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Abstract: The impact of channel deepening and sea-level rise on the environmental integrity of an
estuary is investigated using a three-dimensional hydrodynamic-eutrophication model. The model
results show that dissolved oxygen (DO) only experienced minor changes, even when the deep
channel was deepened by 3 m in the mesohaline and polyhaline regions of the James River. We
found that vertical stratification decreased DO aeration while the estuarine gravitational circulation
increased bottom DO exchange. The interactions between these two processes play an important
role in modulating DO. The minor change in DO due to channel deepening indicates that the James
River is unique as compared with other estuaries. To understand the impact of the hydrodynamic
changes on DO, both vertical and horizontal transport timescales represented by water age were used
to quantify the changes in hydrodynamic conditions and DO variation, in addition to traditional
measures of stratification and circulation. The model results showed that channel deepening led
to an increase in both gravitational circulation strength and vertical stratification. Saltwater age
decreased and vertical exchange time increased with increases in channel depth. However, these two
physical processes can compensate each other, resulting in minor changes in DO. A comparison of
the impact of a sea-level rise of 1.0 m with channel deepening scenarios was conducted. As the sea
level rises, the vertical transport time decreases slightly while the strength of gravitational circulation
weakens due to an increase in mean water depth. Consequently, DO in the estuary experiences a
moderate decrease.

Keywords: dissolved oxygen; gravitational circulation; saltwater age; vertical exchange time; channel
deepening; sea-level rise; James River

1. Introduction

To accommodate economic development, more and more anthropogenic interventions, such as
reclamation, harbor constructions, flood control measures, and channel dredging, have occurred in
estuaries around the world. Because of the need for port development, channel deepening is often
needed to maintain and enhance navigation. It is critical that sustainable port development preserves
ecological integrity. The impact of channel deepening and its impact on the environmental integrity of
an estuary are concurrent concerns.

Many studies have shown that channel deepening can affect tidal characteristics, resulting in as
increase and a decrease in tidal range, estuarine stratification, and estuarine circulation [1–6]. Channel
deepening often causes a decrease in dissolved oxygen (DO) [7–10]. A recent study of the Chesapeake
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Bay showed that a sea-level rise of 0.5 m increased bottom DO and reduced summer hypoxia volume by
12% [11,12]. DO is an important measure of health in estuarine and coastal waters, which has attracted
more research attention in recent years. Oxygen deficiency can degrade an ecosystem by destroying
the bottom fauna habitats, therefore, altering the food web and aquatic ecosystem with undesirable
consequences in estuaries and coasts [13,14]. On the one hand, if the estuarine stratification increases,
the vertical DO exchange is reduced; consequently, the bottom DO condition becomes worse [15–17].
On the other hand, when the strength of estuarine gravitational circulation increases, there is less time
for DO consumption as water parcels travel upriver [13,16,17]. Gravitational circulation is one of the
key mechanisms of an estuary that transports freshwater and pollutants out of the estuary near the
surface and transport waters and pollutants from the outside to the estuary near the bottom [1,2,6].
The classical estuary circulation theory shows that a depth change has a significant impact on the
strength of the gravitational circulation [1,2,5,6]. A change in gravitational circulation due to channel
deepening changes estuarine residence time [16,18], which can have a profound impact on estuarine
hydrodynamics and the ecosystem [19–21]. Although channel deepening improves navigation, it can
cause unexpected consequences to the environment and ecosystem. Because the rate of global sea-level
rise is increasing more rapidly than in the past [22], this can put more pressure on the ecosystem,
similar to channel deepening [4]. Therefore, an investigation of the influences of channel deepening
and sea-level rise on the ecosystem is highly warranted.

Human interventions, such as widening and deepening of estuarine and tidal river channels,
can impact the distribution of suspended particulate matters, with important ecological ramifications
including deteriorated light, primary production, and oxygen conditions. Previous research results
have shown that tidal channel deepening could led to a shift of trapping locations of suspended
particulate matter, which could lead to a significant oxygen deficit [8,9,20,21]. After deepening of
the navigation channel of the Elbe Estuary, it was found that enhanced oxygen deficiencies occurred
and there was a permanent loss in the capacity of branches for reaeration of the open water [23]. An
additional study found that an increase in tidal range and non-tidal circulation resulted in salinity
increase and attendant consequences to the estuary’s ecology after the channel deepening in Tampa
Bay [24].

It is commonly thought that an increase in channel depth results in increases in both stratification
and gravitational circulation. However, recent studies have shown that a change in channel depth and
sea-level rise can alter the tidal range, thus altering mixing processes [18]. A change in tidal range is
not uniform along an estuary and depends on both the length and depth of the estuary [4]. The impact
of nonlinear effect of tidal range on DO has not been fully studied.

