 = (y′
(i−1)2

+ y′i1)/2

y′i2 = (y′i2 + y′
(i+1)1

)/2
, (15)

Because it is an enclosed curve, the following boundary conditions are also applied y(n+1)1 = y1

y′
(n+1)1

= y′11
. (16)

The fitting function of each piece can be recalculated once the function values and the slopes at the
ends of each piece are determined 

y1 = a + bx1 + cx2
1 + dx3

1
y′1 = b + 2cx1 + 3dx2

1
y2 = a + bx2 + cx2

2 + dx3
2

y′2 = b + 2cx2 + 3dx2
2

, (17)

4. Numerical Simulations and Results Analysis

4.1. The Details of VLCC

The cross-section of a double hull VLCC provided by ISSC [25] is adopted for the investigation;
see Figure 6. The types and dimensions of the stiffeners are listed in Table 2, and the Young’s modulus
and the Poisson ratio are 206 GPa and 0.3, respectively. Typical cases of hull damage due to collision
and stranding for the simulation are determined according to the HCSR, and the definitions of the
damage are shown in Table 3 and Figure 7.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 10 of 23 
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Figure 6. The cross-section of the double hull Very Large Crude Container (VLCC) (data were from [25]).
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Table 2. The stiffeners and dimensions of the double hull VLCC [25].

Stiffener
ID Dimensions (mm) Type Yield Stress

(MPa)
Stiffener

ID Dimensions (mm) Type Yield Stress
(MPa)

1 300 × 90 × 13/17 IA Angle Bar 313.6 25 250 × 90 × 12/16 IA Angle bar 313.6

2 350 × 100 × 12/17 IA Angle Bar 313.6 26 450 × 11 + 150 × 22 T-bar 352.8

3 400 × 100 × 11.5/17 IA Angle bar 313.6 27 450 × 11 + 150 × 19 T-bar 352.8

4 400 × 11 + 150 × 12 T-bar 313.6 28 450 × 11 + 150 × 16 T-bar 352.8

5 400 × 11 + 150 × 14 T-bar 313.6 29 450 × 11 + 150 × 14 T-bar 352.8

6 450 × 11 + 150 × 12 T-bar 313.6 30 450 × 11 + 150 × 12 T-bar 352.8

7 400 × 11 + 150 × 14 T-bar 313.6 31 450 × 11 + 150 × 14 T-bar 352.8

8 450 × 11 + 150 × 16 T-bar 313.6 32 400 × 100 × 11.5/16 IA Angle bar 352.8

9 450 × 11 + 150 × 19 T-bar 313.6 33 350 × 100 × 12/17 IA Angle bar 352.8

10 450 × 11 + 150 × 22 T-bar 313.6 34 300 × 90 × 13/17 IA Angle bar 352.8

11 450 × 11 + 150 × 25 T-bar 313.6 35 850 × 17 + 150 × 19 Angle bar 352.8

12 500 × 11 + 150 × 28 T-bar 313.6 36 250 × 90 × 12/16 IA Angle bar 352.8

13 500 × 11 + 150 × 30 T-bar 313.6 37 300 × 90 × 12/16 IA Angle bar 352.8

14 500 × 11 + 150 × 32 T-bar 313.6 38 400 × 11 + 150 × 14 T-bar 352.8

15 500 × 11 + 150 × 34 T-bar 313.6 39 450 × 11 + 150 × 12 T-bar 352.8

16 550 × 12 + 150 × 30 T-bar 313.6 40 450 × 11 + 150 × 14 T-bar 352.8

17 550 × 12 + 150 × 25 T-bar 313.6 41 450 × 11 + 150 × 16 T-bar 352.8

18 350 × 100 × 12/17 IA Angle bar 313.6 42 450 × 11 + 150 × 19 T-bar 352.8

19 550 × 12.5 + 150 × 32 T-bar 352.8 43 450 × 11 + 150 × 22 T-bar 352.8

20 500 × 11.5 + 150 × 30 T-bar 352.8 44 450 × 11 + 150 × 25 T-bar 352.8

21 500 × 11.5 + 150 × 28 T-bar 352.8 45 450 × 11 + 150 × 28 T-bar 352.8

22 500 × 11 + 150 × 25 T-bar 352.8 46 500 × 11 + 150 × 25 T-bar 352.8

23 450 × 11 + 150 × 28 T-bar 352.8 47 500 × 11 + 150 × 28 T-bar 352.8

24 250 × 12.5 Flat bar 313.6 48 230 × 12.5 Flat bar 313.6

Table 3. Location and dimensions of the damage [10].

