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Abstract: Multi-robot cooperative patrolling systems have been extensively employed in the civilian
and military fields, including monitoring forest fires, marine search-and-rescue, and area patrol.
Multi-robot area patrol problems refer to the activity that a team of robots works cooperatively and
regularly to visit the key targets in the given area for security. Following consideration of the low cost
and high safety of unmanned surface vehicles (USV), a team of USVs is organized to perform area
patrol in a sophisticated maritime environment. In this paper, we establish a mathematical model
considering the characteristics of the cooperative patrol task and the limited conditions of USVs.
A hybrid partition-based patrolling scheme is proposed for a multi-USV system to visit targets
with different importance levels in a maritime area. Firstly, a centralized area partition algorithm is
utilized to partition the patrolling area according to the number of USVs. Secondly, a distributed
path planning algorithm is applied to planning the patrolling path for each USV to visit the
targets in a maritime environment to minimize the length of the patrolling path for the USV team.
Finally, comparative experiments between the proposed scheme and other methods are carried out to
validate the performance of the hybrid partition-based patrolling scheme. Simulation results and
experimental analysis show the efficiency of the proposed hybrid partition-based patrolling scheme
compared to several previous patrolling algorithms.

Keywords: unmanned surface vehicles; hybrid partition-based patrolling scheme; centralized area partition;
distributed path planning; multi-USV system

1. Introduction

With significantly increasing dependence on marine resources and space, unmanned surface
vehicle (USV) has been widely applied as a small, flexible, and high-speed maritime vehicle for
diverse marine missions. Compared with a single USV, multiple USV system has higher task
execution efficiency, higher flexibility, and maneuverability. With abundant sensors, such as differential
global positioning system (GPS), inertial navigation, water quality monitor, camera, sonar, multiple
coordinated USVs systems can perform hazardous marine missions and provide comprehensive
environmental information to detect and monitor the particular area. Therefore, cooperation of
multiple USVs is an essential research and development direction. In this paper, we aim to constitute
manned vehicles with multiple cooperative USVs to accomplish repetitive, redundancy, and dangerous
maritime area patrol tasks. The team of USVs needs to keep moving in the given area and visit
the essential targets at regular intervals for area security. The challenge of multiple USVs patrol
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tasks for area patrol is how to coordinate them to visit all places with the shortest patrolling paths
more frequently. In other words, how to assign targets to each USV and design a patrolling path for
each USV is very critical [1].

Classic patrol tasks are divided into two categories. One is that all agents need to visit all
vertices in the designated work region [2–5]. The other one is that the work region is partitioned into
several sub-regions [6–9], and the agents are allocated to work only in one of the sub-regions without
dynamic regional deployment. In the first type, it is straightforward to cause conflicts and collisions
in path planning, resulting in unexpected collective behaviors and affecting overall performance.
In the second type, a centralized unit performs partitioning before agents are assigned to one of the
sub-regions to perform regular partitioned-based patrol tasks (i.e., patrolling path planning), which is
easy to suffer low robustness when some emergencies occur. What is more serious is that a problem
with the centralized unit can make the entire multi-agent patrolling system collapse.

In this paper, to overcome the problems concluded above, a hybrid partition-based patrolling
scheme for multi-USV system to keep the protected area’s safe is proposed. Multiple USVs patrolling
planning is as follows. Firstly, an area partition algorithm is designed to partition the area according to
the number of USVs and the importance levels of targets [10] in the area. Each USV is assigned to one of
the partitions. Once one of the USVs suffers failure or breakdown, area re-partition will be executed to
regenerate partitions and rearrange USVs in the new partitions. Secondly, a distributed path planning
algorithm is proposed to plan an optimal patrolling path for each USV for global cooperative patrolling.
Finally, various comparable experiments are designed to verify the performance of the proposed
scheme. Simulation results demonstrate that the proposed scheme can accomplish the area patrol in
the maritime environment effectively.

The main contributions of this paper are as follows:

• We present a centralized area partition algorithm based on the importance level, which can reduce
conflict during patrolling. We divide the important targets with different importance levels into
different partitions and assign USVs to work only in one of the partitions.

• We propose a distributed path planning algorithm for the multi-USV system to plan optimal paths
to minimize the total length of the patrolling path in all partitions.