Previous studies have indicated that channel deepening could affect both biochemical and dynamic
conditions [8,9,24], consequently, affecting DO condition. However, the impact of channel deepening
and sea-level rise on hydrodynamics and DO has not been fully studied for estuaries with complex
geometry, which is the focus of this study. The James River, a western tributary of the Chesapeake Bay,
USA was used as a prototype estuary to explore this impact. The James River is a typical partially
mixed estuary [2]. To continue port development, channel deepening in the lower James River and
Elizabeth River has been planned. One of the concerns is whether the increase in water depth could
affect the DO and preserve ecological integrity because DO is one of the important indicators of the
health of the aquatic ecosystem. Although the James River receives massive discharges of nutrients,
DO conditions remain above the hypoxia level due to its strong gravitational circulation that transports
a significant amount of high DO water from Chesapeake Bay into the James River [16]. Here, we
address the potential changes in stratification and gravitational circulation and their impacts on DO
levels in the James River.

To address the problem, we investigated the changes in hydrodynamic fields, including tidal
rage, salinity, and stratification. Additionally, we investigated the changes in transport timescales
because hydrodynamic transport characteristics of an estuary can be quantified by transport properties,
including residence time, flushing time, and vertical transport time [25–30]. As timescales provide a
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common measure of hydrodynamics, hydrodynamics for different estuaries can be compared using
timescales [25,31]. For example, many studies have used water age to diagnose the vertical transport
process [25,32,33]. These timescales provide measures of characteristics of estuarine transport of
pollutants, nutrient retention, DO aeration, and algal bloom [25,26,30,31]. To quantify the changes
in stratification and estuarine circulation for different channel deepening scenarios, the vertical and
saltwater transport times of the James River were compared using a three-dimensional (3D) numerical
model to diagnose variations of the aquatic environmental condition. Although the investigation was
conducted for the James River, the approach and results are applicable to other partially mixed estuaries.

2. Study Area

The James River is a western tributary of the Chesapeake Bay, USA (Figure 1). It is about 160.0 km
long and has a width that ranges from 300 m at its upstream boundary to 6 km at its downstream
boundary with a mean depth of 3.76 m. The tidal range is about 0.74 m at Sewells Point near the mouth.
The average freshwater discharge is 226 m3 s−1 [34]. An abrupt bend in the river occurs at Newport
News Point, approximately 10.5 km from its mouth, where the orientation of the river changes from
northeast-southwest in the lower river to southeast-northwest in the upper river. The horizontal
salinity gradients are usually larger near the upper mesohaline of the river where the freshwater meets
saltwater. The denser, more saline bottom waters enter the James River from the Chesapeake Bay and
flow upstream, while the less dense surface waters, dominated by freshwater inflow, flow downstream
toward the Bay [1]. The Elizabeth River is one of the branches of the James River near the mouth of the
river, and is approximately 32 km long. The existing shipping channel, with a depth of 10 m, extends
from the mouth to the upstream. The unique geometry of the James River and Elizabeth River results
in complex dynamic fields in this system.
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Figure 1. Location maps of James River and diagram of the numerical model grid. (a) area map with
water quality monitoring stations (triangles are observation stations for DO verification), (b) model
grid (the red line, insert figure denotes the area of channel deepening).

3. Methods

3.1. Numerical Model

The three-dimensional Environmental Fluid Dynamic Code (EFDC) model was used for the James
River and its tributaries. The EFDC model is a general hydrodynamic and water quality model that
solves three-dimensional, time-dependent flows governed by hydrostatic primitive equations [35–37].
The model uses curvilinear, orthogonal horizontal coordinates, and sigma vertical coordinates to
represent water body. The modified Mellor and Yamada [38] level 2.5 turbulence closure model [39] is
implemented in the model. A eutrophication model is coupled to the hydrodynamic model [37,40]. It
has become one of the most widely used numerical models for estuaries [41].
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The model grid and computational domain of this study are presented in Figure 1. The model
grid cells (ranging from 300 to 1200 m) were designed to follow the main channel of the James
River. High resolution was placed on the main stem of the river (~300 × 400 m) to obtain the best
representation of the topography in this area. There are 3066 water cells in the horizontal plane and
eight layers in the vertical direction. Daily river discharges and nutrients from the upstream and
lateral watersheds were obtained from the James River watershed model developed by the Chesapeake
Bay program [40]. The three most important upstream freshwater discharges are from Richmond,
Appomattox River, and Chickahominy River, respectively. The wind forcing data were obtained from
the Norfolk International Airports located near the Sewells Point station near the mouth. Hourly wind
forcing, surface pressure, humidity, and solar radiation obtained from the meteorological data were
used for temperature simulations. The hourly tide, temperature, and salinity data obtained from the 3D
model of the Chesapeake Bay program [14] were used for the open boundary conditions. The model
simulation period was from 2005 to 2013 with a time step of 20 s. The modeled surface elevations are
within 0.5 root mean square error (RMSE) that is less than 0.15 m, and the model skills for current
simulations range from 0.48 to 0.83 [34].

