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Abstract: To explore the reason for the bubble sweep-down phenomenon of research vessels and
its effect on the position of the stern sonar of a research vessel, the use of a fairing was investigated
as a defoaming appendage. The separation vortex turbulence model was selected for simulation,
and the coupled Eulerian-Lagrangian method was adopted to study the characteristics of the bubble
sweep-down motion, captured using a discrete element model. The interaction between the bubbles,
water, air, and hull was defined via a multiphase interaction method. The bubble point position and
bubble layer were calculated separately. The spatial movement characteristics of the bubbles were
extracted from bubble trajectories. It was demonstrated that the bubble sweep-down phenomenon is
closely related to the distribution of the bow pressure field and that the bubble motion characteristics
is related to the speed and initial bubble position. When the initial bubble position is between
the water surface and the ship bottom, the impact on the middle of the ship bottom is greater and
increases further with increasing speed. A deflector forces the bubbles to both sides through physical
shielding, strengthening the local vortex structure and keeping bubbles away from the middle of the
ship bottom.

Keywords: bubble sweep-down; detached eddy simulation; Coupled Eulerian-Lagrangian method;
distinct element method; multiphase interaction method; bubble point position and bubble layer;
motion track

1. Introduction

Exploring and understanding the ocean are prerequisites for the development of marine resources
and the protection of the marine ecological environment. The marine research vessel is a type of ship
extremely suitable for this. The research vessel is dedicated to scientific investigations of the sea, with
the purpose of obtaining comprehensive marine geology, biology, and ecology survey information of
the atmosphere, for example. As the “eye” of the research vessel, the sonar equipment, specifically its
performance, plays a vital role in the accuracy of the research vessel’s detection results.

Karafiath [1] analyzed the occurrence of the phenomenon of bubble sweep-down and believed
that, under actual sea conditions, owing to the strong fluidity of seawater, strong sea breeze, and the
effects of wave breaking and rainwater impact, the seawater near the water surface has a certain air
content, within a certain water depth range. A layer of suspended bubbles is formed in this water layer.

Deane and Stokes [2] measured the bubble size distribution in breaking waves in the laboratory
and on the high seas, provided a quantitative description of the bubble formation mechanism in the
laboratory, and analyzed the dependence of scale on bubble generation and propagation and the
mechanism of breaking wave conditions. Thorpe [3] described the fact that small bubbles with a radius
of less than 1 mm are stabilized by surface tension, whereas bubbles with a larger radius are broken
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by the shear stress in the turbulent motion caused by the collapse event. Smaller bubbles rise very
slowly; hence, they persist in the water column and flow at greater depths. When the research vessel
sails in this bubble layer, the bubbles move along the hull surface owing to hull wakes. Moving down
to the bottom of the ship, the phenomenon of bubble downward scanning occurs, which affects the
performance of the sonar at the stern position and affects the detection function of the research vessel.
Sebastian and Caruthers [4] recorded the impact on the operation of a multibeam sonar.

For some ship types, an excellent inlet design can eliminate the down-sweep phenomenon of
bubbles, but the phenomenon still appears after the speed increases. Rolland [5] shows that direct
installation of a defoaming attachment inevitably brings a certain increase in resistance, sometimes
even up to 20%. Therefore, it is a better direction to first study the bubble motion characteristics of the
transducer surface.

The current research on ship performance widely uses a ship model pool, and the scale effect
is unavoidable. It is difficult to form a uniform microbubble layer in the water. It can only be
supplemented by a bubble generator to generate bubbles in real time. To make matters worse, large
physical pools are often left for a long time, resulting in pools containing far less air, so that bubbles
dissolve in water more quickly than under actual sea conditions. Therefore, this study combines
research on computational fluid dynamics (CFD) methods, which was conducted to verify, e.g.,
conventional resistance research, and single or limited location bubble generation research.

Delacroix [6] quantified the backscattered signal on the bubble cloud image with an echo sounder,
and studied the influence of wind speed under navigation conditions on the characteristics of the
bubble sweep-down. Mallat [7] used the particle image velocimetry (PIV) test method, using the bow
longitudinal section and in the form of streamline, to study the 3D characteristics of the sweep-down
of the bubble.