• We evaluate the proposed patrolling scheme with extensive simulations. The simulation results
demonstrate the effectiveness of patrolling partition and patrolling path planning.

The remainder of this paper’s organization is shown as follows: Section 2 reviews related
representative works. Section 3 presents the system model. Section 4 provides an accurate analysis of
our patrolling scheme. Section 5 shows experiment settings and discusses simulation results. Section 6
concludes this paper.

2. Related Works

In this section, we review related works about patrolling algorithms for multiple cooperative agents.
Various approaches were used to perform a multi-agent patrol task. Lin et al. [2] adopted

a coordinated auction system to solve the patrolling problem. Each robot chooses the points they expect
to visit by a coordinated auction system and improves the team’s collective performance by continuous
re-auction. Poulet et al. [3] proposed two different distributed, coordinated, and auction-based
policies based on different social criteria. Othmani-Guibourg et al. [4] evaluated patrolling policies
in a dynamic environment with an edge-Markovian evolving graph. A central coordinator is used
to assign new goal node to the robots after the designed path is unavailable. Yan et al. [5] designed
a frequency-based patrol algorithm. They utilized shared information to calculate expected idleness to
solve decision conflicts. Fitzpatrick et al. [11] addressed a perimeter patrol problem with heterogeneous
agents involving unmanned ground stations and unmanned air vehicles and presented an optimization
approach built on max-plus probability. Farinelli et al. [12] presented a greedy baseline approach and
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a market-basedapproach based on sequential auction algorithms to tackle on-line coordination in the
multi-robot system.

Different from the above works, multi-agent patrolling algorithms based on partition has been
extensively developed. Sea et al. [7] improved the traditional k-means clustering algorithm based on
non-uniform visiting frequency and workload to achieve graph partition and subgraph patrolling.
Sugiyama et al. [13] proposed a negotiation-based learning method to address the multi-robots
patrol problem. Wiandt et al. [14] proposed a self-organized partition algorithm to achieve distributed
partition, in which robots transmit information by broadcasting to other robots without a third-party
coordinator. Portugal et al. [1] thought that the local patrolling path in graph partitions could be
improved by minimizing the longest local path. Sea et al. [15,16] presented a decentralized partitioning
method for cleaning tasks of multiple agents under the grid environment. Sugiyama et al. [17] designed
different visit frequencies for all purposes in the patrolling area and applied divisional cooperation
to achieve the patrol tasks. Yasuyuki et al. [18] applied reinforcement learning based on discrete
patrolling areas to perform security patrol tasks.

Besides, many optimization criteria have been designed to evaluate the performance of patrolling
policies, such as minimum total patrolling path length [19], minimum total voyage time [20], the revisit
time interval between two consecutive visits to each target [21], minimum the commute time between
all pairs of patrolling points [22], and defined reward function [23,24].

3. System Models

This section analyzes the patrolling environment model, the USV model, and the patrol task goal
of maritime cooperative area patrol, as shown in Figure 1. The main parameters in this paper are
shown in Table 1.

Figure 1. The system model of a multi-unmanned surface vehicle (USV) system considering no limit
of maximum range. A team of USVs is applied to perform area patrol by dividing several important
targets (colored solid circle) in the maritime area into different partitions and assigning a USV to visit
the targets in the partition.

3.1. Patrolling Environment Model

We consider a maritime cooperative patrol task for a team of N USVs, U = {u1, u2, . . . , uN},
as shown in Figure 1. A mother ship v0 stops at the center of the given area and works as the USV
base with the coordinate (x0, y0), i.e., departure point and home point of a patrol. A set of targets
V = {v1, v2, . . . , vM} are statically located in the given area P ⊂ R2 in a maritime environment, where M
is the number of targets. The coordinates of Target vi is (xi, yi). All targets are distributed in the area
with the mother ship as the center and R0 as the radius. Multiple USVs are applied to perform area
patrol by visiting these important targets in the area at the required frequency or regular intervals.
Due to the characteristics of a realistic patrol mission, the targets are assigned importance levels that
indicate its importance. The higher the target’s importance, the higher the importance level, and the
higher the frequency of visits. Each target vm is assigned an importance level wm ∈ {1, 2, . . . , Mw}, i.e.,
the number of visits in patrol task, where Mw is the highest importance level. Inspired by the high
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degree of autonomy, independent processing of information and decision-making, and good fault
tolerance, partition patrolling is introduced to a multi-USV cooperative patrolling system. According to
the targets with different importance levels, we divide the area into N different disjoint partitions,
P = P1 ∪ P2 ∪ . . .∪ PN and Pi ∩ P j = ∅,∀1 ≤ i, j ≤ N, i , j (see details in Section 4.2).|Pi| is the number
of targets in the i -th partition Pi. Then, allocate USV un to partition Pn.