The three-dimensional eutrophication model simulated winter and summer assemblages of
phytoplankton, particulate and dissolved organic nitrogen (PON and DON), phosphorus (POP and
DOP), dissolved inorganic nitrogen (NH4, NO2, NO3), dissolved phosphate (PO4), and DO. A bottom
sediment process model is coupled to the water column to simulate mineralization and bottom fluxes
of NH4, NO3, PO4, and sediment oxygen demand (SOD) [37]. Open boundary condition of daily
concentration of each eutrophication state variable was obtained from the Chesapeake Bay program’s
water quality model [14]. The water quality model was used to evaluate the DO condition. The water
quality models were calibrated and verified from 2005 to 2013 [40]. The monthly water quality state
variables were collected by the Virginia Department of Quality from 2005 to 2013 at stations along the
main channel of the James River and Elizabeth River. Observations included phytoplankton (chl a),
nitrogen and phosphorus (total, organic, and inorganic), and DO, together with environment variables
including salinity, temperature, and total suspended solids, available at Chesapeake Bay Program
(https://www.chesapeakebay.net/). These variables were used for model calibration. The calibration
of water quality model focused on phytoplankton, which was the key state variable. Both light
attenuation and temperature dependent functions for phytoplankton growth were estimated based on
monthly observation data. The major parameters calibrated were growth, respiration, mortality, and
settling rates. Growth rate determines the primary production. Respiration, mortality, and settling
rates are important to control nutrient recycle in both water column and bottom sediment. The James
River was divided into 3 major regions corresponding to tidal freshwater, mesohaline, and polyhaline.
Parameters were allowed to vary at different regions to account for different phytoplankton species in
each region [40].

3.2. Transport Time and Bottom Dissolved Oxygen (DO)

The impacts of dynamics on DO in an estuary are mainly caused by DO aeration through surface
and bottom exchange processes [15], and gravitational circulation that changes both DO supply and
DO consumption near the bottom [16,17]. Shen et al. [25] proposed a simplified model to quantify it.
For a partially mixed estuary, the transport process can be described by a two-layer model. Assuming
steady state for tidally averaged flow, the lower layer oxygen for a uniform estuary is governed by the
following equation [16,25]:

u
dO
dx

=
kz

H
(Os −O)

d
− B (1)

where u is the constant mean bottom inflow velocity due to gravitational circulation, Os and O are
the DO concentrations (mg/L) in the surface layer and bottom layer, kz is the vertical exchange rate
(m2 s−1) between the surface and bottom layers that parameterizes the overall exchange between
surface and bottom layers including turbulent mixing and lateral circulation induced mixing, H (m) is

https://www.chesapeakebay.net/
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the bottom layer thickness, d (m) is the distance between the middle of two layers, and B is the total
DO consumption rate (g O2 m−3 d−1) including both water column and sediment oxygen demand.
Letting D = Os-O as DO deficit, and applying boundary condition D = D0 at x = 0, Equation (1) can
be solved and expressed as [25]:

O
Os

= 1−
τv

τb

(
1− e−

τe
τv
)
−

D0

Os
e−

τe
τv (2)

where τe = x/u is the longitudinal transport timescale indicating the travel time of gravitational
circulation, τv = Hd/kz is the vertical exchange timescale, and τb = Os/B is the timescale of the
biological oxygen consumption. Transport time τv is the vertical exchange timescale that is the average
time required for the vertical transport of a water parcel between two layers. The transport includes
vertical mixing, lateral circulation, and vertical advection and is the elapsed time of the DO when it
leaves the surface and reaches the bottom. τe is the average time required for the water parcel to be
transported from the mouth to any location of concern, which measures transport time of the estuarine
gradational circulation and is referred as saltwater age hereafter.

If DO at the open boundary of the estuary is equal to the saturation DO, Equation (2) can be
expressed by the two dimensionless parameters of τ∗b and τ∗e as:

O
Os

= 1−
1
τ∗b

(
1− e−τ

∗
e
)

(3)

where τ∗b = τb/τv is the oxygen consumption time (τb) normalized by vertical exchange time (τv),
which quantifies the competition of total biochemical oxygen consumption time; and τ∗e = τe/τv, which
is the transport timescale of gravitational circulation (τe) normalized by (τv). Because gravitational
circulation is related to the stratification, a change in stratification, or τv, will result in a change in
τe. The ratio determines the impact and the competition between two processes. Equation (3) is
formulated using a Lagrangian perspective, with both the biochemical DO consumption rate and the
physical processes quantified by timescales [25]. It can be seen that the impact of dynamics on DO
can be compared by these two non-dimensional timescales for different estuaries if these timescales
are known.