Many people, including Han [8], have used CFD for many years for hull shape optimization.
Delacroix used it for a characteristic study of bubble sweep-down and Palaniappan and Subramanian [9]
worked out the hydrodynamic design for bubble sweep-down.

In order to make up for the deficiencies of the bubble experiment in the pool, this study used the
Eulerian-Lagrangian method to model the bubbles, as described in Section 2, and the CFD method
was adopted to calculate the bubble point and bubble layer. By ignoring the dissolution and breaking
of bubbles, the phenomenon of bubble sweep-down was studied. In Section 3, the accuracy of the
CFD calculation method is verified through the resistance and single-bubble point towing tank test.
In Section 4, we show more comprehensive calculation results, including further calculation and
extraction results of bubble characteristics and flow field details such as velocity field.

2. Numerical Method

2.1. Governing Equations

Energy exchange is not involved in the research, and the continuity equation and momentum
equation are, respectively, as follows:

∂
∂t

(
aqρq

)
+ ∇ ·

(
aqρqvq

)
= 0 (1)

∂
∂t
(ρv) + (ρvv) = −∇p +∇ ·

[
µ
(
∇v +∇vT

)]
+ ρg + F (2)

where aq is the volume fraction of phase q, ρq is the density of phase q, ρ is the mixed phase density, vq

is the velocity of phase q, µ is the sum of turbulent viscosity and molecular mixing viscosity, g is the
acceleration, and F is the external force.
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2.2. Turbulence Model and Coupled Eulerian-Lagrangian Method

In the research of microbubble scale, it is considered that the bubble and water are both interacting
and represent two relatively independent phases. The bubble phase is located in the water phase
but is not soluble in water. When the volume fraction is used to express the volume fraction of the
phase, the volume fraction function of the two phases of bubbles and water is continuous in time and
space and the sum is 1. The volume of fluid (VOF) method is used to track the interface between the
two phases of water and air, and the bubbles ejected from the bow of the ship are used as discrete
bubble-phase particles distributed in the continuous fluid domain, and the motion model of the bubble
particles is established by the discrete element method (DEM) method. In the study, the bubble
diameter was set to 1 mm, and the bubble spacing was 16.8 mm. Therefore, the interaction between the
bubble particles is relatively weak, and the influence on the continuous fluid domain can be ignored.

Maxwell [10] used the DEM model to study the interaction force between bubbles and particles
and the sliding of particles. Bérard [11] summarized the progress of a CFD-DEM calculation of
solid-liquid coupling in chemical engineering. Based on the coupled Eulerian-Lagrangian method,
Xinhong Li [12] solved the trajectory of the discrete-phase bubble particles, so that the force is balanced
during the movement as follows:

dup

dt
= Fd

(
u− up

)
+

g
(
ρp − ρ

)
ρp

+ F (3)

where u is the towing speed of the ship, up is the bubble particle velocity, Fd is the drag force, measured
by experiment, ρ is the continuous phase density, and ρq is the bubble particle density.

The sweep-down of bubbles involves capturing motion near the wall of the hull. The shear stress
transmission (SST) k-omega detached eddy simulation (DES) turbulence model is used for simulation
to close the equation.

DES is a hybrid modeling method that uses time-averaged Reynolds-averaged Navier-Stokes
(RANS) to solve near the wall boundary layer, while the turbulence is away from the wall.
The area is solved by transient large eddy simulation (LES), which balances calculation accuracy and
calculation cost. Zhang and Ahmadi [13] used the Eulerian-Lagrangian calculation model to simulate
gas-liquid-solid three-phase flow. Watson [14] used a delayed separation vortex simulation to calculate
the unsteady flow of the ship hull. Home and Lightstone [15] used DES-SST to study the flow of
interstitial vortices. Jee and Shariff [16] proposed the v2-f DES model and calculated the cylindrical
flow around and the turbulence phenomena. Although DES reduces the requirements for computing
grids compared to LES, the requirements for grid quality are still higher.

The SST model was used to simulate the inverse pressure gradient near the wall. With respect to
the unsteady flow, the finite volume method was used to solve the problem, and the coupling solver of
VOF and DEM was used.

