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Abstract: The main objective of this study is to conveniently and rapidly develop a new dimensionless
number to characterize and predict the deflection of square plates subjected to fully confined blast
loading. Firstly, based on the Kirchhoff–Love theory and dimension analysis, a set of dimensionless
parameters was obtained from the governing equation representing the response of a thin plate
subjected to impact load. A new dimensionless number with a definite physical meaning was then
proposed based on dimensional analysis, in which the influence of bending, torsion moment and
membrane forces on the dynamic response of the blast-loaded plate were considered along with the
related parameters of the blast’ energy, the yield strength of the material, the plate thickness and
dimensions of the confined space. By analyzing the experimental data of plates subjected to confined
blast loading, an approximately linear relationship between the midpoint deflection–thickness ratio
of the target plate and the new dimensionless number was derived. On this basis, an empirical
formula to predict the deflection of square plates subjected to fully confined blast loading was
subsequently regressed, and its calculated results agree well with the experimental data. Furthermore,
numerical simulations of square plates subjected to blast loading in a cuboid chamber with different
lengths were performed. The numerical results were compared with the calculated data to verify the
applicability of the present empirical formula in different scenarios of blast loading from explosions in a
cuboid space. It is indicated that the new dimensionless number and corresponding empirical formula
presented in this paper have good applicability and reliability for the deflection prediction of plates
subjected to fully confined explosions in a cuboid chamber with different lengths, especially when
the plates experience a large deflection–thickness ratio.

Keywords: deflection prediction; confined blast loading; large deflection; square plate;
cuboid chamber

1. Introduction

Confined explosions can occur due to possible deliberate attacks in a subway station, an accidental
explosion inside an ammunition storage facility or an explosion of a missile in a naval vessel [1–3].
A typical confined blast load consists of several shockwaves and a relatively long duration of gas
pressure load [3–5]. Thus, the confined explosion usually causes more severe damage than that caused
by an external free-air explosion from the same explosive mass [3,6]. The confinement effects of blast
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load, dynamic responses and failure mechanism of a structure subjected to confined blast loading,
such as metal containers, pipes and explosion containment vessels, has recently received considerable
attention, and abundant research has been reported [7–14]. In addition, research related to the dynamic
response of metal plates subjected to confined blast loading has also been conducted. Geretto et al. [6]
conducted experiments to investigate the plastic deformations of square plates subjected to fully
confined blast loading, in which the effects of plate thickness, charge mass and confinement degree on
the dynamic response of plates were studied. Zilliacus et al. [15] conducted a series of confined explosion
tests for 12-inch-diameter steel and aluminum plates. Pressure histories, deformation shapes and failure
modes of plates with different thicknesses were recorded, and a tentative empirical law governing the
final deformation of a blast-loaded plate was developed. In our previous work, a cuboid chamber was
designed to produce replicated confined blast loading on square steel plates with different thicknesses
and stiffener configurations. The plastic deformations of plates subjected to confined blast loading were
recorded, and the effects of venting, plate thickness and stiffener configuration were investigated [16].
From a numerical computation perspective, Kong et al. [1] conducted numerical studies on a multilayer
protective structure under confined blast loading, in which the interaction between the blast wave
and steel bulkheads was presented. Zheng et al. [17] studied the interaction between a reflected blast
wave and steel plates under confined blast loading through numerical modeling based on the fully
coupled Euler–Lagrange method in the commercial code AUTODYN. The influence of the stiffener on
the dynamic response of stiffened plates under confined blast loading was investigated in Zhao’s study
through numerical simulations [18]. Rabczuk et al. [19–21] developed numerical methods to deal with
the fluid–structure interaction of fracturing structures under impulsive loads, which is useful for the
numerical simulation of the dynamic response of plates under extreme loads.

Issues with respect to blast loadings and the dynamic response of structures are incredibly
complicated and influenced by many factors. Experimental and numerical methods are appropriate
research tools for determining structural impact response; however, time and costs are huge.
Empirical modeling has frequently been used to analyze the dynamic response of structures under
impact loads. From an empirical modeling perspective, dimensional analysis is an effective method to
determine dominating parameters and their interrelationship, through which these parameters
can be particularly combined to simplify the problem [22,23]. Many scholars have presented
dimensional analysis on the dynamic response of structures under impact or blast loading [24–28].
Dimensionless numbers obtained from the dimensional analysis are useful for organizing experimental
tests, results analysis and structural response prediction. Johnson [24] used a damage number Dn

to identify various impact regions in metals. Jones [25] developed a complete set of dimensionless
numbers using the Buckingham Π theory for analyzing structural mechanics, in which several important
parameters involved in the dynamic response were considered. The damage number based on the
impulse was suggested for the dynamic response analysis of beams and plates. Zhao et al. [28] studied
the dynamic response of a fully clamped perfectly elastic plastic beam under uniformly distributed
impulsive loads, and a dimensionless number Rn, which considered the geometric parameter L/H,
was proposed for impact-loaded beams and plates. Nurick and Martin [27] improved Johnson’s
damage number by taking the parameters of the width and length of the plate into account in
their study of quadrangular plates subjected to uniform impact load, noted as φq. Furthermore,
the relationship between the midpoint deflection–thickness ratio and the dimensionless number φq

was investigated. Jacob et al. [29] tested fully clamped circular plates subjected to blast loading
detonated at various stand-off distances. In order to weigh the effect of stand-off distance on plate
response, a stand-off distance parameter ζs was introduced to modify the dimensionless number φc