Both transport timescales, τe and τv, can be obtained by computing transport times of saltwater
age and surface water age [18,25,27,28]. The transport time represents the elapsed time since the
water was last in contact with the tracer source [27,28,42]. When a conservative tracer is released
at a location (e.g., open boundary or surface), the resulting water age at any location represents the
transport time required for the water parcel to be transported from the release location to the current
location. It represents the transport timescale from its source to the location of concern [27]. The
transport timescale is calculated as the mean water age, which is governed by the following equations:

∂C(t, x, y, z)
∂t

+∇ ×
(⇀
ua(t, x, y, z) −K∇ × C(t, x, y, z)

)
= 0 (4)

∂α(t, x, y, z)
∂t

+∇ ×
(⇀
uα(t, x, y, z) −K∇ × α(t, x, y, z)

)
= C(t, x, y, z) (5)

The mean water age can be calculated as follows:

a(t, x, y, z) = α(t, x, y, z)/C(t, x, y, z) (6)

where ∇ =
→

i ∂
∂x +

→

j ∂
∂y +

→

k ∂
∂z , C(t, x, z) is the tracer concentration, α(t, x, y, z) is age concentration,

⇀
u

is the velocity field, and K is the diffusivity tensor. A modeled conservative tracer was used to calculate
the transport timescales of the estuary based on Equations (4) to (6). The tracer was continuously
released from the open boundary of the James River or at the surface, respectively, corresponding to
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saltwater age and vertical exchange time. The age concentration was set to zero at the release location.
The “no flux” condition was used at the bottom for computing vertical exchange time [32,42].

3.3. Channel Deepening and Sea-Level Rise Simulations

We investigated the impact of channel deepening in the James River on the DO through a series of
numerical experiments. The model experiments included three simulations with channel deepening of
1.0, 2.0, and 3.0 m, respectively, for the channel from the mouth to the upper mesohaline of the James
River (Figure 1b). The selected values were based on Army Corps of Engineers current and projected
future channel deepening. These 3 experiments were defined as Scenarios E01, E02, and E03 (Table 1).
For all these experiments, freshwater discharges and salinity at the open boundary were unchanged.
Both biological parameters and nutrient loadings from watershed, and open boundary conditions were
unchanged. The baseline of the simulation was denoted as E00. The channel along the central shipping
lane was uniformly increased. The width of the deep channel was unchanged, which was about 1.0 km.
In order to compare the channel deepening with sea-level rise, the fourth simulation with an increase of
mean sea level of 1.0 m was conducted, which was denoted as Scenario E04 (Table 1). A 1.0 m increase
in sea level has been projected in the Chesapeake Bay region by 2100, based on Climate Change Science
Program [18,22], which, currently, has been used for projected sea-level rise as of 2100 [43]. For the
sea-level rise simulation, a mean sea level of 1.0 m was added as a subtidal at the open boundary. The
model reached equilibrium within about 3–4 months. The shoreline of the James River is mixed with
mostly hardening shoreline and living shoreline with beaches and fringing marshes. A recent study on
the likelihood of shore protection along the Virginia coast showed that shoreline protection is certain
for the major portion of the James River, because the elevation of the low-lying area is well above sea
level with projected sea-level rise by 2100 [43,44]. There is only a small portion of the area where shore
protection is likely. Although the current model does not include the low-lying area, the James River is
suitable for studying the impact of a sea-level rise of 1.0 m in the James River.

Table 1. Summary of numerical experiments.

Scenario Channel Deepening
(m)

Boundary Elevation
Increase (m)

E00 0 0
E01 1 0
E02 2 0
E03 3 0
E04 0 1

3.4. Vertical Stratification

The channel deepening impacts on the vertical salinity distribution, and thereby influences the
vertical stratification. The vertical stratification is the foremost concern as it is highly correlated to the
hypoxia. Numerous studies have documented a high correlation between the estuary stratification and
hypoxia [13,15,45]. Vertical stratification inhibits mixing that would otherwise replenish the deeper
water with oxygen [29]. To quantify the stratification, the Brunt–Vaisala frequency was calculated [46]
to measure the stratification strength:

N2 =
g
ρ

∂ρ

∂z
(7)

where g is the gravitational constant and ρ is the water density (in kg m−3). The frequency was
computed at each model grid along the main channel, shown in Figure 1b, and averaged throughout
the results of the main stem of the James River.
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3.5. Model Validation

The model was effectively calibrated for both hydrodynamics and water quality state variables.
The model calibration results showed that the model could effectively reproduce water quality state
variables [40]. As the focus of this study is DO, comparisons of DO between observations and
model-simulated results were plotted in a Taylor diagram [47], shown in Figure 2 and some statistics
are listed in Table 2. The values of the correlation coefficients at different stations in the James River
varied from 0.94 to 0.96 (with a 95% confidence level) and in the Elizabeth River range from 0.85 to
0.94 (with a 95% confidence level). The modeled DO had a very small standard deviation suggesting
temporal variation was close to that of the observations. Station LE5.1 was used as the reference site,
and the RMSE was about 0.721 at that station. The RMSE values at other stations were about equal
to or less than 0.5 of the standard deviation of the referenced RMSE. These results indicated that the
model was reliable for simulating the seasonal variation and model experiments in this study.