Dimensions(m) Damage Due to Stranding Damage Due to Collision

Height, D Min(B/20, 2) 0.60D
Width, B 0.60B B/16
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4.2. Validation of PSO-Based Smith Method

In order to validate the PSO-based Smith Method (Method 3), the ultimate strengths of the three
cases shown in Table 4 are calculated, and the results are compared to those obtained with the original
Smith Method (Method 1) and the linear search-based Smith Method (Method 2).
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Table 4. Cases for validating the PSO-based Smith Method.

Case No. Hull Intactness State of Floating

Case 1 Intact upright
Case 2 Damage due to collision Inclined to Portside by 30◦

Case 3 Damage due to stranding Inclined to Portside by 30◦

The ultimate strengths of the double hull VLCC in sagging and hogging conditions of each case
are calculated with the three Smith methods. The results for the ultimate strengths are shown in
Figures 8–10, and those for the positions of the neutral axis are shown in Figures 11–16. The ultimate
sectional bending moments in the sagging and hogging condition of CASE 1 are compared with
literature in Table 5, and the results for CASE 2 and CASE 3 are shown in Tables 6 and 7.
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Table 5. Comparison of ultimate strength obtained by different contributors.

Source Contributor Methodology
Ultimate Strength (MN·m)

Hogging Sagging

ISSC 2000
Report [25]

Chen ISUM 27.40 24.33

Cho Smith Method 28.66 20.80

Yao Smith Method 28.88 20.42

Rigo (1) Smith Method 28.31 19.57

Rigo (2) Modified P-M 25.61 24.07

Masaoka ISUM 30.59 26.59

ISSC 2012
Report [27]

Paik

NLFEA 27.34 22.50

ISUM 25.59 21.97

Modified P-M 25.67 22.39

Smith 28.42 22.13

Wang NLFEA 31.00 25.00

Smith 29.85 25.01

UoG RINA Rules 28.20 21.70

Present

Method 1 29.20 21.90

Method 2 29.20 21.90

Method 3 29.20 21.90

Table 6. Residual strength of CASE 2.

Methodology Residual Strength–Hogging (MN·m) Residual Strength–Sagging(MN·m)

Method 1 25.53 17.80

Method 2 23.10 17.89

Method 3 23.08 17.89

Table 7. Residual strength of CASE 3.

Methodology Residual Strength–Hogging (MN·m) Residual Strength–Sagging(MN·m)

Method 1 25.82 24.64

Method 2 25.65 23.62

Method 3 25.64 23.62
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It can be seen that, for CASE 1, the results obtained by the three methods for the bending moment
and position of the neutral axis are very close. However, there are some differences between the results
for CASE 2 and CASE 3. Particularly, the results obtained with Method 1 bear some differences with
those obtained with the other two methods, and among them Method 3 is most accurate. For this
reason, Method 3 is used to investigate the ultimate limit state function in this study.

4.3. Calculation of the Ultimate Limit State Function

4.3.1. Calculation of Sample Points

Since it is not possible to accurately predict the conditions of a ship at sea, a fit to the ultimate limit
state curve is to be made for the ship under different loading conditions. For which purpose, a number
of samples of ultimate vertical bending moments and horizontal bending moments need to be obtained.
In this study, the ultimate/residual strengths of the ship under different combined loads are obtained
for various heeling angles, and then decomposed into the vertical and horizontal bending moments.

The double hull VLCC mentioned before is used for the investigation. The hull is inclined from 0
to 170◦ with an interval of 10 degrees in order to guarantee the accuracy without incurring too much
computation load. The ultimate/residual hogging and sagging strengths of the intact hull and also the
damaged hull due to collision or stranding are calculated for each angle, and the sample points of the
ultimate vertical and horizontal bending moment under combined load are obtained. For each case of
intact/damaged hull, 36 sample points are obtained, as shown in Figure 17.
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It can be seen in Figure 17 that, in the case of an intact hull, the ultimate bending moment envelope
curve is smooth and approximately symmetric; however, in the cases of a damaged hull, there are
abrupt changes in the distribution of the samples, and the curves are not symmetric, particularly in the
second quadrant where the horizontal bending moment acting on the inclined ship is even larger than
the horizontal bending moment under pure horizontal load.