proposed by Nurick and Martin [27].
For the above-mentioned dimensionless numbers, the blast load was mostly characterized as an

impulse, which can be easily determined by employing empirical formulas. However, in confined
blast scenarios, it is difficult to determine the effective impulse applied on plates due to the complexity
of the blast load consisting of multireflected shockwaves and long-lasting quasistatic pressure varying
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in different confined spaces. Geretto et al. [6] used the impulse of the unconfined blast and the ratios
of midpoint deflections of a plate subjected to unconfined and fully confined blast loading to obtain
an equivalent impulse for a fully confined blast. The relationship between the normalized midpoint
deflection–thickness ratio and dimensionless number φq was consistent with the results specified by
the authors of [27]. However, in practice, the impulse of a free-air blast with the same charge and
stand-off distance as a confined blast cannot always be easily and conveniently obtained.

In the current study, based on general dimensional analysis, a new dimensionless number with
a wide scope of application was suggested for the dynamic response analysis of plates subjected to
confined blast loading, which considers the influence of the blast energy, the strength of the material,
the geometry of the confined chamber, the plate thickness and other structural dimensions. The validity
and efficiency of the newly suggested dimensionless number were discussed. In addition, an empirical
formula was obtained, which can be applied to predict the residual deflection of plates subjected to
blast loading from a confined explosion in a cubic or cuboid chamber.

2. New Dimensionless Number for Analysis of Plates under Confined Blast Loading

The issues with regard to the dynamic response of structures under confined blast loading are
very complicated and related to many influence factors. In this section, a new dimensionless number
was obtained based on the dimensionless governing equations of square plates due to dynamic loads.
Appropriate input and output dimensionless parameters are proposed for predicting the midpoint
deflections of square plates under a confined explosion in a fully confined chamber. All the parameters
in the new dimensionless number have a definite physical meaning.

2.1. Confined Explosion in a Cubic Chamber

Firstly, the dynamic response of square plates under a confined explosion in the specific cuboid
chamber, with the same length, width and height, was chosen as the research object. Classical plate
theory was employed to derive the appropriate dimensionless parameters for estimating the midpoint
deflections of the blast-loaded square plates. When subjected to blast loading, the target plates usually
experienced large deflections compared to the plate thicknesses, and the membrane forces were
subsequently induced. Therefore, the effect of the membrane forces should be taken into consideration
in the analysis. Assuming that the plate is inextensible in the transverse direction and the transverse
shear deformations are negligible, according to the Kirchhoff–Love theory, the governing equations of
thin quadrangular plates under dynamic loads are written as following equations [30].∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+
∂2My

∂y2

+ (
Nx
∂2δ

∂x2 − 2Nxy
∂2δ
∂x∂y

+ Ny
∂2δ

∂y2

)
= ρH

∂2δ

∂t2 − P (1)

where δ, ρ, H and P are the deflection, material density, plate thickness and dynamic pressure,
respectively. In these equations, Mx and My are bending moments per unit length, Mxy is torsion
moments per unit length and Nx, Ny and Nxy are membrane forces per unit length, respectively.
The rigid-plastic constitutive model and the fully fixed boundary condition were assumed in the
empirical model.

A complete set of dimensionless parameters are then introduced, which are defined as
mx = Mx/M0, my = My/M0, mxy = Mxy/M0, nx = Nx/N0, ny = Ny/N0, nxy = Nxy/N0,
M0 = σ0H2/4, N0 = σ0H, W = δ/H, X = x/L, Y = y/L and T = Cst/H where L is the length
of the plate (or the side length of the confined chamber), Cs is the sound velocity of the environment,
X and Y are the dimensionless coordinate, W is the dimensionless deflection and T denotes the
dimensionless time. mx, my and mxy denote dimensionless bending moments per unit length in all
directions, and the quantity M0 = σ2

0H/4 is the fully plastic bending moment per unit length.
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By substituting these dimensionless parameters into the basic governing equation,
the dimensionless governing equation of fully clamped square plates is derived as follows,∂2mx

∂X2 + 2
∂2mxy

∂X∂Y
+
∂2my

∂Y2

+ 4
(
nx
∂2W
∂X2 − 2nxy

∂2W
∂X∂Y

+ ny
∂2W
∂Y2

)
= 4

( L
H

)2( E
σ0

∂2W
∂T2 −

P
σ0

)
(2)

The dynamic pressure P represents the confined blast load and mainly depends on EeVe/V for the
confined explosion in the cubic chamber, where Ee is the explosive energy per unit volume, Ve denotes
the explosive volume and V = L3 denotes the volume of the confined cubic chamber [31]. In view of
this, the elastic modulus of the plate is uniform and unchangeable throughout the whole response
process, and the dimensional analysis for the dimensionless governing equation leads to,

δ
H

= f
(( L

H

)2
,

P
σ0

)
= g

(( L
H

)2
,

Ee

σ0
,

Ve

L3

)
(3)

Based on the three dimensionless terms, which contain the influence of the geometry of the plate
L/H, the ratio of explosive energy per unit volume to the strength of the material Ee/σ0 and the volume
ratio of the explosive to the confined cubic chamber is Ve/L3. A new dimensionless number φc

in was
proposed to characterize the dimensionless deflection δ/H of the plate under a confined explosion in
the cubic chamber, as follows,

φc
in =

( L
H

)2 Ee

σ0

Ve

L3 =
EeVe

σ0LH2 (4)

It is noted that the influence of the structural dimensions, explosive energy and strength of the
material are considered in Equation (4). It can be applied to analyze and predict the deformation of
square plates under a confined explosion in a cubic chamber.