Table 2. A summary of statistics showing the skill of the James River water quality model*.03BC 

State Variable ME AME RE RMSE R 
Chl a (μg/L) 0.283 5.559 0.658 10.119 0.441 
NH4 (mg/L) −0.081 0.112 0.635 0.146 0.372 
DIN (mg/) −0.004 0.010 0.367 0.015 0.760 

NO2+NO3 (mg/L) −0.025 0.041 0.700 0.057 0.343 
PO4 (mg/L) −0.052 0.073 0.689 0.104 0.428 
DO (mg/L) 0.095 0.526 0.066 0.721 0.959 

* ME, mean error; AME, absolute error; RE, Relative error; RMSE, root mean square error; R, correlation 
coefficient. Statistics are estimated for Stations LE5.1, LE5.2, LE5.3, LE5.4, LE5.5 for simulation period. 

 
 
 
Figure 2 

Figure 2. Taylor diagram displaying the statistical comparison of model predictions and observations
of 13 monitoring stations of the dissolved oxygen, the monitoring station are James River (LE5.1, LE5.2,
LE5.3, LE5.4, and LE5.5) and Elizabeth River (LE5.6, ELI2, EBE1, SBE2, SBE5, LFA01, LFB01, and WBE1).

Table 2. A summary of statistics showing the skill of the James River water quality model *.

State Variable ME AME RE RMSE R

Chl a (µg/L) 0.283 5.559 0.658 10.119 0.441
NH4 (mg/L) −0.081 0.112 0.635 0.146 0.372
DIN (mg/L) −0.004 0.010 0.367 0.015 0.760

NO2+NO3 (mg/L) −0.025 0.041 0.700 0.057 0.343
PO4 (mg/L) −0.052 0.073 0.689 0.104 0.428
DO (mg/L) 0.095 0.526 0.066 0.721 0.959

* ME, mean error; AME, absolute error; RE, Relative error; RMSE, root mean square error; R, correlation coefficient.
Statistics are estimated for Stations LE5.1, LE5.2, LE5.3, LE5.4, LE5.5 for simulation period.

4. Results

4.1. Change in DO

The DO in the James River varies seasonally over a year [16]. We compared changes in seasonal
DO (spring and summer) that had been used for water quality condition assessment in the Chesapeake
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Bay [40]. The spring season spans from March to May and the summer season spans from June to
August. In the spring season, depth-averaged DO decreases as the channel depth increases. The value
of the mean DO decreases from 7.77 to 7.63 mg/L as compared the baseline (E00) to the scenario with a
deepening of 3 m (E03) (average of Stations LE5.1, LE5.2, LE5.3, LE5.4, and LE5.5). For the bottom
DO, its value decreases from 7.66 to 7.46 mg/L as compared with the baseline (E00) to scenario (E03)
(Table 3). The vertical mean DO value decreases to 7.53 from 7.77 mg/L and the bottom DO value
decreases to 7.37 from 7.66 mg/L when sea-level rise of 1.0 m (E04) (Table 3).

Table 3. The comparison of dissolved oxygen results of the numerical experiment of the channel
deepening in the spring and summer season.

Spring Summer

Variables E00 E01 E02 E03 E04 E00 E01 E02 E03 E04

Mean (mg/L) 7.77 7.72 7.68 7.63 7.53 6.28 6.22 6.18 6.15 6.05
Bottom (mg/L) 7.66 7.58 7.53 7.46 7.37 6.11 6.01 5.95 5.89 5.81
Mean difference (mg/L) −0.05 −0.09 −0.14 −0.24 −0.07 −0.10 −0.13 −0.24
Bottom difference (mg/L) −0.07 −0.13 −0.20 −0.29 −0.10 −0.16 −0.22 −0.29
Relative mean difference (%) −0.70 −1.21 −1.75 −3.09 −1.05 −1.66 −2.12 −3.75
Relative bottom
difference (%) −0.95 −1.73 −2.62 −3.77 −1.59 −2.64 −3.58 −4.82

DO in the summer season is low as compared with that in the spring in the James River. In the
summer season, depth-averaged DO decreases as the channel depth increases. The value of the mean
DO decreases from 6.28 to 6.15 mg/L as compared with the baseline (E00) to the scenario deepening
3 m (E03). For bottom DO, its value changes from 6.11 to 5.89 mg/L as compared the baseline (E00) to
the scenario (E03) (Table 3). It can be seen that the mean DO levels do not change dramatically in the
estuary, either with an increase in channel depth of 3 m or an increase in sea level of 1 m (E04). The
vertical mean DO value decreases to 6.05 from 6.28 mg/L and the bottom DO value decreases to 5.81
from 6.11 mg/L for the sea-level rise scenario (E04) (Table 3).