2.3. Numerical Scheme in CFD

CFD calculation software STAR-CCM+ was used for numerical calculation, and the grid scheme
was designed according to the above calculation model method. The geometry of the hull and the
boundary conditions established in CFD are shown in Figure 1.
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Figure 1. Computational domain: (a) hull model of research vessel; (b) boundary conditions.

The main parameters of the hull are shown in Table 1.

Table 1. Main parameters of the research vessel.

Item Symbol Real Ship Model Unit

Waterline length LWL 90.2 3.608 m
Breadth B 16.8 0.672 m

Fore draft TF 5 0.2 m
Aft draft TA 5 0.2 m

Displaced volume 5 3844.6 0.2461 m3

Wet surface area S0 1663 2.661 m2

Longitudinal center of buoyancy LCB 41.008 1.64 m
Block coefficient CB 0.5074

Scale ratio λ 1 25

Since the hull is symmetrical, calculations were performed on the half hull to save computing
resources. Considering that a considerable part of the bubbles were entrapped by the bow vortex to
the bottom of the ship, additional structured grid discretization of the bow grid and free surface was
required in the CFD calculation, as shown in Figure 2.
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To simulate the navigation state under natural conditions and facilitate the analysis of the
movement characteristics of a single bubble, two schemes were set up for calculation. The structured
grid discretization of the wall is shown in Figure 3b. The final number of grid cells generated was
11.84 million.
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Figure 3. Bubble generation scheme settings in CFD: (a) bubble layer settings; (b) bubble point setting
and grid discretization.

The following two schemes were used to calculate the movement of bubbles:
Scheme 1. For natural conditions, the bubbles in the water exist in the form of a suspended

relatively stable bubble layer; hence, it is necessary to calculate the movement characteristics of the
bubble layer under this condition. To make the bubble development more complete, we set the bubble
layer in the bow of the ship (0.042 LWL in the front) and can observe that 40 bubble points in the
vertical direction cover a certain draft range and 80 bubble points in the width direction of the ship
are larger than the width of the ship. The relative position of the bow and the bubble layer is shown
in Figure 3a.

Scheme 2. The position of the bubble point is the same as the test, as shown in Figure 3b.
As shown in Figure 4, the Y+ value of the final generated grid scheme is within 1.
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According to the International Towing Tank Conference (ITTC) ’s convergence judgment criterion,
when a CFD calculation is used, three sets of grid schemes with different grid sizes are obtained by
changing the basic size of the grid according to the fixed fineness ratio

√
2. The uncertainty analysis of

the resistance calculation results of the scheme is then carried out.
According to the principle that the convective Courant number is less than 1, the time step of

non-steady state calculation is set to 0.001. The grid schemes compared are shown in the Table 2.

Table 2. Number of grids and simulated resistance.

Grid Scheme Base Size (M) Number of Grids
(Million)

Simulated Drag
Coefficient
×103

Test Resistance
Coefficient
×103

1 0.1 6.8 4.745
4.8272 0.071 9.7 4.782

3 0.05 11.8 4.790
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According to the data in Table 2, in the process of gradually increasing the number of grids from
scheme 1 to scheme 3, we can judge according to the grid convergence rate as follows:

εG21 = R2 −R1

εG32 = R3 −R2
(4)

RG =
εG32

εG21
= 0.22 (5)

The grid convergence rate, RG, is a positive number less than 1, which conforms to the ITTC’s
grid convergence criteria. It shows that the calculation scheme is convergent. The smaller the value,
the faster the convergence speed. The uncertainty is further verified according to the ITTC standard.
The results for the correlation coefficient of the uncertainty analysis are shown in Table 3.

Table 3. Uncertainty verification of resistance.

Ctm1 RG PG CG UG δ∗G UGc

4.790 0.216 1.531 0.70 0.0114 0.010 0.003

The order estimate PG is greater than 1, indicating that the resistance calculation accuracy is high.
From the correction factor CG value near 1, it can be concluded that the resistance calculation result is
near the asymptotic value after convergence. The error δG

∗ with correction factor and the uncertainty
UGc of the correction value can then be estimated.