Table 1. The summary of the main parameters.

Symbol Description

P The given area for patrolling
U The set of USVs
N The number of USVs
V The set of targets in the given area P
M The number of targets

(x0, y0) The coordinate of the mother ship v0
(xm, ym) The coordinate of the m-th target vm

wm The importance level of m-th target vm
wPn The total number of visits in the n-th partition Pn
Mw The highest level of importance of targets
di, j The straight sailing distance from vi to v j

Lnmax(un) The maximum range of the n-th USV un
P′n The augmented partition of the n-th partition Pn
TPn The expected task load of the n-th partition Pn
Td The difference in task load amongst all USVs

LPn (l) The path of the l-th patrol in the n-th partition Pn
LPn The total patrolling path of USV un in partition Pn
Xl

i, j A binary coefficient
F(Pn) The objective function

3.2. USV Model

A small team of USVs is deployed in the patrolling partition. The divisional team of USVs
U = {u1, u2, . . . , uN} is deployed to perform the patrol tasks, where N is the total number of USVs in the
given patrolling area. The maximum range of the n-th USV un is represented as Lnmax(un), since the
diesel oil is finite. We assume that all targets are within the range of USV’s maximum range, then we

get R0 ≤
Lnmax(un)

2 . Each USV is assigned to an individual partition to patrol all targets within the
partition. The task of each USV un is to patrol the targets in the corresponding partition Pn under the
limit of its maximum range. For this reason, starting from the mother ship v0 to patrol the partition
Pn once, the USV un may only be able to visit a part of the targets. Hence, each USV may patrol
more than once to perform the required number of visits for the targets. A distributed patrolling path
planning algorithm is presented to form the patrol path LPn for all the USVs, including several single
patrolling paths LPn(l).

Once one or some of the USVs suffers a breakdown, the corresponding partitions they are
responsible for will be undertaken by other USVs which have completed the partition patrol task first,
and the maritime patrolling area would be re-partitioned if necessary, and then the patrolling path of
each USV is re-planned.

3.3. Patrol Task Goal

After partitioning patrolling targets to balance the workload, each USV un may start from the
mother ship v0 to patrol the partition more than once to accomplish each target’s required number of
visits because of the limited maximum range. The patrol task goal for each USV un is to minimize the
sum of the length of patrolling path of several patrols, len(LPn).

4. Proposed Scheme

This section introduces the problem formulation for a cooperative patrol task. It is followed
by a hybrid structure that is used in the designed patrolling algorithm for the multi-USV system,
that is, centralized partition and distributed execution. Before the USV carries out the patrolling task,
a centralized partition algorithm based on the importance level is conducted in the base station.
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After that, the distributed patrolling path planning based on improved particle swarm optimization
(PSO) is planned on each USV.

4.1. Problem Formulation

In real-world patrol missions, the more important target should be patrolled more frequently.
We consider the maritime patrol task as patrolling targets with different importance levels that the
target with higher importance levels should be visited more times. Hence, we try to balance the task
load amongst all the USVs by allocating the targets reasonably and minimize the sum of the length of
the patrolling path for each USV.

(1) Total weight, wPn : Total weight are the sum of the weight of targets patrolled by a USV in the
partition Pn, which mean the sum of the required visits of all targets, defined as:

WPn =
∑
|Pn |

m=1
wm, ∀vm ∈ Pn, (1)

where m ∈ {1, 2, . . . , |Pn|}, wm is the importance level of the target vm, which represents the different
required number of visits required by the target vm. wm is used as the weight of the target vm, and WPn

is the sum of the weights of all targets in the individual partition, which is used as the constraint in
Equation (7). We aim to optimize the patrol path while meeting the number of visits required by every target.