4.3.2. Fitting Results

The fitted curves which obtained the three methods are shown in Figures 18–20, where the results
are nondimensionalised by dividing them by the pure bending moment. In these figures, Sample point
represents the nondimensional results, Fitting 1 the explicit method, Fitting 2 the polynomial fitting
method, and Fitting 3 the improved polynomial fitting method. Since the values of the sample points
must be positive in the explicit methods, the absolute values are used here. Because the samples points
are distributed in all the four quadrants, and they cannot be fitted with these fitting methods using one
function, the fitting is made to the sample points located in the same quadrant with the two on the
adjacent axes (10 sample points in total). Thus, four fitting functions are obtained for each case.
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The results obtained with the three methods for the fitting for the sample points are shown in
Figures 21–23. In order to compare the accuracy of the fitting in the ranges outside the sample points,
the sample points are removed and the results are shown in Figures 24–26.
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where y  is the fit, ŷ  the actual value, and y  the mean of ŷ  . The maximum of 2R  is 1, and the 
closer 2R  is to 1, the better is the fit. The results obtained for the three cases are shown in Tables 8–
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Fitting 
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Fitting 
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Fitting 
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Figure 25. The case of a damaged hull due to collision.
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Figure 26. The case of a damaged hull due to stranding.

In order to compare the accuracy of the fitting methods at the sample points, the actual vertical
bending moments and the fits to them are plotted in Figures 21–23, where the abscissa is the fit to the
vertical bending moment, and the coordinate is the actual bending moment. If the point is located
on the y = x line, it means that the fit is equal to the actual bending moment; and if the larger is
the distance between the point and y = x, the larger is the difference between the fit and the actual
bending moment.

To compare the accuracy of the fitting in the ranges outside the sample points, the fitting is made
with the sample point of concern removed; i.e., the sample point is removed, and the fitting is made
with the remaining sample points. The vertical bending moment is obtained by substituting the
horizontal bending moment of this sample point into the corresponding fitting function, and then
compared with the actual vertical bending moment. The same is done for all the sample points, and the
comparisons are shown in Figures 24–26, where the abscissa is the vertical bending moment calculated
from the fitting function, and the coordinate is the actual moment.

In order to evaluate the goodness of fit obtained by each method, the coefficient of determination
R2 is calculated using

R2 = 1−
∑
(y− ŷ)2∑
(y− y)2 (18)
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where y is the fit, ŷ the actual value, and y the mean of ŷ. The maximum of R2 is 1, and the closer R2 is
to 1, the better is the fit. The results obtained for the three cases are shown in Tables 8–10. In this study,
a fitting method is considered as satisfactory if R2

≥ 0.999. The results obtained for the case are given
in Tables 8–10.

Table 8. Goodness of fit for the case of the intact hull.

Fitting
No.

1st Quadrant 2nd Quadrant 3rd Quadrant 4th Quadrant

R2 Satisfactory? R2 Satisfactory? R2 Satisfactory? R2 Satisfactory?

Fitting 1 1.000 YES 0.999 YES 0.999 YES 1.000 YES

Fitting 2 0.999 YES 0.999 YES 0.999 YES 1.000 YES

Fitting 3 1.000 YES 1.000 YES 1.000 YES 1.000 YES

Table 9. Goodness of fit for the case of the damaged hull due to collision.

Fitting
No.

1st Quadrant 2nd Quadrant 3rd Quadrant 4th Quadrant

R2 Satisfactory? R2 Satisfactory? R2 Satisfactory? R2 Satisfactory?

Fitting 1 1.000 YES 0.981 NO 1.000 YES 0.986 NO

Fitting 2 0.999 YES 0.983 NO 1.000 YES 0.974 NO

Fitting 3 1.000 YES 1.000 YES 1.000 YES 1.000 YES

Table 10. Goodness of fit for the case of the damaged hull due to stranding.

Fitting
No.

1st Quadrant 2nd Quadrant 3rd Quadrant 4th Quadrant

R2 Satisfactory? R2 Satisfactory? R2 Satisfactory? R2 Satisfactory?