At the same time, in the calculation of the bubble, in order to reflect the state of the ship passing the
bubble at a constant speed and the stability of the calculation, the conventional resistance is calculated
first, and the bubble jet is activated after the resistance calculation is stable. It takes at least 20 s of
physical time for resistance calculation to stabilize, and at least 40 s for bubble calculation.

3. Experimental Method

The resistance test adopts the method of fixing the posture of the model, and the test is completed
in the towing tank of the ship model of Harbin Engineering University, Harbin, China. The static state
of the ship model after installation is shown in Figure 5.

Figure 5. Initial state of the ship model test with fixed model attitude.

For large towing pools, the air content is usually much lower than for real sea conditions. It is
extremely difficult to generate a suspended bubble layer similar to real sea conditions. Therefore,
a bubble generator is used to generate bubbles at a vertical spacing of 0.04 m below the bow water
surface. The four vent holes are connected to the bubble generator to observe the position of the
individual bubble generation point. The opening position is shown in Figure 6.
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Figure 6. Schematic diagram of the bubble generation location.

The experiment uses the PIV method to obtain the spatial movement information of the bubbles
by using the white stripe positioning on the surface and laser irradiation.

As the main diameter of the bubble sweep-down is 500–1000 µm, it is necessary to generate
20–40 µm bubbles. The bubble generator used in the test produces bubbles in the range of 10–50 µm,
which meets the test requirements. The working conditions of the resistance test are shown in Table 4,
and numerical calculations were carried out under the same working conditions.

Table 4. Test conditions.

Actual Ship Speed
Vs (Kn) Froude Number

Fr

Model Speed
Vm (m/s)

Trim Angle
(◦)

Wave

12 0.225 1.234 0 Static water
16 0.277 1.646 0 Static water

A sweep-down test of air bubbles was carried out with a working speed of 1.234 m/s in a pool.

4. Results and Analysis

4.1. Spatial Movement Characteristics of Bubbles Under Sweeping

The results of the resistance test were verified. The test results of bubble motion at a multibeam
operating speed of 1.234 m/s are shown in Figure 7.

Figure 7. Cont.
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numerical results are considered to be relatively consistent. Although the bubbles sweep down near 
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Figure 7. Bubble motion test at 1.234 m/s: (a) bubble point 1; (b) bubble point 2; (c) bubble point 3;
(d) bubble point 4, and (e) bubble cloud diagram of a cross-section.

In Figure 7, the trajectory of the bubbles is highlighted and extracted in yellow by the bubble point.
Figure 7e is a cross-sectional bubble cloud diagram obtained by PIV. The space movement position of
the bubble cluster center is obtained by the white grid line in Figure 7 and this cloud image. The base
point is located in front of the bow of the ship, with the length of the ship as the X-axis and the stern
direction as the positive direction. The trajectories in the longitudinal plane (X-Z direction) and the
horizontal plane (X-Y direction) result in line graphs, expressed in dimensionless form, by dividing by
T and Lwl, respectively. Here, T represents the average draft.

In the test, the size of the bubbles is extremely small because of the scale, which makes them
difficult to observe. It is speculated that the bubbles generated by the bubble generator in the experiment
have different sizes, and the density of the bubbles generated in the experiment is larger, resulting
in stronger interactions such as fusion. Therefore, the lift force of the bubble is increased to a certain
extent, and the density of the bubble in the actual sea state is relatively low, and the numerical results
are considered to be relatively consistent. Although the bubbles sweep down near the bow of the ship,
they dissolve in the water quickly. Therefore, it is necessary to carry out CFD calculations and tests at
multibeam working speed. The trajectory comparison between the experiment test results and the
CFD calculation results is shown in Figure 8.
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Figure 8. Comparison of bubble sweep-down trajectories between test and CFD calculation at 1.234 m/s.

It can be seen that the bubble motion trajectories of the four bubble generation points are close, but
the bubble sweep-down calculated by CFD at point 2 is faster. According to Figure 7, the sweep-down
trend of bubble points 3 and 4 is obvious, and bubble point 1 is the most affected by wave making.
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Bubble point 2 is in the area where the wave making is obviously weakened, but there is still a
sweep-down trend under the dual effects of wave making and relatively steady flow. However,
the relatively deeper dip of bubble points 3 and 4 is not as obvious here.