(2) The expected task load in a partition, TPn : Targets’ importance levels and straight distance
between each pair of targets are considered to evaluate the task load of the USV working in the partition,
which is defined as the expected path length 6 that the USV has to travel to get the optimal patrolling path:

TPn =
∑

vm,v j∈Pn

wm‖vm − v j‖

WPn −wm
, (2)

where |Pn| is the number of targets in each partition Pn. ‖vm − v j‖ denotes the Euclidean distance
between the target vm and target v j.

The difference Td 6 in task load amongst all USVs is introduced to balance the task load in different
partitions with threshold Th:

Td =
1

K(K − 1)

∑K

i=1

∑K

j=1

∣∣∣∣TPi − TP j

∣∣∣∣, i , j, (3)

Td ≤ Th. (4)

(3) Sailing distance, di, j: A USV moves from target vi to target v j, the optimal path is the straight
path between this pair of targets

(
vi, vj

)
, which is defined as the Euclidean distance between these two targets.

di, j =

√(
xi − x j

)2
+

(
yi − y j

)2
, ∀vi, v j ∈ Pn. (5)

(4) Single patrolling path, LPn(l): Limited by the maximum range of the USV un, it will take
multiple times to patrol these targets in its partition. Every patrol starts from the mother ship,
visits a part of the targets in the partition, and returns to the mother ship. The length of a single
patrolling path is calculated by:

len(LPn(l)) =
∑
|Pn |

i

∑
|Pn |

j
di, jXl

i, j, i , j,∀l ∈ {1, 2, . . . , L}, (6)

1 ≤ L ≤
∣∣∣WPn

∣∣∣, (7)

where Xl
i, j is a binary coefficient. Xl

i, j = 1 states clearly that a USV moves from vi to v j in the l-th patrol,

whereas Xl
i, j = 0 is opposites. L indicates the number of patrols, which is considered that the maximum
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range of the unmanned ship is enough to cover the round-trip voyage from the base station to the
farthest patrol target. LPn(l) is a sequence set of targets visited in l-th patrol.

(5) Partition patrolling path, LPn : As mentioned above, the USV may patrol the partition L times
to perform patrol tasks. When the USV returns to the mother ship for the last time, it indicates that all
the targets have been visited with the required times. Therefore, the partition patrol task is finished,
and the total length of the partition patrolling path is defined as:

len(LPn) =
∑L

l=1
len(LPn(l)), ∀l ∈ {1, 2, . . . , L}, (8)

(6) Objective function, F(Pn): In the maritime area patrol task, we aim to find a minimum patrolling
path for all USVs to complete the partition-based patrol tasks within their respective partitions.
Therefore, the objective function is denoted as:

F(Pn) = min(len(LPn)), (9)

Subject to:
len(LPn(l)) ≤ Lnmax(un), (10)∑

|Pn |

j=1
Xl

0, j = 1,∀v j ∈ Pn,∀l ∈ {1, 2, . . . , L}, (11)∑
|Pn |

j=1
Xl

j,0 = 1,∀v j ∈ Pn,∀l ∈ {1, 2, . . . , L}, (12)∑
|Pn |

i=0
Xl

i, j −
∑
|Pn |

p=0
Xl

j,p = 0, ∀v j∈LPn(l), (13)∑L

l=1

∑
|Pn |

i=0
Xl

i,m = wm, ∀l ∈ {1, 2, . . . , L}, (14)

where Lnmax(un) indicates the maximum range of the n-th USV un. Thus, the length of every patrol path
is limited by the USV’s maximum range, as shown in Equation (10). They have to return to the mother
ship and recharge before the next patrol. In every patrol, the constraint expressed by Equations (11)
and (12) ensure that the USV starts from the mother ship before patrolling and return to the mother
ship after completing a patrol. The constraint in Equation (13) guarantees that the number of arrivals
and departures at a target are the same. Moreover, Equation (14) guarantees that all the targets are
visited with the required number of visits.

