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Abstract: Hydrological models are based on the relationship between rainfall and discharge, which
means that a poor representation of rainfall produces a poor streamflow result. Typically, a poor
representation of rainfall input is produced by a gauge network that is not able to capture the rainfall
event. The main objective of this study is to evaluate the impact of the mean areal rainfall on a
modular rainfall-runoff model. These types of models are based on the divide-and-conquer approach
and two specialized hydrological models for high and low regimes were built and then combined to
form a committee of model that takes the strengths of both specialized models. The results show that
the committee of models produces a reasonable reproduction of the observed flow for high and low
flow regimes. Furthermore, a sensitivity analysis reveals that Ilopango and Jerusalem rainfall gauges
are the most beneficial for discharge calculation since they appear in most of the rainfall subset that
produces low Root Mean Square Error (RMSE) values. Conversely, the Puente Viejo and Panchimalco
rainfall gauges are the least beneficial for the rainfall-runoff model since these gauges appear in most
of the rainfall subset that produces high RMSE value.

Keywords: modular modelling; high and low flow; sensitivity analysis; mean areal rainfall

1. Introduction

Floods problems in El-Salvador have been present since a long time ago. According to
Gierloff-Emden [1], a hurricane in 1934 produced urban and river floods due to 500 mm of rainfall
in three days. Additionally, Hurricane Fifi in 1974 produced flood damages in the coastal area of
El-Salvador and Hurricane Mitch caused USD 388.1 million worth of economic losses, which accounts
for 3.26% of the Gross Domestic Product (GDP) of the country [2]. Furthermore, Hydrological drought
has also affected El-Salvador in recent times. In 2015, important rivers and reservoir levels in the
country reached a critical state due to the El Niño phenomenon. This type of extreme event develops
slowly and affects larger areas than flood conditions.

Different rainfall-runoff models have been implemented in El-Salvador—most of them were
built for flood forecasting purposes. For instance, Häggström and Lindström [3] calibrate the
conceptual Hydrologiska Byråns Vattenbalansavdelning (HBV) model to six rivers in Central America.
In 2004, the Hydrological National Service of El-Salvador [4] reported a hydrological model for flood
forecasting purposes in the Lempa Catchment. Additionally, Riverside Technology [5] implemented a
semi-distributed Sacramento rainfall-runoff model in Lake Ilopango and Jiboa Catchment, which was
implemented in a modular forecast system (Delft-FEWS) standalone version. However, these models
exhibit limitations in reproducing low flow conditions accurately. Therefore, a different model structure
could be built such that it can consider not only high flows but also low flow conditions.

In literature, many rainfall-runoff modelling approaches have been proposed to reproduce both
high and low flows in a single deterministic model. For instance, Solomatine [6] and Corzo et al. [7,8]
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proposed a modular modelling approach in which different local models are responsible for a particular
region of the input space and then these local or specialized models are combined to form a committee
of models which improves modelling results. Furthermore, Corzo et al. [9] incorporated various flow
regimes in a modular Artificial Neural Network (ANN) model architecture. Fenicia et al. [10] and
Kayastha et al. [11] improved hydrological model prediction using a fuzzy logic combination scheme
of specialized models’ outputs obtained from conceptual models. Overall, the modular modelling
technique has been proved to improve model performance since it overcomes the structural limitations
that a single rainfall-runoff model may display. Nevertheless, these models could still be affected by
precipitation inaccuracy. Therefore, it is also important to evaluate the representation of the rainfall
and quantify the variability of the model performance produced by poor rainfall estimates.

The aim of this study is to evaluate the impact of the mean areal rainfall on a modular model
with a soft combination of local models in a catchment in El-Salvador that can reproduce high
and low flow regimes. The modular modelling approach has been evaluated in different case
studies [10,11] leading to a higher model performance compared to a single conceptual model.
However, the modular rainfall-runoff model has mainly been applied to aggregated basins and not
semi-distributed systems that include lake dynamics, which implies an important challenge in the
forecasting process. Furthermore, the sensitivity analysis with respect to rainfall can help to find
out the most influential rainfall gauges as well as the least beneficial, taking into consideration their
usefulness for runoff calculation.

2. Case of Study

2.1. Description

The Jiboa River is one of the five important rivers in El-Salvador and is located at the central part
of the country with a total drainage area of 604.87 km2, a lake surface area of 70.64 km2 and a channel
length of 61.48 km. The mean elevation of the catchment is 238 meters with a maximum elevation of
2106 meters above mean sea level. In the lower part of the basin, large coastal areas are commonly
catalogued as flood prone areas in the basin.