Combining the test and calculation results, the CFD method is feasible to calculate bubble motion
characteristics. The calculation of bubble motion and flow field details was carried out. The calculation
results of bubble layer and bubble point under multibeam working speed and research vessel design
speed are shown in Figures 9 and 10.
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1.646 m/s from the side; (c) speed 1.234 m/s under the bottom; and (d) speed 1.646 m/s under the bottom.
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It can be seen that, when the research vessel is sailing, the bubbles located in the front of the
hull sweep under the surface of the hull to the bottom of the ship, causing a large number of bubbles
to accumulate at the bottom of the ship. It is particularly obvious at the higher of the calculated
speeds. This has a significant influence on the position of the sonar at the stern of the ship. From
the calculation of the bubble layer in Figure 9, it can also be seen that, when sailing under natural
conditions, in addition to the bubbles that produce the sweep-down phenomenon, a large number of
bubbles move with the hull. Regular analysis becomes difficult; hence, the fixed bubble point positions
are calculated.

In the comparison between the bubble point in Figure 10 and the calculation result of the bubble
layer setting in Figure 9, the first bubble layer tilts down with the water surface, which has the
characteristics of sweep-down. A large number of bubbles gather near the center line of the bottom
surface of the ship and the bubble layer trajectory covers the trajectory of the bubble point. However,
when the bubble point is set at 1.234 m/s, the sweep-down trend of the bubble point is more obvious
than that of the bubble layer. It is speculated that the bubble layer has a higher density, relatively low
speed, and relatively turbulent wave making, which causes more frequent interactions between the
bubbles. Under actual sea conditions, as the size of the bubble becomes larger but the relative density
becomes smaller, the effect of the bubbles on the surface of the hull is relatively weakened. From the
image results, the above calculation of individual bubble points can better reflect the movement of the
bubble layer state. The results at different speeds are shown in Figure 11.
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Extracting the bubble space movement trajectory, the bubble X-Z spatial movement characteristics
(Figure 11a) are obtained. The bubble initially floats up for a period of time, and then it moves down
to the bottom of the ship, and finally moves to the rear of the ship under the bottom of the ship.
The starting position of this final stage can be set as the down-sweep point. The lower the position of the
bubble, the closer to the bow of the ship when it sweeps down to the bottom, and the lower the speed
(absolute value of the tangential slope of the curve) during the sweep-down. With increasing speed,
both the initial floating process of the bubbles and the sweep-down part are enhanced. The bubble at
the same position sweeps down to the bottom of the boat and moves toward the bow, and the velocity
at which the bubble sweeps down increases. According to the bubble movement trajectory curve in
the X-Z direction, the lower sweep position of the bubble movement can be divided into the following
two movement processes: before and after the lower sweep. For the speed of 1.234 m/s, the lower
sweep point is 0.27 L and, for 1.646 m/s, it is 0.26 L.
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The bubble movement curve in the width direction of the ship is used to analyze the influence of
bubble movement on the position of the center line of the hull, and then to measure its influence on
the sonar at the stern, as shown in Figure 11b. The bubble movement curve in the X-Y direction has
two obvious curvature optimum points, that is, the peak appears first and then the valley. Combined
with the hull model, the peak is the position that sweeps down to the outside of the bottom of the
ship. The valley is the position closest to the mid-longitudinal section of the hull where the bubbles
can continue to move from the outside of the bottom. The movement between peaks and valleys is
the sweep-down process, and the sweep point of the bubble is also located in this process. The lower
the initial bubble position, the closer the valley position after the sweep-down is to the middle of the
ship. As the speed increases, this position moves toward the bow. After that, the bubble movement
gradually moves away from the midship position, but it still has an impact on the position of the sonar
at the stern. The dotted line in Figure 11b represents the safety limit line. The bubbles at positions 3
and 4 have a great impact on the multibeam.