4.2. Partition Algorithm Based on the Importance Level

For reducing task conflicts between USVs and allocating task to USVs reasonably and evenly, we divide
the targets with different importance level into several disjoint partitions P = P1 ∪P2 ∪ . . .∪PN according
to the number of USVs, N. Then, we generate the shortest patrolling paths for each USV in its dispatched
partitions. We introduce the main idea of the k-mean method to perform the target partition. Based on the
multi-USV patrol task characteristics, we propose partition patrolling algorithms based on the importance
level. The traditional k-means clustering algorithm divides the data into several categories based on the
similarity of features. Our proposed algorithm improved the traditional k-mean method with a new
calculation of centroids and new cost function due to the different importance levels of targets. The cost
function of the partition algorithm is designed as:

J = min
∑N

n=1

∑
vm∈Pn

wm‖vm − pn‖, (15)

Subject to:
P1 ∪ P2 ∪ . . .∪ PN = P,

Pi ∩ P j = ∅, ∀1 ≤ i, j ≤ N, i , j,
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pn =

∑
vi∈Pn wivi∑

vi∈Pn wi
, (16)

where n is the number of partitions, and pn is the partition centroid.
The details of the proposed partition algorithm based on importance levels and the k-mean method are

shown in Algorithm 1. The input of Algorithm 1 is the set of targets V = {v1, v2, . . . , vM}, the set of targets’
importance levels w = {w1, w2, . . .wM}, and the number of partitions N. The output is the optimal partition
P∗ = P1 ∪P2 ∪ . . .∪PN. As is well-known, the initial centroids of the k-mean method have a significant
influence on the final classification results. Therefore, we run the partition algorithm many times with
different initial centroids (lines 1–2). To rationalize the classification results, the traditional centroids update
is replaced by the weighted center of targets in the same partition to balance the task load amongst USVs,
repeatedly until the method converges (lines 3–6). Subsequently, the expected task load and the task load
difference are calculated for the partition (lines 8–9). The partitions that meet the conditions are saved in
partition buffer (lines 10–11). Finally, the partition P∗ = P1 ∪P2 ∪ . . .∪PN with the lowest cost J∗ is output
as the optimal partition (line 14).

Algorithm 1: Partition algorithm based on the importance level

Input Targets V = {v1, v2, . . . , vM}

Input Targets’ importance levels w = {w}1, w2, . . .wM
Input Number of partitions N
Output Partition P∗ = P1 ∪ P2 ∪ . . .∪ PN
1: for iteration = 1 to T do
2: Randomly Choose N targets as the initial centroids
3: repeat
4: For each target, select the nearest centroid as its partition
5: Reset the centroids to the weighted center of all targets in each partition by (16)
6: until convergence
7: for n = 1 to N do
8: Calculate the expected task load, TPn by (2)
9: Calculate the difference in task load amongst all USVs, Td by (3)
10: if Td ≤ Th then
11: Save partitions and the corresponding cost J by (15) in partition buffer
12: end
13: end
14: Pick the partition P∗ = P1 ∪ P2 ∪ . . .∪ PN that has the lowest cost J∗

4.3. Patrolling Path Planning Algorithm Based on Improved PSO

When determining the results of partitions according to the USV team size and the balance of
workload of all USVs, a patrolling path planning algorithm based on particle swarm optimization (PSO).

PSO designs a kind of massless particles to simulate the movement of birds in the flock. The particles
have only two important terms: velocity and position. The velocity refers to the speed of moving,
and the position refers to the direction of moving. Each particle searches for the optimal solution
individually in the solution space and stores it as the current local optimal individual, and gain the
best solutions by sharing the local optimal individual in the particle swarm and selecting the best
individuals from all the particles. All particles in the particle swarm adjust their optimization direction
based on individual optimal experience and collective optimal experience.

We design a PSO for the path problem in area patrol based on the partition patrolling algorithm
proposed above to solve the area patrol task.

In the partition Pn, wPn is the total number of visits to all the targets. Each particle i has a position Xi,
velocity Vi and previous local optimal position pBesti. The particle swarm has a previous global optimal
position gBest.

psizen = wPn + 1, (17)
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Xi =
[
X1

i , X2
i , . . . , Xpsizen

i

]
, (18)

Vi =
[
V1

i , V2
i , . . . , Vpsizen

i

]
, (19)

pBesti =
[
XpBest1

i , pBest2
i , . . . , pBestpsizen

i

]
, (20)

gBest =
[
gBest1, gBest2, . . . , gBestpsizen

]
, (21)

where Xi is a visited sequence of all targets in the partition Pn and the base station with a length of psizen,
including all the targets with the required number of visits. Xd

i is a column vector, containing information
about the last visited target before visiting the target d.