2.2. Confined Explosion in the Cuboid Chamber

From Equation (4), it is found that the residual deflection of plates was mainly determined by
the explosive energy per unit volume Ee, the explosive volume Ve, the material density ρ, the plate
length L, the plate thickness H and the material strength σ0. For the confined explosion in the cuboid
chamber, the length of the cuboid chamber Lb should be taken into consideration in the dimensionless
analysis. The main parameters were then chosen, and the final midpoint deflection δ of square plates
under a confined explosion in the cuboid chamber can be expressed as follows,

δ = f (Ee, Ve, σ0, L, H, Lb) (5)

The deflection-to-thickness ratio was taken as the dimensionless parameter to represent the plate
deflection. Based on the π law [23], Equation (5) can be expressed using the dimensionless terms such
as those obtained in Equation (3) as the main variables.

δ
H

= g
(

Ee

σ0
,

Ve

L3 ,
L
H

,
L
Lb

)
(6)

where L/Lb denotes the ratio of plate length to the length of the cuboid chamber, which is introduced
as a geometry number to consider the influence of the length of the cuboid chamber.

Nurick and Martin [27] introduced the geometry number L/B (L and B are the plate length
and breadth) into Johnson’s damage number to consider the influence of plate breadth in the
case of quadrangular plates. According to the method used in Nurick and Martin’s work,
the dimensionless numberφc

in was modified to be suitable for a confined explosion in a cuboid chamber,
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which incorporates the influence of the length of the cuboid chamber. The modified dimensionless
number φin can be expressed as follows

φin =
Ee

σ0

Ve

L3

( L
H

)2( L
Lb

)1/2

=
EeVe

σ0(LLb)
1/2H2

(7)

The relationship between the dimensionless deflection δ/H and the new dimensionless number
φin can be expressed below,

δ
H

= F(φin) = F

 EeVe

σ0(LLb)
1/2H2

 (8)

In the case the cuboid chamber has the same length, width and height, the new dimensionless
number φin is equal to the dimensionless number φc

in. This new dimensionless number φin can be
used to determine the deformation of square plates under a confined explosion in a cuboid chamber
with different length–width ratios.

3. Analysis of the Deformation of Plates under Confined Explosion in Cubic Chamber

3.1. Application of the New Dimensionless Number for Confined Explosion in Cubic Chamber

A total of 28 tests of square plates subjected to confined blast loading were performed by
Geretto et al. [6]. In their study, an explosive was detonated at the geometric center of a sealed
cuboidal chamber, which confined the blast wave and all the explosive products within the chamber,
as illustrated in Figure 1. The clamped box-shaped chamber consisted of six clamped rectangular plates
with inner dimensions of 200 mm × 200 mm × 200 mm. Three different thicknesses of target plates
(3 mm, 4 mm and 5 mm) were tested. The 3 mm and 4 mm plates were made from locally manufactured
commercial-grade mild steel, and the 5 mm plate was made from grade 300WA steel. The quasistatic
yield strengths of the different materials were obtained via uniaxial tensile tests. The yield strength
of the 3 mm and 4 mm mild steel and the 5 mm 300WA steel were nominally found to be 233 MPa,
222 Mpa and 263 Mpa, respectively. The confined blast loading was generated by detonating different
masses of spherically shaped plastic explosives (PE4) at the center of the chamber, which resulted in
plate deflection ranging from one to fourteen times the plate thicknesses. The explosive (PE4) has a
density of 1.601 g/cm3 and a detonation energy per unit volume of Ee = 9 × 109 J/m3. These data were
obtained by the authors of [32]. The plates subjected to confined blast loading experienced plastic
deformation, which was characterized by a global uniform dome with a maximum deflection at the
center of the plates. In the present study, the deformations of the top target plates were chosen as the
research object. The calculated dimensionless number φin and deflections δ/H for test plates subjected
to fully confined blast loading are listed in Table 1.
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Figure 1. Illustration of the test device of the fully confined blast.

Table 1. Dimensionless number and deflection for the test plates in Geretto’s confined blast tests.

Test
Number

Plate
Thickness H

(mm)

Yield
Strength σ0

(Mpa)

Mass of
Explosive

Mc (g)

Top Plate
Deflection δ

(mm)

δ
H φin

FC-3-1 3.4 233 20 16.3 4.79 208.7
FC-3-2 3.4 233 20 15.7 4.62 208.7
FC-3-3 3.4 233 30 23.3 6.85 313.1
FC-3-4 3.5 233 30 21.8 6.23 295.4
FC-3-5 3.4 233 40 27.5 8.09 417.4
FC-3-6 3.3 233 50 34.6 10.48 553.9
FC-3-7 3.4 233 60 39.8 11.71 626.1
FC-3-8 3.4 233 20 16.3 4.79 208.7
FC-4-1 4.0 222 20 11.6 2.90 158.3
FC-4-2 4.1 222 30 19.2 4.68 226.0
FC-4-3 4.0 222 40 24.4 6.10 316.5
FC-4-4 4.1 222 40 25.6 6.24 301.3
FC-4-5 4.1 222 30 19.7 4.80 226.0
FC-4-6 4.1 222 20 13.0 3.17 150.6
FC-4-7 4.0 222 50 31.9 7.98 395.7
FC-4-8 4.1 222 50 31.0 7.56 376.6
FC-4-9 4.0 222 60 37.0 9.25 474.8
FC-5-1 5.1 263 20 8.9 1.75 82.2
FC-5-2 5.1 263 20 9.3 1.82 82.2
FC-5-3 5.1 263 30 13.9 2.73 123.3
FC-5-4 5.1 263 30 13.7 2.69 123.3
FC-5-5 5.1 263 40 17.8 3.49 164.4
FC-5-6 5.1 263 40 18.5 3.63 164.4
FC-5-7 5.1 263 50 21.9 4.29 205.4
FC-5-8 5.1 263 50 21.1 4.14 205.4
FC-5-9 5.1 263 60 25.4 4.98 246.5