4.2. Flow Around the Bow

The next step is to calculate the distribution of the pressure field near the bow and analyze the
relationship between the bubble sweep-down phenomenon and the pressure field.

The pressure coefficient is defined by Cp = (P− ρgh)/0.5ρV0
2, where V0 represents the

speed, and we can obtain the dimensionless pressure difference relative to the hydrostatic pressure.
The streamline set by the bubble point is represented by a gray-white line. The calculation result is
shown in Figure 12.
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From the surface pressure distribution of the hull at different speeds in Figure 12, it can be
concluded that the bow pressure is relatively high, a maximum value appears at the peak of the bow
wave surface uplift, and the pressure gradually decreases toward the back of the ship and the bottom
of the ship. Therefore, it is easy to force the microbubbles in the water to move during the navigation.
The bubbles migrate from the high-pressure position to the low-pressure position under the action
of the pressure difference. The bottom of the ship has a minimum pressure value, and the bubbles
continue to the middle of the bottom of the ship owing to the inertial movement, and then move
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backward with the ship sailing. Because the shape of the bow of the research vessel in this study is
relatively flat, the bubbles migrate to the bottom of the ship under the dual effects of the bow wake and
the pressure difference, resulting in the phenomenon of bubble sweep-down. The pressure distribution
changes with speed. At the higher speeds, the pressure coefficient of the side and bottom of the ship is
smaller than that at lower speeds; hence, bubble sweep-down is more likely to occur at high speeds.

The velocity field distribution of multiple cross-sections at the bow of the hull was calculated,
where the zero point of the cross-section corresponds to the foremost end of the deck, and the direction
to the stern is the positive x direction and the vertical upward direction is the positive z direction.
The cross-sectional positions 0.45, 0.55, 0.65, 0.75, and 0.85 m are shown in Figure 13.
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Figure 13. Schematic diagram of the extracted cross-sectional velocity field position.

Through calculation, the vertical velocity distribution on the cross-section is obtained, and the
vertical velocity is expressed in dimensionless VZ/V0, where VZ is the vertical velocity component,
V0 = Vm, which is the towing speed of the ship model. Furthermore, the position of the bubble and
the position of the free water surface (the horizontal black line) on the cross-section are marked, as
shown in Figures 14 and 15.

Figure 14. Vertical velocity distribution of the cross-section at a speed of 1.234 m/s: (a) 0.35 m
cross-section; (b) 0.45 m cross-section; (c) 0.55 m cross-section; (d) 0.65 m cross-section; (e) 0.75 m
cross-section; and (f) 0.85 m cross-section.
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Figure 15. Vertical velocity distribution of the cross-section at a speed of 1.646 m/s: (a) 0.35 m
cross-section; (b) 0.45 m cross-section; (c) 0.55 m cross-section; (d) 0.65 m cross-section; (e) 0.75 m
cross-section; and (f) 0.85 m cross-section.

According to the vertical dimensionless velocity distribution of multiple cross-sections in Figures 14
and 15, it can be concluded that the vertical velocity component near the hull wall below the water
surface is only upwards in the part closest to the water surface. This upward velocity core area moves
back with the section position at 1.234 m/s, first close to the hull and then away from the hull, but keeps
away from the hull at 1.646 m/s. This is related to the influence of the hull’s wave making. The vertical
downward velocity component near the wall gradually increases. The downward velocity core area
formed increases with the increase in speed, reaches the maximum value near the bottom of the ship,
and then gradually decreases. The range of motion is in this wall area. According to the change of the
bubble position, it can be seen that the trajectory of the bubble before it moves to the bottom of the ship
is near the vertical downward velocity core area. This provides a certain amount for the sweep-down
of the bubble. When the bubble moves to the bottom of the ship, a vertical upward velocity component
is generated, so that the bubble moves upward to the bottom of the ship while moving toward the stern.
This is also one of the reasons why the sweep-down of the bubble affects the position of the stern sonar.

4.3. Shroud

A diversion cover was used as a defoaming appendage, and the principle of action was calculated
and analyzed. The geometric shape and the installation position of the diversion cover are shown in
Figure 16. Some parameters of the shroud are shown in Table 5.
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Table 5. Some parameters of the shroud.