Fitting 1 0.998 NO 1.000 YES 0.997 NO 0.999 YES

Fitting 2 0.997 NO 1.000 YES 0.997 NO 0.999 YES

Fitting 3 1.000 YES 1.000 YES 1.000 YES 1.000 YES

4.4. Discussions

It can be seen that the bending moment is symmetric for the intact ship, but asymmetric for
damaged cases. The bending moment of the damage hull is smaller than that of the intact ship;
however, some sample points of the damaged case are located outside the bending moment envelope
of the intact ship. Fitting for the nondimensionalised bending moment shows that the three fitting
methods produce similar results, except that some differences appear when the load is (almost) a pure
bending moment. The fitting results are basically those symmetrical about the axes, which means that
a symmetry exists for the bending moment in the horizontal plane as well as in the vertical plane (i.e.,
hogging and sagging bending moments are symmetric). In the cases of the damaged hull, there are
some differences between the three methods, particularly, in the results obtained by the classic method
and the polynomial fitting method for the second quadrant.

For the case of an intact hull, the bending moment sample points are symmetrical as the
cross-section is symmetrical about the centre plane. It can be seen that the bending moments are larger
than that of the damaged hull. The sample points of the damaged hull are asymmetric due to the
asymmetric cross-section. Especially in the case of a damaged hull due to collision, where the damage
is close to the side wall, a clear asymmetric pattern is displayed. Because of the redistribution of stress
in the damaged cross-section, some of the bending moments are relatively large and located outside
the fitted curve, as shown in Figure 19. Nondimensionalisation of the ultimate bending moments
shows that the fitted curve of the samples points of the intact hull is symmetric about the abscissa and
also the ordinate. The distribution of the sample points of the stranding case is somewhat asymmetric,
but still similar to the case of the intact ship, and this is because the damage is close to the middle of
the bottom, and its influence on the vertical bending is limited. However, for the horizontal bending



J. Mar. Sci. Eng. 2020, 8, 117 21 of 23

moment, the influence is much more distinct. For the case of collision, the damage is located at the
sidewall and part of the deck is missing, and absence of these strong structure members will result in
large reduction of the load carrying capacity, and in turn the pattern of distribution is different.

For sample points with small variations, e.g., in the case of the intact hull, all the fitting methods
are accurate. However, when there are large variations in the sample points, e.g., in the case of a
damaged hull due to collision, the accuracy of Fitting 1 and Fitting 2 is poor, while that of Fitting 3 is
still satisfactory. As can be seen in Figure 21, the accuracy of fitting with the explicit method and the
polynomial fitting method is poor in the second and fourth quadrant.

Comparison of Figures 21–23 with Figures 24–26 shows that the fitted points obtained with the
corresponding sample points removed are located at larger distances from x = y, and Fitting 3 is
always more accurate than Fitting 1 and Fitting 2.

Comparison of the results obtained with and without removing the sample points shows that
increase in the number of sample points improves the accuracy, but the improvement is limited in
many cases; in particularly, in the case of a damaged hull due to collision.

The results obtained for the goodness of fit also shows that the accuracy of Fitting 1 and Fitting 2
is not always accurate for the case of damaged hull due to collision or stranding, while Fitting 3 is the
most accurate in all of the cases.

5. Conclusions

In this study, a PSO-based Smith Method is applied to calculate the ultimate strength of the
intact/damaged hull under the combined load of the vertical and horizontal bending moment.
A weighted piecewise polynomial fitting method is devised to obtain the ultimate limit state function of
ships under the combined load of vertical and horizontal bending moment. Based on the comparison
of the results with literature, the following conclusions are drawn.

(1) Compared to the implementations of the Smith Method, where only the translation of the neutral
axis is considered, or the linear search method is applied to trace the position of the neutral
axis, the PSO-based Smith Method is more accurate in obtaining the instantaneous position of
the neutral axis, and helps produce more accurate results for the ultimate bending moment.
Application of the PSO-based method also helps with more accurate fitting of the ultimate limit
state functions.

(2) The weighted piecewise fitting method proposed in this study is more accurate for the fitting
of the ultimate limit state function than the explicit method and the original polynomial fitting
method, especially in the case of a damaged hull due to collision.

(3) Comparison of the fitting with and without the sample points removed shows that increasing
the number of sample points may help with the accuracy of the explicit fitting and the original
polynomial fitting method, but the improvement is limited, and the accuracy is still unsatisfactory
in some cases.

(4) Results obtained for the cases of the intact/damaged hull show that the explicit fitting method
and the original polynomial fitting method produce fairly accurate results for the case of an intact
hull. Thus, they can be used as the first choices for obtaining the ultimate limit state function of
intact hulls for their simplicity, while the weighted piecewise fitting method can be used for the
cases of damaged hulls.