Because the biological parameters and nutrient loadings were unchanged during these simulations,
it appeared that the change in hydrodynamics was one of the main reasons causing DO change, although
hydrodynamics might also affect biological processes. When water depth increases, the vertical mixing
decreases, resulting in a decrease in bottom DO. On the one hand, the minor change of DO could be
due to the increase of gravitational circulation as previous studies have suggested [16]. On the other
hand, it could also be due to the change of tidal range, which alters the mixing processes. We discuss
these in the following sections.

4.2. Change in Tidal Amplitude and Salinity Intrusion

To understand the influence of hydrodynamic conditions on DO, multiple key parameters were
investigated. The tidal characteristics are important for estuarine dynamics. The change in tidal range
for different scenarios was investigated. The dominant M2 tidal constituent was selected to examine the
tidal amplitude variation along the estuary. Figure 3a illustrates the variation of the M2 tide amplitude
as the channel depth increases and sea-level rises, clearly indicating that the amplitude of the M2 tidal
constituent decreases slightly before the nodal point and increases over most of the James River for
both channel deepening and sea-level rise scenarios. The increase is amplified toward the upstream.
The tidal range, measured at a distance of 125 km from the mouth, increases from 0.6 m to 0.75, 0.85,
and 0.98 m, respectively, for channel deepening of 1.0, 2.0, and 3.0 m. Tidal range, measured at a
distance of about 30 km from the mouth, decreases from 0.02 to 0.10 m for different channel deepening
cases. The tidal rage increase due to sea-level rise is evident, which is much different from that due to
channel deepening. The tidal range increases about 36% near the nodal point and the M2 tide varies
from 0.65 to 0.85 m (Figure 3a), which agrees with results of Du et al. [4]. The distribution of tidal range
is the result of the superposition of the incoming tide and the reflected tide and depends on the depth,
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length, and geometry (channel convergence) [4,48]. An increase in tidal range towards upstream,
as associated with channel deepening, is largely due to the reduction of bottom friction [3], while a
decrease in tidal range before nodal point is mainly caused by the interaction of incoming and reflected
tidal waves. For the sea-level rise scenario, the mean depth is changed by 1.0 m. The change in mean
water depth due to sea-level rise is more pronounced as compared with only channel deepening. As a
result, the bottom friction decreases in the entire estuary, resulting in an increase in tidal range.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 16 
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One of the impacts of the channel deepening is that it can increase salt intrusion toward the
upstream, which is an indicator of an increase in gravitational circulation. To demonstrate the variation
of salinity intrusion after the channel deepening, the yearly mean salinity along the channel was plotted.
The result showed that the salinity migrates further upstream when the channel depth increases. The
salinity migrates further upstream, i.e., about 10 km, when the mean channel depth increases from
9.38 to 12.31 m (Figure 3b). The salinity migrates further upstream, i.e., about 5 km, in response to the
potential sea-level rise of 1 m at the James River mouth (Figure 3b), which agrees with the result of a
previous study [43].

4.3. Change in Stratification

The Brunt–Vaisala frequency was computed for each scenario. To illustrate the seasonal variations
of the stratification, 2011 was chosen to show the monthly mean results (Figure 4). A larger stratification
occurs during the winter to spring and weaker stratification occurs during the summer. It is clearly
seen that the stratification is strengthened when channel depth increases or sea-level rises. The estuary
is sensitive to a change in channel depth. The increase in stratification with depth increase is more
prominent during the spring season when the estuary experiences high stratification due to the large
freshwater discharge in the James River (Figure 4). The change in stratification for the sea-level rise
case is closer to the channel deepening by 1.0 m. It can be seen that the stratification increases for the
sea-level rise case even when the tidal range increases, which suggests that depth increase plays an
important role in the decrease in eddy viscosity.
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4.4. Change in Gravitational Circulation

An alteration of bathymetry in the channel changes the mean horizontal salinity gradient and
tidal mixing. These changes result in a change in gravitational circulation. According to the classical
estuarine circulation theory, gravitational circulation (UE) can be scaled as UE = gβSxH3/(48KM) [6].
The estuarine circulation increases when either H or the horizontal pressure gradient (estimated by
Sx) increases, and it decreases when the vertical eddy viscosity KM increases. Although this classical
formulation does not account for nonlinear and wind effects [49], it provides insights into what factors
dominate changes of gravitational circulation.