Item Symbol Model Unit

Displaced volume 5 0.0002 m3

Wet surface area S 0.0416 m2

Installed surface area S 0.0295 m2

According to the shroud’s parameters, the installation of the deflector has minimal impact on
the parameters of the bare hull. Among them, the displacement is increased by 0.08%, and the wet
surface area is increased by 0.4%. The draft is increased by less than 0.22 mm, and its impact is
almost negligible. The comparison of the vorticity distribution at the bottom of the ship is shown in
the Figure 17.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 15 of 18 
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According to the calculation results in Figure 17, the structure of the vortex system at the bottom
of the ship is relatively simple. There are two parts of the vortex system distributed on the side of the
ship and the bottom of the bow. The deflector effect of the vortex system on the ship side is minimal,
but the ship bottom vortex structure is dispersed, changing the vortex structure in the middle of the
bottom of the ship. First, the position of the deflector is located at the position of the vortex structure
on the first center line of the hull, which eliminates or greatly reduces the effect of this vortex structure
in bringing bubbles into the ship. The installation of the diversion cover adds a vortex structure away
from the ship, which makes the bubbles move outward along the edge of the diversion cover from
both the physical shielding and the vortex structure guidance. Based on this, the diversion cover has a
certain defoaming performance.
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The changes in the total resistance coefficient and the remaining resistance coefficient are shown in
Figure 18. The influence of the dome on the resistance performance is mainly reflected in the increase
in the residual resistance of the hull within a certain low speed range, and the maximum increase in
the total resistance can reach 5.1%. However, the influence gradually decreases as the speed increases.
For the two calculated speeds, the drag increase in the dome is extremely small.

Figure 18. Change in drag coefficient before and after installation of the shroud.

Based on the comparison of the defoaming effect before and after the installation of the diversion
cover, shown in Figure 17, and the resistance increase, shown in Figure 18, the diversion cover can
produce a small increase in resistance and at the same time reduce the effect of bubble sweep-down on
the stern.

5. Conclusions

The results of the research on the phenomenon of sweep-down of bubbles in research vessels
provide the following conclusions.

1) It is feasible to use the Eulerian-Lagrangian method to calculate the bubble
sweep-down phenomenon.

2) The phenomenon of bubble sweep-down is related to the shape of the bow of the ship and the
distribution of the pressure field. The pressure difference caused by the decrease in the hull
surface pressure with the increase in water depth and the vertical downward velocity component
near the wall forces the bubbles to sweep down.

3) The movement characteristics of the bubble sweep-down space are related to the initial position
and speed of the bubble. When the bow is closer to the bottom of the ship, the sweeping position
of the bubble is closer to the bow, and the position after the bottom of the ship is closer to the
center line of the bottom of the ship. Therefore, the influence on the position of the stern sonar is
greater, and the degree of this influence increases with the increase in speed.

4) After the bubble moves through the sweep-down point, it moves to the center line of the bottom of
the ship to strengthen the influence on the sonar position. From the perspective of hydrodynamics,
the installation of the diversion cover plays the role of physical shielding and strengthens the
guidance of the lateral vortex system, so that the bubbles move to the side of the ship with the
vortex to achieve the purpose of defoaming.

5) The installation of the shroud produces a certain increase in resistance while achieving a certain
defoaming effect, which is especially obvious at low speeds but is already extremely small at
working speeds. This occurs because viscous resistance dominates at lower speeds, whereas
pressure resistance is more important at higher speeds.

The spatial motion of the bubble sweep-down and the fine characteristics of the partial flow field
were studied and the above results were obtained. The research results have some reference value
for the law of bubble sweep-down of research vessels and for the reduction of its influence on sonar
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equipment spatially. However, the work was carried out only from the hydrodynamic point of view,
without considering the noise characteristics under the actual sonar work. In addition, the dissolution
and breakage of bubbles were ignored. This method is beneficial to the study of bubble movement,
but the adverse effect on the study of noise cannot be ignored. The follow-up work will study the
influence of the bubble sweep-down phenomenon based on the noise characteristics of sonar work,
such as frequency.
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