Author Contributions: Conceptualisation, C.L.; Methodology, C.L. and X.Z.; Modelling and Computation, Z.Z.,
Analysis, Z.Z. and C.L.; Writing—Original Draft Preparation, Z.Z.; Editing and Revision, X.Z.; Supervision, C.L.
and X.Z.; Funding Acquisition, C.L.; Project Administration, H.R.; Resources, H.R. All authors have read and
agreed to the published version of the manuscript.

Funding: The study was supported by the National Natural Science Foundation of China under Grant No.
51779055, 51679055 and 51509058.

Acknowledgments: The authors would like to thank all the reviewers for their valuable comments.



J. Mar. Sci. Eng. 2020, 8, 117 22 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chan, H.S.; Incecik, A.; Atlar, M. Structural Integrity of a Damaged Ro-Ro Vessel. In Proceedings of the
Second International Conference on Collision and Grounding of Ships, Technical University of Denmark,
Lyngby, Denmark, 1–3 July 2001; pp. 253–258.

2. Chan, H.S.; Atlar, M.; Incecik, A. Global Wave Loads on Intact and Damaged Ro-Ro Ships in Regular Oblique
Waves. J. Mar. Struct. 2003, 16, 323–344. [CrossRef]

3. Yao, T.; Fujikubo, M. Buckling and Ultimate Strength of Ship and Ship-Like Floating Structures;
Butterworth-Heinemann: Oxford, UK, 2016.

4. Caldwell, J.B. Ultimate Longitudinal Strength. Trans. RINA 1965, 107, 411–430.
5. Valsgaard, S.; Jorgensen, L. Ultimate Hull Girder Strength Margins in Present Class Requirements.

In Proceedings of the SNAME Symposium on Marine Structural Inspection, Maintenance and Monitoring,
Arlington, VA, USA, 18–19 March 1991; pp. 1–19.

6. Ueda, Y.; Rashed, S.M.H. The Idealized Structural Unit Method and Its Application to Deep Girder Structures.
Comput. Struct. 1984, 18, 227–293.

7. Smith, C.S. Influence of Local Compression Failure Compression Failure on Ultimate Longitudinal Strength
of Ship Hull. In Proceedings of the International Symposium on Practical Design in Shipbuilding, Tokyo,
Japan, 18–20 October 1977; pp. 73–79.

8. Paik, J.K.; Thayamballi, A.K. Ultimate Limit State Design of Steel-Plated Structures; John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2003.

9. Li, C.F.; Zhu, Z.Y.; Ren, H.L.; Zhou, X.Q. Application of the Incorporated Meshing Technique to Non-Linear
FE Analysis of Hull Girder Ultimate Strength. In Proceedings of the ASME 35th International Conference on
Ocean, Offshore and Arctic Engineering (OMAE), Busan, Korea, 19 June 2016.

10. International Association of Classification Societies (IACS). Harmonized Common Structural Rules for Oil
Tankers and Bulk Carriers; IACS: London, UK, 2014.

11. Hughes, O.F.; Ma, M. Inelastic Analysis of Panel Collapse by Stiffener Buckling. Comput. Struct. 1996, 61,
107–117. [CrossRef]

12. Tetsuya, Y.; Nikolov, P.I. Progressive Collapse Analysis of a Ship’s Hull under Longitudinal Bending
(2nd report). J. Soc. Nav. Archit. Jpn. 1992, 172, 437–446.

13. Fujikubo, M.; Zubair, M.A.; Takemura, K.; Iijima, K.; Oka, S. Residual Hull Girder Strength of Asymmetrically
Damaged Ships. J. Jpn. Soc.Nav. Archit. Ocean Eng. 2012, 16, 131–140. [CrossRef]

14. Joonmo, C.; Nam, J.M.; Ha, T.B. Assessment of Residual Ultimate Strength of an Asymmetrically Damaged
Tanker Considering Rotational and Translational Shifts of Neutral Axis Plane. Mar. Struct. 2012, 25, 71–84.

15. Li, C.F.; Fu, P.; Ren, H.L.; Xu, W.J.; Guedes Soares, C. Ultimate Bearing Capacity Assessment of Hull Girder
with Asymmetric Cross-Section. In Proceedings of the 36th International Conference on Offshore Mechanics
and Arctic Engineering (OMAE), Trondheim, Norway, 25 June 2017.