The climate in the study area is divided into two seasons: the wet period from May to October,
which is characterized by convective storms and some extreme rainfall events, and the second season
is the dry period from November to April which is characterized by trade winds and temperature
ranges from 20 to 40 ◦C. More details can be seen in Table 1.

Table 1. Summary of climate parameters in the Jiboa Catchment. Reproduced from Master Plan for
development and use of water resources in El-Salvador. Ministry of Agriculture and Livestock of
El Salvador (1981) [12].

Climate Period Wet season Dry season

Period May–October November–April
Rainfall Convective storm Some convective storm
Sunlight 7.6 hours per day 9.4 hours per day

Wind Wind speed of 5.6 km/h Trade winds of 6.5 km/h
Special phenomenon Extreme rainfall and drought North wind component
Temperature ranges 20 to 35 ◦C 19 to 36 ◦C
Relative humidity Monthly average of 80% Monthly average of 66%

For this research, the part of the catchment that drains to the Puente Viejo station with an area of
431.93 km2 is considered in the modelling setup. Figure 1 presents the catchment, the rainfall stations
considered, and the semi-distributed model structure proposed in the study.
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Spanish) has provided rainfall, water level and discharge data for the 1970 to 2015 period. These data 

are necessary for the calibration and verification of the rainfall-runoff model since they provide a 

mean to mimic the observed discharge at Puente Viejo Station. 

The rainfall dataset is divided into conventional and telemetry stations. The former records 

rainfall data in a daily time scale for the 1970 to 2015 period. The latter records rainfall estimates in a 

minute time step for the 2002 to 2015 period (see Figure 2). This rainfall gauge network includes 

Puente Viejo Station since it has a rainfall sensor in its setup. 

Even though most of the data correspond to daily measurements, telemetry stations (minute 

time scale) have been selected to calibrate and validate the modular rainfall-runoff model for three 

reasons: 

 The time of concentration of the catchment is of the order of hours. 

 Automatic rainfall gauge represents the most recent data in the study area. 

 For operational forecast, telemetry rainfall gauges are more suitable than daily gauges in this 

case study. 

 

Figure 1. Jiboa and Lake Ilopango catchment area that drains to Puente Viejo water level gauge and the
surrounding rainfall gauges.

2.2. Data Available

The Ministry of Environment and Natural Resources of El-Salvador (MARN for its acronym in
Spanish) has provided rainfall, water level and discharge data for the 1970 to 2015 period. These data
are necessary for the calibration and verification of the rainfall-runoff model since they provide a mean
to mimic the observed discharge at Puente Viejo Station.

The rainfall dataset is divided into conventional and telemetry stations. The former records
rainfall data in a daily time scale for the 1970 to 2015 period. The latter records rainfall estimates in
a minute time step for the 2002 to 2015 period (see Figure 2). This rainfall gauge network includes
Puente Viejo Station since it has a rainfall sensor in its setup.
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Figure 2. Period of record for telemetry rainfall stations surrounding the Jiboa Catchment.

Even though most of the data correspond to daily measurements, telemetry stations (minute time
scale) have been selected to calibrate and validate the modular rainfall-runoff model for three reasons:

• The time of concentration of the catchment is of the order of hours.
• Automatic rainfall gauge represents the most recent data in the study area.



J. Mar. Sci. Eng. 2020, 8, 980 4 of 17

• For operational forecast, telemetry rainfall gauges are more suitable than daily gauges in this
case study.

Water level data at Puente Viejo station were provided by MARN for the 2012 to 2016 hydrological
year period. These data were converted into discharge units using a rating curve equation shown in
Equation (1), where a, b and Ho are the rating curve coefficient and h is the water level. The rating
curve coefficient for different hydrological years and valid periods is presented in Table 2.

Q = b·(h−Ho)
a (1)

Table 2. Rating curve coefficients for different hydrological years at Puente Viejo Station.

Gauge/Station Hydrological Year Valid Period Ho a b

Puente Viejo

2012–2013 May 2012 to
April 2013 0.15 1.89 13.20

2013–2014
May 2013 to

November 2013 0.16 1.90 13.27

November 2013
to April 2014 0.02 3.00 15.45

2014–2015 May 2014 to
April 2015 0.15 1.25 13.46

2015–2016 May 2015 to
April 2016 0.18 1.73 20.04

A rainfall-runoff model requires potential evapotranspiration (Ep) as an input. For this study, the Ep
was estimated using the potential evapotranspiration–elevation relationships shown in Equation (2),
where x is the elevation above mean sea level (m), y is the potential evapotranspiration (Ep) in
millimetres and A, B and C are equation parameters. These parameters are shown in Table 3 for each
month and were determined using the Hargreaves method and linear regression equations [13].

y = Ax2 + Bx + C (2)

Table 3. Potential evapotranspiration–elevation equation parameters (A, B and C). Reproduced from
Integrated and Dynamic Water Balance in El-Salvador. National Service for Territorial Studies of
El-Salvador (2005) [13].