FC-5-10 5.1 263 70 29.2 5.73 287.6

The ratios of the midpoint deflections to the plate thicknesses (δ/H) versus the new dimensionless
number (φin) for different load conditions are presented in Figure 2. The experimental data in Geretto’s
confined blast tests show an approximately linear relationship between the deflection–thickness ratio
(δ/H) and the new dimensionless number (φin). From the result of the least-squares correlation analysis,
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a relatively good correlation was shown between the measured midpoint deflection and the new
dimensionless number, and the trend of the experimental data is expressed as follows,

δ
H

= 0.0178φin + 0.7678 (9)
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The two dashed lines in Figure 2 are the results calculated by Equation (9) ±1 δ/H respectively,
which are drawn for the purpose of expressing the fitting accuracy. It is found that all the points of the
experimental data are in the range of an experimental variation of one plate thickness.

3.2. Comparison with Nurick’s Dimensionless Number

In the studies of Nurick and Martin [27], by applying the dimensionless number φq in the analysis
of square plates under impulsive loads, it was found that the regression curve of the experimental data
converged to a linear trend. Thus, the empirical expression was obtained with a correlation coefficient
of 0.985, which was shown as follows,

δ
H

= 0.471φq + 0.001 (10)

The dimensionless number φq =
I

2H2(BLρσ0)
1/2 , in which I is the impulse of the blast load, B, L and

H are the breath, length and thickness of the plate, respectively, and ρ and σ0 are the density and
strength of the material.

However, it is inapplicable to predict the deflection of plates subjected to confined blast loading
directly by Equation (10) due to the fact that the effective impulse applied on the plates in confined
blast tests is difficult to be determined. In Geretto’s study [6], the deflections of plates under blast
loading in three different degrees of confinement (free-air burst, fully vented and fully confined) were
recorded. In the free-air blast tests, impulses applied on the plates were measured by the ballistic
pendulum. The impulses for the free-air blast, together with the midpoint deflection ratios between
the unconfined and confined test results, were employed to determine the effective impulse applied on
the plates in the fully confined test. To account for variations in the target plate thickness, the midpoint
deflections were normalized by Geretto et al. as follows [6],

δn = δ×
H
Hn

(11)
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where δn is the normalized deflection, Hn is the nominal plate thickness, δ is the measured midpoint
deflection and H is the measured plate thickness.

The normalized deflection–thickness ratio δn/Hn versus the dimensionless number φq for the
fully confined test is illustrated in Figure 3. It is shown that the data converge to a linear trend, which is
consistent with the trend expressed in Equation (10). However, it is difficult to obtain the impulse
of a confined blast load. The confined blast load consists of two distinctive phases. The first phase
includes the initial shockwave from the explosive and multi-reflected shockwaves from the walls of
the container. The second phase is known as quasistatic pressure, which lasts longer in the confined
chamber. As a result, the confined blast load is more complex compared to the blast load from the
explosive in the free-air condition. It is difficult to obtain the impulse used to calculate the deflection
of the blast-loaded plate in a confined chamber. Therefore, the method suggested in Geretto’s study
seems inconvenient to predict the deflection of plates subjected to confined blast loading in practice.
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The empirical expression of Equation (9) was obtained with a correlation coefficient of 0.987
through the linear fit analysis. It can be applied to predict the deflection of plates subjected to confined
blast loading with relatively good accuracy. Based on the results of comparative analysis, it is believed
that the new dimensionless number φin suggested in the present study, which considers the influence
of the blast energy, the yield strength of the material, the plate thickness and the structural dimensions,
can be used to better characterize the plate deflection under confined blast loading.

4. Analysis of the Deformation of Plates under Confined Explosion in Cuboid Chamber

4.1. Numerical Simulations

With the development of computer technology and computational mechanic techniques,
numerical modeling has become a common tool to investigate plate response under blast loading.
The commercial code ANSYS/AUTODYN has previously been used to analyze the dynamic response of
steel plates under confined blast loading. The fully coupled Euler–Lagrange method has an advantage in
dealing with the large deflection prediction of plates under confined blast loading. Here, the numerical
modeling method was firstly validated based on the experimental results in Geretto’s study and then
used to further analyze the large deflection of plates under a confined explosion in the cuboid chamber
with different lengths. The following subsections provide details of the numerical modeling and results.
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4.1.1. Numerical Modeling