16. Kennedy, J.; Eberhart, R.C. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the
IEEE International Conference on Systems Man and Cybernetics, Orlando, FL, USA, 12–15 October 1997;
Volume 5, pp. 4104–4108.

17. Coloni, A.; Dorigo, M.; Maniezzo, V. Distributed Optimization by Ant Colonies. European Conference on Artificial
Life; Elsevier: Paris, France, 1991; pp. 134–142.

18. Holland, J.H. Adaptation in Natural and Artificial System; The University of Michigan Press: Ann Arbor, MI,
USA, 1975.

19. Steinbrunn, M.; Moerkotte, G.; Kemper, A. Heuristic and Randomized Optimization for the Join Ordering
Problem. VLDB J. 1997, 6, 191–208. [CrossRef]

20. Li, C.F.; Gao, C.; Zhou, X.Q.; Dong, S.; Fu, P.; Xu, D.H. A PSO-Based Method for Tracing the Motion of
Neutral Axis Plane of Asymmetric Hull Cross-Sections and Its Application. In Proceedings of the 37th
International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17 June 2018.

21. Gordo, J.M.; Guedes Soares, C. Collapse of Ship Hulls under Combined Vertical and Horizontal Bending
Moments. In Proceedings of the Sixth International Symposium on Practical Design of Ships and Mobile
Units, Seoul, Korea, 17–22 September 1995; pp. 808–819.

http://dx.doi.org/10.1016/S0951-8339(03)00002-9
http://dx.doi.org/10.1016/0045-7949(96)00002-8
http://dx.doi.org/10.2534/jjasnaoe.16.131
http://dx.doi.org/10.1007/s007780050040


J. Mar. Sci. Eng. 2020, 8, 117 23 of 23

22. Mansour, A.E.; Lin, Y.H.; Paik, J.K. Ultimate Strength of Ships under Combined Vertical and Horizontal
Moments. In Proceedings of the Sixth International Symposium on Practical Design of Ships and Mobile
Units, Seoul, Korea, 17–22 September 1995; Volume 3, pp. 844–856.

23. Khan, I.A.; Das, P.K. Random Design Variables and Sensitivity Factors Applicable to Ship Structures
Considering Combined Bending Moments. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2008, 222,
133–143. [CrossRef]

24. Shahid, M. Development of Structural Reliability Techniques and Their Application to Marine Structural
Components and Systems. Ph.D. Thesis, Universities of Glasgow and Strathclyde, Glasgow, UK, 2008.

25. Yao, T.; Asrup, O.C.; Caridis, P.; Chen, Y.N.; Cho, S.R.; Dow, R.S.; Niho, O.; Rigo, P. Special Task Committee
VI.2: Ultimate Hull Girder Strength. In Proceedings of the 14th International Ship and Offshore Structures
Congress (ISSC), Nagasaki, Japan, 2–6 October 2000.

26. Khan, I.A.; Das, P.K. Reliability Analysis of Intact and Damaged Ships Considering Combined Vertical and
Horizontal Bending Moments. Ships Offshore Struct. 2008, 3, 371–384. [CrossRef]

27. Paik, J.K.; Amlashi, H.; Boon, B.; Branner, K.; Caridis, P.; Das, P.; Fujikubo, M.; Huang, C.-H.; Josefson, L.;
Kaeding, P.; et al. Committee III.1 Ultimate Strength. In Proceedings of the 18th International Ship and
Offshore Structures Congress (ISSC), Rostock, Germany, 9–13 September 2012; pp. 285–363.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1243/14750902JEME103
http://dx.doi.org/10.1080/17445300802369950
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	PSO-Based Smith Method for Ultimate Bearing Capacity Analysis of Damaged Hull Girder 
	Smith Method and the Neutral Axis of Asymmetric Section of Damaged Ship 
	The PSO-Based Smith Method 

	Fitting for the Ultimate Limit State Functions of Damaged Ships under Combined Bending Moments 
	Explicit Ultimate Limit State Functions 
	The Polynomial-Fitting-Based Ultimate Limit State Functions 
	The Improved Polynomial-Fitting-Based Ultimate Limit State Functions 

	Numerical Simulations and Results Analysis 
	The Details of VLCC 
	Validation of PSO-Based Smith Method 
	Calculation of the Ultimate Limit State Function 
	Calculation of Sample Points 
	Fitting Results 

	Discussions 

	Conclusions 
	References