Month A B C

January −7.0 × 10−6 −0.0170 152.95
February −8.0 × 10−6 −0.0164 156.04

March −1.0 × 10−5 −0.0170 190.42
April −9.0 × 10−6 −0.0202 194.52
May −7.0 × 10−6 −0.0237 186.89
June −7.0 × 10−6 −0.0181 165.79
July −9.0 × 10−6 −0.0127 175.28

August −8.0 × 10−6 −0.0122 170.12
September −8.0 × 10−6 −0.0126 150.42

October −1.0 × 10−5 −0.0094 149.56
November −9.0 × 10−6 −0.0119 142.18
December −7.0 × 10−6 −0.0168 144.91

3. Materials and Methods

3.1. Modular Modelling with Soft Combination

Solomatine [6] described modular modelling as a set of specialized or local models each of which is
responsible for a region of the input space. In recent years, these modular models have been subject to
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many experiments using data-driven and conceptual models such as local models. These experiments
have demonstrated that the accuracy of the output is improved since it overcomes the structural
limitations that a single deterministic model may exhibit.

The modular principle divides the input vector into different specialized or local models
(hard partitioning). Thereafter, these local models are combined with a soft combination scheme at the
boundary between them to produce a composite solution [6].

In this research, the hard partitioning with a soft combination of models using a fuzzy logic
scheme will be used since problems of compatibility among the models could occur due to the hard
partitioning. The smooth combination of local or specialized models can be reached with a fuzzy logic
scheme as proposed by Solomatine [6] and implemented in conceptual models recently. For instance,
Fenicia et al. [10] improved hydrological model prediction involving a combination of specialized
models outputs obtained from conceptual models in the Alzette River basin in Luxembourg. These two
local models were combined using a fuzzy logical trapezoidal membership function with discharge
threshold parameters of δ and γ.

In addition to the previous experiment, Kayastha et al. [11] extended earlier work from
Fenicia et al. [10] using a fuzzy logic scheme to combine specialized models. The authors used
four different types of weighting schemes to evaluate the performance of specialized models and two
membership functions to combine the two flow conditions.

In this study, the “Hydrologiska Byråns Vattenbalansavdelning“(HBV) conceptual model has been
used to transform the rainfall into runoff. For this purpose, the HBV code in MATLAB programming
language provided by IHE-Delft, has been modified to explicitly include lake dynamics. The updated
HBV Lake model requires lake physical characteristics such as storage–discharge curve to compute the
runoff simulation.

The spatial disaggregation of the inputs and model parameters is usually divided into three
different approaches: lumped, semi-distributed and distributed modelling. Lumped modelling
analyses the catchment as a single unit, semi-distributed modelling divides the catchment into a smaller
subcatchment, and distributed modelling performs the model computation in a gridded manner.
Figure 1 shows the semi-distributed model structure selected for this study whose HBV outflows
were summed and then routed using the triangular weighting function (MAXBAS). The reason for
using a semi-distributed model instead of a lumped model is because the two sub-basins exhibits
different physical processes. For instance, the Jiboa sub-basin response is faster than the Lake Ilopango
sub-basin which is controlled by the water volume in the water body.

After this process, the input data were split into calibration and verification sets. The aim of
this process is to calibrate the model parameters with a lot of data points that includes different flow
regimes and to evaluate the model performance in an independent dataset. The statistical summary of
the calibration and verification dataset is presented in Table 4. The calibration dataset cover both dry
and wet periods and the verification period only covers the wet period. It was difficult to split the data
into statistically similar sets since the procedure was constrained by data available and the wish to
keep data in a contiguous block.

Table 4. Statistical summary of the runoff data at Puente Viejo Station for the Jiboa River basin.

Statistical Properties Complete Dataset Calibration Dataset Verification Dataset

Period (month/year) June/2012–December/2013
July/2015–December/2015 June/2012–December/2013 July/2015–December/2015

Number of data points 17,779 13,433 4346
Average (m3/s) 3.68 3.45 4.38

Minimum (m3/s) 0.79 1.24 0.79
Maximum (m3/s) 35.74 31.22 35.74

Standard deviation (m3/s) 3.18 2.67 4.34
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The aim of using specialized or local models instead of only one single model is to reproduce high
and low flow regimes accurately. These specialized or local models were found using a multi-objective
optimization which minimized two weighted objective functions—RMSELF and RMSEHF—shown in
Equations (3) and (4), where n is total number of time steps, Qsim,i is the simulated flow for time step i
and Qobs,i is the simulated flow for time step i.