The averaged horizontal salinity gradient and vertical eddy viscosity were both calculated for the
summer season. The results show that a change in channel depth results in a change in the horizontal
salinity gradient and the vertical eddy viscosity. The horizontal salinity gradient decreases from
4.62 × 10−4 to 3.52 × 10−4 psu m−1 when the mean channel depth increases from 9.38 to 12.31 m (Table 4).
The horizontal gradient of salinity changes to 4.35 × 10−4 psu m−1 when sea- level rises by one meter.
The gradient decrease is less than that of channel deepening. The vertical eddy viscosity decreases
from 32.95 to 27.68 cm2 s−1 as the mean channel depth changes from 9.38 to 12.31 m. However, the
vertical eddy viscosity decreases slightly for sea-level rise cases, which is mainly due to an increase in
tidal range (Table 4).

Table 4. The comparison of the gravitational circulation strength after the channel deepening.

Variables E00 E01 E02 E03 E04

H (m) 9.38 10.35 11.33 12.31 10.38
Salinity gradient (10−4 psu m−1) 4.62 4.31 3.91 3.52 4.35
Eddy viscosity (cm2 s−1) 32.95 30.44 28.09 27.68 30.25
Circulation strength (ms−1) 0.018 0.025 0.032 0.037 0.025

Gravitational circulation changes when channel depth increases. The averaged gravitational
circulation strength increases from 0.018 to 0.037 m s−1 when the mean channel depth increases from
9.38 to 12.31 m (Table 4). The gravitational circulation strength increases, from the present condition,
from 0.018 to 0.025 m s−1 when the sea-level rises by one meter. It indicates that depth is the dominant
parameter as gravitational circulation is proportional to the cube of the depth [6].

An increase in gravitational circulation indicates faster water movement, which allows less time
for DO to be consumed, as a water parcel travels upstream [16,17]. However, these changes are site
specific and do not directly link to DO, and they are difficult to compare for different scenarios or
estuaries. To measure the change in gravitational circulation, the timescale was computed for a better
understanding of the changes.
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4.5. Change in Saltwater Age along the Transect

The impact of estuarine circulation has an accumulative effect on DO. The strength of the
gravitational circulation contributes highly on the bottom DO as it can transport more DO-enriched
water from outside of the estuary. In addition, the fast moving incoming water reduces DO consumption.
However, the accumulative effect of gravitational circulation is difficult to quantify. To understand
its impact, the saltwater age was used as a measure for evaluating circulation change between the
existing condition and scenarios. This timescale measures the overall change in the transport processes
of saltwater as channel depth changes [50]. A transect along the mainstem of the James River was
selected to demonstrate the variation of transport processes after channel deepening. Saltwater age
decreases with an increase in channel depth. For example, at the location of 45 km from the James
River mouth, the saltwater age decreases from 25 to 22 days (Figure 5a), which indicates the strength
of the gravitational circulation increases as the channel depth increases. The results are consistent
with the change in the gravitational circulation (Table 4). This provides the benefit of elevating the
DO level inside the estuary. Unlike channel deepening scenarios, the saltwater age does not change
much downstream but increases after 40 km when the sea-level rises 1 m, which suggests a decrease
in circulation effect due to a change in water volume and an increase in tidal range. The difference
between the sea-level rise scenario and channel deepening is that the water depth increases in the
sea-level rise scenario everywhere by almost 1.0 m, and both the mean depth and total volume increase
by 27%.
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4.6. Change in Vertical Exchange Time along Transect

An increase in channel depth can decrease tidal mixing and increase stratification in the lower
mesohaline and polyhaline regions. The increase in the stratification can weaken the vertical exchange
at the same time. By using the vertical exchange time, the strength of the vertical exchange can be
estimated. The result demonstrates the pattern that the vertical exchange time increases as the channel
depth increases. In the downstream of the James River, the annual mean value of the vertical exchange
time increases by about 4 days at a distance of 15 km from the river mouth where the mean channel
depth changes from 9.38 to 12.31 m (Figure 5b). Because the vertical exchange time represents the water
exchange between the surface and bottom, the exchange occurs vertically and the lateral transport
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can also increase the exchange. Therefore, the change is more evident. For the sea-level rise cases, the
vertical exchange time decreases slightly. The age change caused by sea-level rise is less than that
caused by channel deepening.