In this section, numerical simulations of the confined blast tests in Geretto’s study were performed
by using the nonlinear explicit code ANSYS/AUTODYN. The air was modeled using an Eulerian solver
in the 3D simulation. The element sizes, characterized by the element length, corresponding to 1 mm,
2 mm and 4 mm were investigated. The final deformations and total CPU times for the three element
lengths were then obtained. The results showed that the final midpoint deflection results of plates
under confined blast loading were within 4% with the total CPU time for the element length of 1 mm
four times than for the element length of 2 mm. Considering the balance between calculation accuracy
and the time taken, an Eulerian element size of 2 mm × 2 mm × 2 mm was selected for the air domain
with a geometric dimension of 400 mm × 400 mm × 400 mm in all numerical simulations. A spherical
PE4 explosive charge was initialized in the center of the air domain and detonated. The flow-out
boundary conditions were set on all free faces of the Euler grid. The PE4 material model available in
the AUTODYN material library was employed. The Jones–Wilkins–Lee (JWL) Equation of State (EOS)
was implemented to describe the explosive material, which is defined as follows,

p = C1

(
1−

w
r1v

)
e−r1v + C2

(
1−

w
r2v

)
e−r2v +

we
v

(12)

In addition, the air is defined by an ideal gas equation of state, which can be expressed as follows,

p = (γ− 1)ρe (13)

where γ is the specific heat ratio, ρ is the density, e is the internal energy, C1,C2,r1,r2 are constants, w is
the specific heat and v is the specific volume. In the numerical model, the standard constants of air and
PE4 are given as follows: air density ρ = 1.225 kg/m3, air initial internal energy e = 2.068× 105 J/kg,
ideal air gas constant γ = 1.4. C1,C2,r1,r2 and w are 6.0977 × 105 MPa, 1.295 × 104 MPa, 4.5, 1.4 and
0.25, respectively [33].

Figure 4 shows a quarter of the numerical model, which includes the fully confined container,
the clamp restraints, the PE4 explosive charge and the air domain. In the numerical model, along the
direction of length and width, a Lagrangian element size fixed at 2 mm × 2 mm was selected to
discretize the box-shaped container except for the bolt hole area. The remaining part of the container
was meshed with three-dimensional eight-noded solid elements, where the maximum element length
in the direction of length and width was 2 mm. In the thickness direction, the plates of the container
wall were divided into two grids. In order to provide an accurate representation of the experimental
restraints, the clamp frame and bolts are included in the numerical model. The clamp frames and
bolts were meshed with three-dimensional eight-noded solid elements and were modeled as rigid
bodies. In order to simulate the attachment of the container to the heavy base, the bolts and the nodes
around the bolt holes in the bottom plate were constrained from translation in all directions. The bolts
and clamp frames offered a strong clamp on the top target plate in the experiments. The magnitude
of the tensile stress provided by the bolt was 240 Mpa [32], which was determined through several
experiments where an instrumented bolt was tightened, and the stress levels in the bolts were recorded.
During the simulation, the lower clamp frame was fixed and constant pressure was applied on the bolts
to represent the clamp restraints. The contact between the two surfaces (e.g., the top target plate and
clamp frames and the clamp frames and bolt heads) was controlled by employing a surface-to-surface
penalty-based contact algorithm. The contact condition between nodes and the surface (e.g., the bolts
and the edge of the bolt holes in the target plate) were controlled by using the node-to-surface contact
penalty-based algorithm. A static friction coefficient of 0.2 was assigned to define the friction force
between the two surfaces in the simulation.
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In the finite element modeling, the Johnson–Cook constitutive relation was used to predict
the numerical plastic response of the target plates under confined blast loading, which is given as
follows [33],

σy = (A + Bεn)
(
1 + C ln

.
ε
∗
)
(1− T∗m) (14)

where A, B, C, n and m are material parameters, ε is the effective plastic strain,
.
ε
∗
=

.
ε/

.
ε0 denotes

the effective plastic strain rate,
.
ε0 is the reference strain rate and was set to be 4.17 × 10−4s−1.

T∗m = (T − Tr)/(Tm − Tr), T is the material temperature, Tr is room temperature and Tm is the melting
temperature of the material. The Johnson–Cook material parameters for the container materials with
different thicknesses were in accordance with Geretto’s study [32].

In the numerical simulation, the coupling between Euler and the Lagrangian meshes are performed
by defining the “fully automatic” Euler–Lagrange coupling option available in AUTODYN. The data
pick-up points are positioned at the center of the top target plate to record the midpoint deflection.

4.1.2. Numerical Result

From the results of the simulations, the top target plates all experienced a similar deformation
mode. Figure 5 shows the typical deformation behavior of the target top plate (Case FC-3-6) subjected
to confined blast loading. Plastic hinges are formed along the clamped boundary and 45◦ from the
corners to the center of the plate; therefore, the deflections of the central plate keep the same value.
After the plastic hinges meet at the center of the plate, the maximum deflection occurs in the midpoint
of the plate. It is found that the final deformation mode of the top target plates was consistent with the
experimental observation, which was characterized by a uniform global dome with the maximum
deflection at the center of the plate. The midpoint deflection was selected as the research object in
the deformation analysis of plates under confined blast loading here. During the dynamic response,
the explosive energy was firstly transformed into the internal energy of the air and the kinetic energy
and deformation energy of the blast-loaded structures. The kinetic energy was then also transformed
into the deformation energy of the structures after the deformation stability. The energy of the whole
system was balanced during the dynamic response in the confined blast cases. Figure 6 shows the
typical midpoint deflection–time history of the target top plate (Case FC-3-6) subjected to confined
blast loading. The blast wave and pressure in the confined chamber cause bulging of the top target
plate up to the maximum transient value, followed by dampened elastic oscillations leading to the final
deflection. It is found that the amplitude of the elastic oscillations was to a very small extent. Under the
confined blast loading, the plastic deformation predominated the dynamic response of the plates.
The present empirical modeling focuses on the final midpoint deflection prediction. The numerical
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modeling would be used to provide more deformation data with similar conditions for the deduction
and validation of the empirical model. Therefore, the numerical modeling method was validated
through the comparison of experimental and numerical results on midpoint deflections. The final
midpoint deflection–thickness ratio obtained from the simulations are plotted against the experimental
results in Figure 7. The dashed lines represent the confidence interval (±1 plate thickness) of the top
target plates tested. The numerical results were all bounded on either side of the experimental data
by a one-deflection–thickness ratio confidence limit. In general, the results show a good correlation
between the numerical and experimental results for all the top target plates.
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4.2. Application of the New Dimensionless Number for Confined Explosion in the Cuboid Chamber