RMSELF =

√√
1
n

n∑
i=1

(
Qs,i −Qo,i

)2
·WLF,i (3)

RMSEHF =

√√
1
n

n∑
i=1

(
Qs,i −Qo,i

)2
·WHF,i (4)

The two weighting functions WLF and WHF, for the objective function formulas, were calculated
using the weighting function (Figure 3) and Equations (3) and (4), where the Qo,max is the maximum
observed flow.

WHF =

(
Qo,i

Qo,max

)2

(5)

WLF =

(
Qo,max −Qo,i

Qo,max

)2

(6)
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Hydrology and Earth System Sciences; published by Copernicus Publications on behalf of the European
Geoscience Union, 2012 [11].

The NSGA-II Genetic multi-objective optimization algorithm was used in the study to find the
specialized models HBVLF and HBVHF. The outcome of this framework analysis is the Pareto-optimal
set of solutions. All the trade-off solutions are equally important, which means that it is difficult to prefer
one solution over the other without any further information about the problem. The two specialized
models—HBVHF and HBVLF—represent the best models that minimize the two objective functions
RMSEHF and RMSELF, respectively. However, different optimal combinations could be used since every
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solution has its strength and limitation in describing the observed discharge [10]. Moreover, two single
objective optimizations, separately, could also have also been applied as alternative procedures to
obtain the two specialized HBV models. For the combining process of the two specialized models,
the two-membership function shown in Figure 4 and indicated by Kayastha et al. [11] was used.
The linear function or MFtype-A represents the degree of membership associated with the flow
condition. For instance, the degree of membership is 0 when the simulated flow is below the discharge
threshold γ, it increases linearly between the γ and δ parameters, and it is 1 when the simulated flow is
above the discharge threshold δ. On the contrary, the degree of membership is 1 when the simulated
flow is below the
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, it decreases linearly between the transitional parameters, and it is 0 when the
simulated flow is above the δ parameter [10]. Similarly, the quadratic function or MFtype-B follows
the same logic using a quadratic equation instead of a linear equation in the region where the two
specialized models work together.

MLF =


1, h < γ(

h− γ
δ− γ

)N

, γ ≤ h < δ

0, h ≥ δ

(7)

MHF =


0, h < γ

1−
(

h− γ
δ− γ

)N

, γ ≤ h < δ

1, h ≥ δ

(8)
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The membership functions MLF and MHF were computed using Equations (7) and (8) where γ and
δ are the discharge threshold parameters, N is the power value referring to linear (N = 1) or quadratic
(N = 2) functions and the variable h is the division between the observed flow at any time step and
the maximum flow in the dataset. The outputs of the two specialized or local models were combined
according to Equation (9) where the M is the membership function for low or high flows (MLF and
MHF) calculated in Equations (7) and (8) and HBV is the specialized model output for high and flow
regimes (HBVLF and HBVHF).

Qc,i =
(MLF ·HBVLF,i + MHF ·HBVHF,i)

MLF + MHF
(9)
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The threshold parameters (γ and δ) were manually calibrated using the Root Mean Square Error
(RMSE) as objective function (See Equation (10)).

RMSE =

√
1
n

∑n

i=1

(
Qs,i −Qo,i

)2
(10)

For comparison purposes, a single HBV model was calibrated using the Root Mean Square Error
(RMSE) as an objective function. This model was built with the same calibration and verification
dataset shown in Table 4.

3.2. Sensitivity Analysis of the Mean Areal Rainfall Input

Rainfall data from gauges form an important input in rainfall-runoff models since they are the
primary drivers of runoff. These input data are often considered independently of the modelling
procedure. In hydrology, many methods such as the arithmetic average, Thiessen polygons, contour
area weighted average (i.e., Isohyetal) and algorithm hypsometric method have been proposed to
estimate the average areal rainfall that feeds the hydrologic model. However, these methods could
produce a bias in runoff simulations since there is a sensitivity of the rainfall-runoff model output to
the characteristics of the rain gauge network used as the model input.

The improvement in computational power and calibration process opened a window of
opportunities to researchers to investigate the sensitivity of hydrological models to rainfall estimates
errors. Yet, before these computational improvements, many authors such as Crawford and Linsley [14],
Sutcliffe [15], Hamlin [16] and Morrissey et al. [17] had already discussed the problem from a
theoretical perspective.