5. Discussion

Previous studies have indicated that channel deepening can cause DO decrease due to an increase
in stratification and decreases in vertical mixing result in reducing DO aeration [7–9,51,52]. A recent
study showed that a relatively small (15%) increase in depth can double the exchange flow in an
estuary [5]. An increase in exchange flow indicates an increase in gravitational circulation, which
is favorable for DO, if DO is high at the outside of the estuary [17,25]. Sea-level rise impacts on
hydrodynamics and DO are similar to channel deepening in a uniform channel. However, it can be very
differently due to the depth increase in the entire estuary resulting in volume increase, especially for a
relatively shallow estuary. Sea-level rise can increase stratification and decrease vertical mixing, but it
can also increase gravitational circulation and residence time [18]. Recent studies of the Chesapeake
Bay have shown that a sea-level rise of 0.5 m reduced summer hypoxia volume by 12% [11] and
increased bottom DO [12]. This was mainly due to increased estuarine circulation that promoted
oxygen-rich seawater intrusion in the lower layer [11]. For the James River, sea-level rise results in a
slight decrease in summer DO, resulting from competition between changes in estuarine circulation
and vertical mixing. An increase in water volume, saltwater age (Figure 5), and a decrease in vertical
exchange time are the main causes of DO decrease. When water volume increases, residence time
can increase [18], which could increase retention time of organic matters. It appears changes in DO
due to channel deepening and sea-level can be diverse depending on the interaction of geometry,
hydrodynamic condition, and DO condition at the open boundary.

The competition between a decrease in vertical exchange due to an increase in stratification and a
DO increase due to an increase in gravitational circulation needs to be analyzed for different estuaries.
The results may be difficult to compare for different scenarios and for different estuaries. To understand
the impact of hydrodynamics on DO due to channel deepening and sea-level rise in a general sense,
the impact of these two dynamic factors on DO was investigated by examining the corresponding
transport times. According to Equation (3), the bottom DO can be determined by the timescales of
vertical exchange process, gravitational circulation, and biochemical oxygen consumption. Because
the change in DO is expressed by the timescales, the impact of hydrodynamics on DO can be measured
by a common measure and is applicable to different scenarios. The non-dimensional parameters, τ∗b
and τ∗e, at Station LE5-4 are selected and computed from each scenario in summer. The constant DO
consumption rate of 0.32 per day was used [32] for the summer period. The saturation DO is 7.5 mg
O2/l and τb is about 23.4 days. The results are plotted in Figure 6. It can be seen that, for the channel
deepening simulation, the vertical transport time increases as channel depth increases, resulting in a
decrease in τ∗b (reciprocal to τv with channel depth increase). In addition, the timescale measuring
gravitational circulation decreases as the channel depth increases, resulting in a decrease in τ∗e as well.
As these two factors compensate each other, the change in DO follows the same normalized contour
line, suggesting that the DO will not change much. The results agree with the 3D eutrophication model
results (Table 3). It can be seen that the competition of these two dynamic processes modulates DO. For
the sea-level rise scenario, the vertical transport time does not change much, but τe increases slightly.
Therefore, the normalized DO deviates slightly from the baseline condition, indicating that DO will
decrease slightly, but no significant change in DO is expected. For the James River, sea-level rise
decreases summer DO slightly resulting from competition between an increase in estuarine circulation
and a decrease in vertical mixing.
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For this study we focused on the impact of hydrodynamics on DO due to channel deepening
and sea-level rise. Because a change of hydrodynamics can also affect nutrients and phytoplankton
distributions, and nutrient deposition to the bottom sediment, it could also affect the biochemical
process indirectly. For example, an increase in residence time due to sea-level rise can increase the
volume of the estuary and affect nutrient retention time. According to current model experiments, the
impact of hydrodynamics on DO is not large, but it can affect the nutrient distribution, which may
affect phytoplankton. More studies are needed regarding the influences on biochemical processes,
especially temperature effect considered to be due to climate changes.

6. Conclusions

A well-calibrated three-dimensional eutrophication model was used to conduct numerical
experiments to study changes in hydrodynamics and DO in the James River under different scenarios
of channel deepening and sea-level rise. Our results show that the channel deepening changes the
horizontal salinity gradient, and also increases the tidal amplitude. The gravitational circulation
strength and the vertical stratification both increase when the channel depth increases. However, the
DO has experienced only a minor change. We found that the minor change could be explained by the
competition of vertical and horizontal DO replenishments. These two processes compete against each
other, and their combined effects result in a small DO change. To understand the competition, a new
approach using timescales was applied to evaluate the impact of changes in hydrodynamic conditions
on DO. The saltwater age that represents the timescale of gravitational circulation decreases when the
channel depth increases, while the vertical exchange time increases after the channel deepening. The
changes in these two key timescales effectively explain the minor change of DO. Sea-level rise increases
both depth and volume of an estuary and alters the hydrodynamics and circulation of the estuary.
The impact of a sea-level rise of 1.0 m on DO is larger than that of channel deepening, mainly due to
slight decreases in gravitational circulation strength. The timescales of gravitational circulation and
vertical exchange can be used to explain the impact of changes in hydrodynamics on DO. As timescales
can be compared for different scenarios and different estuaries, it provides a common measure for
understanding the impact of channel deepening and sea-level rise on DO in estuaries.
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