In the present study, the validated numerical method was employed to further investigate the
dynamic response of square plates under a confined explosion in a cuboid chamber. A series of
numerical simulations with different container lengths of 250 mm, 334 mm and 500 mm (the other two
dimensions remain the same with the cubic container) were performed to analyze the deflection of
the top target plates subjected to a confined blast load. The width and height of the container have a
constant value of 200 mm in the simulations. Spherical PE4 explosives with different masses ranging
from 20 g to 70 g were detonated in the center of the container to provide the confined blast load.
The boundary constraints of the fully confined chamber were identical to the numerical models used
in the numerical simulations of Geretto’s experiments. Three different thicknesses of 3 mm, 4 mm
and 5 mm target plates were modeled. Figure 8 shows the numerical model in the simulation with
the chamber length of 250 mm. In total, 54 different load conditions were assigned in the numerical
simulations, as listed in Table 2.
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Table 2. Dimensions of the containers and loading conditions in the simulations.

Model
Ref.

Length
(mm)

Thickness
(mm)

Yield
Strength

(MPa)

Charge
Mass

(g)

Model
Ref.

Length
(mm)

Thickness
(mm)

Yield
Strength

(MPa)

Charge
Mass

(g)

GK250-3-1 250 3.4 233 20 GK334-4-4 334 4.0 222 50
GK250-3-2 250 3.4 233 30 GK334-4-5 334 4.0 222 60
GK250-3-3 250 3.4 233 40 GK334-4-6 334 4.0 222 70
GK250-3-4 250 3.4 233 50 GK500-4-1 500 4.0 222 20
GK250-3-5 250 3.4 233 60 GK500-4-2 500 4.0 222 30
GK250-3-6 250 3.4 233 70 GK500-4-3 500 4.0 222 40
GK334-3-1 334 3.4 233 20 GK500-4-4 500 4.0 222 50
GK334-3-2 334 3.4 233 30 GK500-4-5 500 4.0 222 60
GK334-3-3 334 3.4 233 40 GK500-4-6 500 4.0 222 70
GK334-3-4 334 3.4 233 50 GK250-5-1 250 5.1 263 20
GK334-3-5 334 3.4 233 60 GK250-5-2 250 5.1 263 30
GK334-3-6 334 3.4 233 70 GK250-5-3 250 5.1 263 40
GK500-3-1 500 3.4 233 20 GK250-5-4 250 5.1 263 50
GK500-3-2 500 3.4 233 30 GK250-5-5 250 5.1 263 60
GK500-3-3 500 3.4 233 40 GK250-5-6 250 5.1 263 70
GK500-3-4 500 3.4 233 50 GK334-5-1 334 5.1 263 20
GK500-3-5 500 3.4 233 60 GK334-5-2 334 5.1 263 30
GK500-3-6 500 3.4 233 70 GK334-5-3 334 5.1 263 40
GK250-4-1 250 4.0 222 20 GK334-5-4 334 5.1 263 50
GK250-4-2 250 4.0 222 30 GK334-5-5 334 5.1 263 60
GK250-4-3 250 4.0 222 40 GK334-5-6 334 5.1 263 70
GK250-4-4 250 4.0 222 50 GK500-5-1 500 5.1 263 20
GK250-4-5 250 4.0 222 60 GK500-5-2 500 5.1 263 30
GK250-4-6 250 4.0 222 70 GK500-5-3 500 5.1 263 40
GK334-4-1 334 4.0 222 20 GK500-5-4 500 5.1 263 50
GK334-4-2 334 4.0 222 30 GK500-5-5 500 5.1 263 60
GK334-4-3 334 4.0 222 40 GK500-5-6 500 5.1 263 70

In the simulations, the deformation profiles of the top target plates were all characterized by a
large permanent central deflection several times more than the plate thickness and a uniform global
dome. The permanent midpoint deflection of the top target plate in each simulation was chosen as the
object, and the numerical results are listed in Table 3. The dimensionless number φin as expressed
in Equation (7) was then used to calculate the deflections of square plates under different confined
explosions in the cuboid chamber. Table 3 shows the detailed values of the dimensionless number φin

and the midpoint deflection–thickness ratio δ/H of the top target plates in all simulations. In addition,
the relationship between the results of midpoint deflection–thickness ratio δ/H and the values of
the dimensionless number φin were plotted in the coordinate of (φin, δ/H), as shown in Figure 9,
which shows a clear linear relationship between the midpoint deflection–thickness ratio and the new
dimensionless number. The solid line in Figure 9 is a linear-fitting expression of the results calculated
by Equation (9), and the two dashed lines are the results from Equation (9) ± 1 δ/H, which are drawn
for the purpose of reflecting the fitting accuracy. It is found that the deflection results were all bounded
on either side of the linear-fitted values by a one-deflection–thickness ratio confidence limit.
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Table 3. Deflections of plates under confined explosion in the cuboid chamber with different lengths.