The impact of the variability of rainfall estimates on runoff simulations can lead to flow forecast
inaccuracy [18]. Furthermore, the temporal and spatial nature of rainfall volume may or may not be
captured by rainfall gages, and thus a poor runoff calculation is produced by the model. Therefore,
it is important to analyze the sensitivity of the model with an imperfect estimation of rainfall input.

Anctil et al. [19], Andréassian et al. [20], Arnaud et al. [21], Dawdy and Bergmann [22] and
Melching [23] indicated that the variability of rainfall estimates could be compensated by adjusting
model parameters. This variability is attenuated by the low-pass filter behavior that the rainfall-runoff

models can exhibit [24,25]. Hence, it should consider the characteristics of this filter in order to
determine the quality and quantity of rainfall estimates required to achieve a degree of accuracy in
flow prediction.

Andréassian et al. [20] examined the quality of rainfall time distribution and the total depth based
on the analysis of how areal rainfall is transformed into runoff in three lumped conceptual models.
Furthermore, the authors proposed the Goodness of Rainfall Estimate (GORE) and BALANCE index
to analyze the link between the performance of the model and the representativeness of the mean areal
rainfall estimate used to run the model.

The Goodness of Rainfall Estimation (GORE) index assesses the quality of rainfall time distribution
based on the best estimate or reference areal rainfall (P) since the true precipitation is impossible to
measure. The GORE index varies from −∞ to 1. It takes a value of 1 when the estimated rainfall
(PE) equals the reference areal rainfall and decreases as the estimates become poorer. The index is a
transposition of the Nash–Sutcliffe criterion in the rainfall domain that uses square roots of the rainfall
estimates to reduce the weights of extreme events [19,20].

GORE = 1−

∑n
i=1

(√
PE

i −
√

Pi

)2

∑n
i=1

(
√

Pi −
√

P
)2 (11)
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The BALANCE index quantifies the overestimation (BALANCE > 1) or underestimation
(BALANCE < 1) of the reference rainfall by a given rain gauge subset. This index compares the sum of
the subset of rainfall gauge (P) to the sum of reference rainfall (PE) over the available period [19,20].
Equation (10) defines the BALANCE index.

BALANCE =

∑n
i=1 PE

i∑n
i=1 Pi

(12)

The approach consists of comparing a reference rainfall estimate with the mean areal rainfall
obtained with a subset of gauges. These subsets were randomly obtained using a different number
of rainfall gauge combinations. For the reference rainfall estimate, the input rainfall of the modular
rainfall-runoff model was used since it includes all the available rain gauges and provides the “best”
rainfall estimate.

For the generated mean areal subset, an arithmetic mean scheme was used to calculate the mean
areal rainfall. The selected scheme is simple to implement and its results could be used to evaluate the
ability of the selected rainfall subset to represent the reference rainfall time series which was calculated
using a weighting scheme.

Figure 5 describes the methodology followed in this sensitivity analysis with respect to rainfall
estimates, where the input rainfall gauges were randomly generated in order to obtain 411 rainfall
subsets. These subsets represent a different number of possible rainfall gauge combinations and were
randomly generated using k different rain gauges combinations (for k = 2, . . . , 9). The number of
combinations of rainfall gauges are shown in Table 5 where, for instance, 120 different combinations or
subsets are possible using five rainfall gauges. The number of possible combinations was constrained
by the wish to keep at least one rainfall gauge in one sub-basin. Otherwise, the modular model will
not have a rainfall input in one sub-basin.
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After this process, each subset was used as rainfall input in the modular rainfall-runoff model
without changing its calibrated model parameters. Finally, the Root Mean Square Error (RMSE),
the Goodness of Rainfall Estimate (GORE) and the BALANCE indexes were calculated for each subset.

4. Results and Discussion

4.1. Modular Rainfall-RunoffModelling

The aim of using specialized or local models instead of only one single model is to reproduce
accurate high and low flow regimes. These specialized or local models (HBVLF and HBVHF) were found
using a multi-objective optimization which minimized two weighted objective functions—RMSELF

and RMSEHF, shown in Equations (3) and (4). Furthermore, the two-weighting functions, WLF and
WHF, for the objective function formulas, were calculated using the WStype-I function (Figure 3).
The outcome of this framework analysis is the Pareto-optimal set of solutions which is shown in
Figure 6. All the trade-off solutions are equally important, which means that it is difficult to prefer one
solution over the other without any further information about the problem.
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The two specialized models (HBVHF and HBVLF) represent the best models that minimize the two
objective functions RMSEHF and RMSELF, respectively. However, different optimal combinations could
be used since every solution has its strength and limitation in describing the observed discharge [10].

The calibrated parameters of the two specialized models are shown in Table 6. For one specialized
model, there are 17 calibrated model parameters in total where eight parameters correspond to the
Lake Ilopango sub-basin, eight parameters correspond to the Jiboa sub-basin and one parameter is the
transformation function MAXBAS.

For comparison purposes, a single conceptual HBV model was built and calibrated using the
RMSE formula presented in Equation (10). The aim of the comparison was to evaluate how much
the modular rainfall-runoff model improves the model efficiency using different discharge threshold
parameters γ and δ.
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Table 6. Optimal parameters for the two sub-basins and local models HBVHF and HBVLF.

Model
Parameter

Units Lower
Bound

Upper
Bound

Low Flow
Model (HBVLF)

High Flow
Model (HBVHF)

Lake
Ilopango Jiboa Lake

Ilopango Jiboa

FC mm 50 500 320.26 462.86 319.77 463.16
LP - 0.001 1 0.06 0.24 0.09 0.12
K0 mm/h 0.001 1 0.31 0.02 0.37 0.01
K1 mm/h 0.001 1 0.77 0.02 0.75 0.84
α - 0.001 1 0.95 0.08 0.98 0.02
β - 0.001 1.5 0.16 0.97 0.11 1.05

CFLUX mm/h 0.001 4 2.81 3.95 2.76 3.93
PERC mm/h 0.001 0.6 0.50 0.33 0.53 0.15

MAXBAS h 2 15 6.77 5.65

The performance results for calibration and validation can be seen in Table 7 where all the modular
rainfall-runoff models show better model performance than a single HBV model. Additionally, it shows
a special case of the combining scheme using the same value of 0.5 for the threshold parameters
γ and δ. This condition means no soft combination or smooth transition between the boundaries.
This combined model also provides better performance than a single conceptual model, although is
not better than the others modular models.

Table 7. Performance of different modular models compared to the single optimal HBV conceptual
rainfall-runoff model.