Model
Ref. φin

Midpoint
Deflection

(mm)

Midpoint
Deflection–Thickness

Ratio

Model
Ref. φin

Midpoint
Deflection

(mm)

Midpoint
Deflection–Thickness

Ratio

GK250-3-1 186.7 14.9 4.4 GK334-4-4 307.6 25.5 6.4
GK250-3-2 280.0 20.9 6.1 GK334-4-5 369.1 29.8 7.4
GK250-3-3 373.3 26.3 7.7 GK334-4-6 430.6 34.4 8.6
GK250-3-4 466.7 30.8 9.1 GK500-4-1 100.5 9.9 2.5
GK250-3-5 560.0 35.6 10.5 GK500-4-2 150.8 13.7 3.4
GK250-3-6 653.4 40.5 11.9 GK500-4-3 201.1 17.7 4.4
GK334-3-1 161.5 13.1 3.8 GK500-4-4 251.4 21.4 5.4
GK334-3-2 242.3 18.6 5.5 GK500-4-5 301.6 25.7 6.4
GK334-3-3 323.0 23.5 6.9 GK500-4-6 351.9 29.0 7.3
GK334-3-4 403.8 28.4 8.3 GK250-5-1 73.5 9.4 1.8
GK334-3-5 484.5 32.8 9.6 GK250-5-2 110.3 12.8 2.5
GK334-3-6 565.3 37.2 10.9 GK250-5-3 147.0 16.4 3.2
GK500-3-1 132.0 11.0 3.2 GK250-5-4 183.8 20.2 4.0
GK500-3-2 198.0 15.2 4.5 GK250-5-5 220.5 23.6 4.6
GK500-3-3 264.0 19.1 5.6 GK250-5-6 257.3 26.9 5.3
GK500-3-4 330.0 22.8 6.7 GK334-5-1 63.6 8.4 1.6
GK500-3-5 396.0 27.1 8.0 GK334-5-2 95.4 11.4 2.2
GK500-3-6 462.0 31.1 9.1 GK334-5-3 127.2 14.4 2.8
GK250-4-1 142.2 12.8 3.2 GK334-5-4 159.0 17.9 3.5
GK250-4-2 213.3 18.3 4.6 GK334-5-5 190.8 21.1 4.1
GK250-4-3 284.4 23.9 6.0 GK334-5-6 222.6 24.4 4.8
GK250-4-4 355.5 29.0 7.2 GK500-5-1 52.0 6.9 1.3
GK250-4-5 426.6 33.5 8.4 GK500-5-2 78.0 9.8 1.9
GK250-4-6 497.7 38.2 9.5 GK500-5-3 103.9 12.5 2.4
GK334-4-1 123.0 11.7 2.9 GK500-5-4 129.9 15.1 3.0
GK334-4-2 184.5 16.2 4.0 GK500-5-5 155.9 17.6 3.5
GK334-4-3 246.0 21.0 5.3 GK500-5-6 181.9 20.6 4.0
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Figure 9. The midpoint deflection–thickness ratio versus the new dimensionless number 
in . Figure 9. The midpoint deflection–thickness ratio versus the new dimensionless number φin.

5. Discussions

In this section, based on the validated numerical method, a series of numerical models with
target plate thicknesses of 2 mm and 6 mm were performed for confined explosions in a cuboid
chamber with lengths of 200 mm, 225 mm, 334 mm and 500 mm. The length of the fully confined
chamber, the plate thickness, the charge mass and the material strength in the simulations are listed in
Table 4. The numerical results were compared with the values calculated by Equation (9) to verify the
validity of the proposed empirical expression in predicting the deflection of the plates under a fully
confined explosion.
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Table 4. Predicted and numerical results for the midpoint deflections of the 2 mm and 6 mm target plates.

Serial
Number

Thickness/mm Chamber
Length/mm

Charge/g

Midpoint
Deflection/Thickness

Ratio

Midpoint
Deflection/Thickness

Ratio

FEM Empirical
Formula FEM Empirical

Formula

1 2 200 10 12.9 12.3 6.5 6.1
2 2 200 20 22.1 23.0 11.1 11.5
3 2 250 10 11.3 11.1 5.7 5.6
4 2 250 20 21.5 20.7 10.8 10.4
5 2 334 10 10.2 9.8 5.1 4.9
6 2 334 20 19.0 18.2 9.5 9.1
7 2 500 10 7.7 8.3 3.9 4.2
8 2 500 20 15.6 15.1 7.8 7.6
9 6 200 20 8.2 10.9 1.4 1.8

10 6 200 30 11.9 14.1 2.0 2.4
11 6 200 40 15.1 17.3 2.5 2.9
12 6 200 50 18.3 20.5 3.1 3.4
13 6 200 60 21.5 23.6 3.6 3.9
14 6 200 70 24.6 26.8 4.1 4.5
15 6 250 20 6.9 10.3 1.2 1.7
16 6 250 30 10.6 13.1 1.8 2.2
17 6 250 40 13.5 15.9 2.2 2.7
18 6 250 50 16.3 18.8 2.7 3.1
19 6 250 60 19.3 21.6 3.2 3.6
20 6 250 70 22.3 24.4 3.7 4.1
21 6 334 20 5.5 9.5 0.9 1.6
22 6 334 30 8.8 12.0 1.5 2.0
23 6 334 40 11.6 14.4 1.9 2.4
24 6 334 50 14.0 16.9 2.3 2.8
25 6 334 60 16.7 19.3 2.8 3.2
26 6 334 70 19.5 21.8 3.2 3.6
27 6 500 20 4.0 8.6 0.7 1.4
28 6 500 30 6.8 10.6 1.1 1.8
29 6 500 40 9.7 12.6 1.6 2.1
30 6 500 50 12.0 14.6 2.0 2.4
31 6 500 60 13.9 16.6 2.3 2.8
32 6 500 70 16.5 18.6 2.8 3.1