Dataset Model MFtype

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn

\textrighthorn{O}
LATIN CAPITAL LETTER O WITH HORN

01A1 ơ \ohorn
\textrighthorn{o}

LATIN SMALL LETTER O WITH HORN

01A4 Ƥ \m{P}
\textPhook

LATIN CAPITAL LETTER P WITH HOOK

01A5 ƥ \m{p}
\texthtp
\textphook

LATIN SMALL LETTER P WITH HOOK

01A9 Ʃ \ESH
\textEsh

LATIN CAPITAL LETTER ESH

01AA ƪ \textlooptoprevesh
\textlhtlongi

LATIN LETTER REVERSED ESH LOOP

01AB ƫ \textpalhookbelow{t}
\textlhookt

LATIN SMALL LETTER T WITH PALATAL HOOK

01AC Ƭ \m{T}
\textThook

LATIN CAPITAL LETTER T WITH HOOK

01AD ƭ \m{t}
\texthtt
\textthook

LATIN SMALL LETTER T WITH HOOK

01AE Ʈ \M{T}
\textTretroflexhook

LATIN CAPITAL LETTER T WITH RETROFLEX HOOK

01AF Ư \Uhorn
\textrighthorn{U}

LATIN CAPITAL LETTER U WITH HORN

01B0 ư \uhorn
\textrighthorn{u}

LATIN SMALL LETTER U WITH HORN

01B1 Ʊ \textupsilon
\m{U}

LATIN CAPITAL LETTER UPSILON

01B2 Ʋ \m{V}
\textVhook

LATIN CAPITAL LETTER V WITH HOOK

01B3 Ƴ \m{Y}
\textYhook

LATIN CAPITAL LETTER Y WITH HOOK

01B4 ƴ \m{y}
\textyhook

LATIN SMALL LETTER Y WITH HOOK

01B5 Ƶ \B{Z}
\Zbar

LATIN CAPITAL LETTER Z WITH STROKE

01B6 ƶ \B{z} LATIN SMALL LETTER Z WITH STROKE

01B7 Ʒ \m{Z}
\EZH
\textEzh

LATIN CAPITAL LETTER EZH

01B9 ƹ \textrevyogh LATIN SMALL LETTER EZH REVERSED

01BA ƺ \textbenttailyogh LATIN SMALL LETTER EZH WITH TAIL

01BB ƻ \B{2}
\textcrtwo

LATIN LETTER TWO WITH STROKE

01BE ƾ \textcrinvglotstop LATIN LETTER INVERTED GLOTTAL STOP WITH STROKE

01BF ƿ \wynn LATIN LETTER WYNN

01C0 ǀ \textpipe
\textpipevar
\textvertline

LATIN LETTER DENTAL CLICK

01C1 ǁ \textdoublepipe
\textdoublepipevar

LATIN LETTER LATERAL CLICK

01C2 ǂ \textdoublebarpipe
\textdoublebarpipevar

LATIN LETTER ALVEOLAR CLICK

01C3 ǃ \textrclick LATIN LETTER RETROFLEX CLICK

01C4 Ǆ \v{\DZ} LATIN CAPITAL LETTER DZ WITH CARON

01C5 ǅ \v{\Dz} LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON

01C6 ǆ \v{\dz} LATIN SMALL LETTER DZ WITH CARON

01C7 Ǉ \LJ LATIN CAPITAL LETTER LJ

01C8 ǈ \Lj LATIN CAPITAL LETTER L WITH SMALL LETTER J

01C9 ǉ \lj LATIN SMALL LETTER LJ

01CA Ǌ \NJ LATIN CAPITAL LETTER NJ

9

δ RMSELF RMSEHF RMSE

Calibration

Single HBV n.a. n.a. n.a. 1.309 0.608 1.709

Modular
Model

A

0.1 0.5 1.028 0.487 1.349
0.2 0.4 1.046 0.491 1.373
0.2 0.5 1.053 0.492 1.382
0.2 0.6 1.062 0.499 1.399
0.5 0.5 1.112 0.533 1.349

B

0.1 0.5 1.046 0.491 1.372
0.2 0.4 1.044 0.493 1.373
0.2 0.5 1.042 0.490 1.368
0.2 0.6 1.046 0.490 1.372
0.5 0.5 1.112 0.533 1.349

Verification

Single HBV n.a. n.a. n.a. 1.914 1.229 2.867

Modular
Model

A

0.1 0.5 1.488 1.131 2.351
0.2 0.4 1.516 1.135 2.380
0.2 0.5 1.496 1.130 2.354
0.2 0.6 1.492 1.127 2.346
0.5 0.5 1.516 1.138 2.383

B

0.1 0.5 1.524 1.139 2.396
0.2 0.4 1.544 1.141 2.415
0.2 0.5 1.517 1.135 2.381
0.2 0.6 1.503 1.131 2.362
0.5 0.5 1.516 1.138 2.383

Furthermore, the best committee model or “MC-Model” is provided by MFtype-A using a
discharge threshold of 0.1 and 0.5 for low (γ) and high (δ) flow, respectively. From this solution,
it appears that the high flow model works in a wider space than the low flow model; this could be
related to the fact that the classical RMSE formula is oriented to stress large deviation in high flows
and, therefore, it requires a wider space for the HBVHF to adjust the model.
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Kayastha et al. [11] concluded that a very narrow region where the two specialized models work
together may lead to force the modular model to produce large changes in output with minor changes
in average flow. For this procedure, the best modular model ensures a smooth transition between the
boundaries or transitional parameters where the two specialized models work together. Nevertheless,
these parameters were manually calibrated, and they could display other values with a narrower
space using an optimization algorithm. Further developments in improving these parameters could be
carried out in future works.

Figure 7 shows the modular rainfall-runoff models in the objective functions space. It can be seen
that all the combined models provide a better model performance than the specialized or local models
and a single HBV model. This result was expected since Fenicia et al. [10] and Kayastha et al. [11]
proved that modular modelling is able to overcome the limitation of an HBV conceptual model in
reproducing different flow regimes in the catchment.
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Figure 7. Modular rainfall-runoff models compared to a single HBV model and local models.

The scatter plot between the observed and simulated discharge in the calibration period is shown
in Figure 8. From this figure, it can be seen that some points exhibit a bias between the observed and
simulated discharge (i.e., reference dash line). The model results exhibit underestimation of the peaks
which may be produced by poor mean areal rainfall input and/or inaccuracy of observed flow since
high values are normally not measured.

Figure 9 displays the observed and simulated flows for the calibration period. From this graph,
it can be observed that there is a good agreement between the MC-Model and the observed flow in
terms of the overall behavior of volume, time of peaks and water balance (e.g., accumulated volume).
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Figure 9. Comparison between the observed and simulated (a) and accumulated volume (b) with
the Coefficient of Determination (R2), Mean Absolute Error (MAE) and Relative Volume Error (RVE)
performance metrics in the calibration dataset.