The predicted final midpoint deflections based on the empirical expression of Equation (9)
and the corresponding numerical results are also summarized in Table 4. The predicted midpoint
deflection–thickness ratios are plotted against the numerical midpoint deflection–thickness ratios for
all the 2 mm and 6 mm plates in Figure 10. It is shown that the predicted results were all bound on
either side of the numerical data by a one-deflection–thickness ratio confidence limit. The predicted
midpoint deflections agree well with the corresponding numerical results, indicating that the empirical
expression of Equation (9), based on the new dimensionless number φin, is capable of calculating the
deflection of the square plates under confined explosions in a cuboid chamber with different lengths.
The deflection prediction method based on the new dimensionless number φin is very convenient
for engineering applications. The specific steps to obtain the plate deflection are as follows: (1) the
dimensionless number φin is determined firstly based on these parameters, including the explosive
volume, the strength of the material, the plate thickness, the length of the confined chamber and
the length of the square plate; (2) the deflection–thickness ratio is then determined based on the
empirical expression of Equation (9) and the new dimensionless number; (3) the deflection of the plate
under confined blast loading is finally determined based on the deflection–thickness ratio and the
plate thickness.
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However, the empirical expression used to calculate the midpoint deflection does not
incorporate failure. For the plates under uniform blast loading, the region enclosed by a midpoint
deflection–thickness ratio of 12.5 represents Mode I failure (large inelastic deformation), as observed
by Nurick and Martin [27]. Therefore, the proposed empirical expression of Equation (9), based on the
new dimensionless number φin, is only applicable for the deflection prediction of confined blast cases
in which the explosive is at the center of the chamber and the midpoint deflection–thickness ratios of
the plates are under 12.5.

In order to further validate the efficiency and accuracy of the present work, a comparison was
conducted between the deflection prediction method based on the new dimensionless number and
another method. Yao [34] proposed a dimensionless number Din for the dynamic response analysis
of square plates subjected to fully confined blast loading in a cubic chamber, which was expressed
as follows,

Din =
Q

σ0L2H
(15)

The empirical expression used to predict the deflection–thickness ratio of the plates under confined
blast loading were expressed as follows,

δ
H

= 0.79Din (16)

As Yao’s method is only applicable to a confined explosion in a cubic chamber, the midpoint
deflections of the plates with thicknesses of 2 mm and 6 mm subjected to a confined explosion in
the cubic chamber were selected as the research objects. A comparison of the predicted midpoint
deflections of the 2 mm and 6 mm target plates by different methods is illustrated in Table 5.
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Table 5. Comparison of the predicted midpoint deflections of the 2 mm and 6 mm target plates.

Serial
Number

Thickness/mm
Chamber
Length
/mm

Charge
/g

Midpoint
Deflection/Thickness

Ratio

Midpoint
Deflection/Thickness

Ratio

FEM
Empirical

Expression in
Yao’s Study

FEM
Empirical

Expression in
Present Study

1 2 200 10 6.5 2.4 6.5 6.1
2 2 200 20 11.1 4.8 11.1 11.5
3 6 200 20 1.4 1.4 1.4 1.8
4 6 200 30 2.0 2.1 2.0 2.4
5 6 200 40 2.5 2.8 2.5 2.9
6 6 200 50 3.1 3.5 3.1 3.4
7 6 200 60 3.6 4.2 3.6 3.9
8 6 200 70 4.1 4.9 4.1 4.5

It is shown that the predicted results of the 2 mm target plates by the empirical expression in Yao’s
study are significantly less than the numerical results, whereas the predicted midpoint deflections in
the present study agree well with the corresponding numerical results. From the above, the deflection
prediction method based on the new dimensionless number φin not only has a wider application for
usage in a confined explosion in a cuboid chamber with different lengths but is also capable of predicting
plate deflections more efficiently and accurately, which is of practical value in engineering applications.

6. Conclusions

Based on a general dimensional analysis, a new dimensionless number φin, which considers
the influence of the blast energy, the strength of the material, the plate thickness, the length of the
confined chamber and other structural dimensions, was proposed for characterizing the deflection of
square plates subjected to fully confined blast loading. A comparison analysis is made between the
applications of the dimensionless numberφq proposed by previous scholars and the new dimensionless
number φin. It is found that the new dimensionless number φin is more efficient and accurate for the
dynamic response analysis of blast-loaded plates in a confined chamber. The explosive is at the center
of the chamber and the midpoint deflection–thickness ratio of the plates is under 12.5. It has a further
wide field of application with respect to structural response analysis in a confined blast situation,
especially when the plate experiences a large deflection–thickness ratio.

The new dimensionless number φin was further employed to analyze the experimental and
numerical data of deflections of the plate subjected to confined blast loading in chambers with different
lengths. The comparison results revealed that the empirical expression based on the new dimensionless
number φin is capable of efficiently and accurately predicting the response of square plates subjected
to confined explosions in a chamber with different lengths, which would be helpful in the design of
blast-loaded structures.
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