4.2. Sensitivity Analysis with Respect to Rainfall Input

The rainfall-based indexes (i.e., GORE and BALANCE) and the Root Mean Square Error (RMSE)
model performance were compared. Figure 10a presents the results of the model performance of the
modular rainfall-runoff model and the ability of a rainfall subset to represent the reference rainfall
(GORE index). The scatterplot reveals an interesting point of discussion:

• The model error decrease with a better description of the rainfall estimates. This result was
expected since there is a link between model errors and areal rainfall estimates.
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• It is possible to obtain a low RMSE value with a low network quality (i.e., GORE index).
To illustrate this, the scatter plot (see Figure 10a) displays a GORE value of 0.82 and RMSE of
1.64 m3/s. This result was obtained using Ilopango and Jerusalem rainfall gauges and an arithmetic
mean for areal rainfall. In fact, this outcome is surprising since it is well-known that more rainfall
gauges provide better rainfall description. However, it appears that these rainfall gauges play an
important role in the runoff calculation in the hydrological model.

• The range of the model error is 15.48 m3/s which means the model output exhibits a high variability
in the model performance produced by poor rainfall estimates. This situation could be related
to rainfall gauges (e.g., Panchimalco and Puente Viejo gauges) that are not useful for discharge
calculations in the study area. This outcome does not imply that these rainfall gauges should be
removed from the rainfall network at Jiboa Catchment since they could be used for other purposes
such as rainfall monitoring for early warning systems.

• Some arithmetic rainfall subsets can represent the true reference rainfall which was obtained
with a weighted mean areal rainfall (Thiessen polygon) since the Goodness of Rainfall Estimate
(GORE) efficiency is around 0.8. This outcome could mean that it is possible to represent the mean
areal rainfall using the arithmetic formula and some rainfall gauges that contribute to streamflow
calculation in the study area.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 17 
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Additionally, Figure 10b shows other important patterns:

• The lowest model errors are produced by underestimation (BALANCE less than one) of the total
amount of reference rainfall. Conversely, the highest model error is produced by an overestimation
(BALANCE greater than one) of the reference rainfall.

• There are some rainfall subsets which are similar to the total amount of reference rainfall
(BALANCE equal to one) but the model error is higher. This outcome means that it is not sufficient
to match the total reference rainfall to achieve a low model error since the temporal characteristics
of the rainfall are important as well.

Further analysis was also made regarding the number of rainfall gauges and their impact on
runoff calculation. The box-and-whisker diagram in Figure 11 displays the variability of model error
using a different combination of rainfall gauges. This diagram shows interesting results:

• The interquartile range (i.e., the difference between the 75th and 25th percentiles) and the median
model error diminish when more rainfall gauges are used in the rainfall calculation.
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• Using two rainfall gauges provides the lowest RMSE value. This result indicates that there are two
rainfall gauges which are more beneficial for discharge calculation than the others. Nevertheless,
this number of rainfall gauges also shows a wide model error variability.

• The minimum set value increases with more rainfall gauges. This situation could be related to the
fact that some rainfall gauge combinations affect the model performances.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 15 of 17 
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5. Conclusions

This research presents the implementation of a modular rainfall-runoff model to reproduce high
and low regimes in a small catchment in El-Salvador which is affected by flood events as well as
streamflow drought. This modular model has been used in many case studies leading to a better
representation of the catchment behaviour, but few experiments have been carried out in catchments that
includes a lake dynamic and semi-distributed modelling system. Additionally, this study includes an
analysis of the model output with respect to mean areal rainfall estimates to evaluate the representation
of the rainfall and its effect on the model performance. The conclusions drawn from the research are:

• The best modular rainfall-runoff model, the MC-Model, was obtained using the trapezoidal
membership function (MFtype-A) and a discharge threshold parameter of 0.1 for low flow and 0.5
for high flow for this case study. This solution provided a wider space for the high flow model
than the low flow model since the classical RMSE formula is oriented to stress large deviation in
high flows and, therefore, it requires a wider space for HBVHF to adjust the model.

• The MC-Model exhibited a reasonable agreement with respect to the observed discharge for most
of the data. In fact, it showed a better model reproduction of the high and low flow conditions than
a single conceptual HBV model in the calibration and verification period. However, the model
results exhibit underestimation of the peaks which may be produced by poor mean areal rainfall
input and/or inaccuracy of observed flow since high values are normally not measured.

• The sensitivity analysis with respect to rainfall input revealed that Ilopango and Jerusalem rainfall
gauges are the most beneficial for runoff calculation since they appear in most of the rainfall subset
that produces low RMSE values. Conversely, Panchimalco and Puente Viejo rainfall gauges are
the least beneficial for discharge calculation since these gauges appear in most of the high RMSE
values. This outcome does not imply that the latest rainfall gauges should be removed from the
telemetry rainfall network since they are used for other purposes such as monitoring rainfall for
early warning systems and not only for hydrological modelling.
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• There are some rainfall subsets that produce a BALANCE index close to one, but the model error
is higher than the reference model. This situation could mean that the temporal distribution of the
rainfall over the whole period is also necessary to achieve a low model performance.
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