In this paper, PSO is initialized as solutions that satisfy the requirement but maybe not the optimal.
Then the optimal solution is found by iteration. In each iteration, particles update themselves by
adopting the best experiences pBesti and gBest. Based on the local optimal solution and global
optimal solution, the particle optimizes its velocity and position according to the following rules:

V′i = wVi + c1 × rand1 × (pBesti −Xi) + c2 × rand2 ∗ (gBest−Xi), (22)

w =
(wini −wend)(Gmax −Gi)

G
+ wend (23)

where c1 and c2 are the learning factors. rand1 ∈ [0, 1] and rand2 ∈ [0, 1] are random numbers used to
enhance the randomness of the search. w is the inertia weight whose value is nonnegative, used to
adjust the search range of the solution space. We introduce the linearly decreasing weight policy to
dynamically adjust w, leading to a better solution by dynamically adjusting global and local search
capabilities. wini and wend are the initial inertia weight and the terminal inertia weight when the
optimization process iterates to the maximum number of iterations Gmax. Gi is the current iteration.

Then, we optimize the position of each particle. Suppose the current visiting target is d, the next
target to be visited is n, which is generated by the following sets: feasible velocity FV , feasible path FP,
and feasible target FX.

A =
{
n
∣∣∣V(d,n) > Prv and (d, n)εV′i and (d, n) s.t.Ωcs

}
, (24)

FV = randperm(A), (25)

FP =
{
n
∣∣∣(d, n)εXi and (d, n) s.t.Ωcs

}
, (26)

FX =
{
n
∣∣∣(d, n)εPn and (d, n) s.t.Ωcs

}
, (27)

First, we randomly generate a feasible patrolling path. Then, we generate a new solution for the
area patrol problem from the three feasible sets above. We generate a velocity set A by velocity cut for
the updated velocity V′i with a probability Prv and shuffle the elements in A to get a feasible velocity FV ,
which meets the constraint set Ωcs containing the constraints in Equations (10)–(14). The purpose of
probabilistic constraints Prv d scrambling operations randperm is to increase the diversity of velocities.
The feasible path FP contains the targets available in the last position of the particle satisfying the
constraints in Ωcs, while the feasible target FX contains all the targets. We select a feasible target from
the set FV, if not, from the set FP, otherwise, from the set FX. Due to the maximum range of the USV,
when there is no suitable next target to visit, the USV returns to the base station, ends the current patrol,
replenishes fuel, and starts the next patrol from the base station again. Therefore, we can obtain a new
feasible solution.

Finally, we design a fitness function f itness(Xi) to evaluate the performance of each particle i and
deal with the patrol task goal of area patrol. The fitness function is designed as the total length of the
patrolling path, calculated as follows:

f itness(Xi) = len(Xi). (28)
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Algorithm 2 shows the procedure of the patrolling path generated by PSO. First, a population of
particles is initialized according to the targets in the partition, and the local optimal positions
(i.e., the local optimal patrolling path)and the global optimal position (i.e., the global optimal
patrolling path) are initialized (lines 2–6). Each particle has its initial position and velocity.
Particle position indicates a possible feasible solution to the area patrol problem. In each iteration,
the velocities of particles are updated according to their own optimal experience and neighboring
optimal experience (line 9). The improved positions of particles are calculated based on the velocity
update, which are full patrolling paths for targets in a partition. First, initialize the path length and set
the starting point of the path as the base station (lines 10–11). Then, according to the constraints in the
Equations (24)–(27), the next accessible patrol target is selected in turn until the predefined number of
visits to all targets is completed as required. Finally, a new solution Xi =

[
X1

i , X2
i , . . . , Xpsizen

i

]
for the

area patrol problem is generated for particle i (lines 12–15). PSO uses a fitness function to evaluate the
quality of particles (line 16). The global optimal position of the particle swarm is updated iteratively,
which is iterated until the maximum number of iterations (lines 17–18).

Algorithm 2: Patrolling path planning algorithm based on improved PSO

Input Partition Pn

Output the optimal position and gcost
1:for m = 1 to M
2: for i = 1 to psizen do
3: Initialize velocity Vi and position Xi for particle i
4: Set pBesti = Xi
5: end
6: gBest = min

{
pBesti

}
7: for iteration = 1 to N do
8: for i = 1 to psizen do
9: Update the velocity for particle i by (22)-(23)
10: patrolnum = 0
11: d = 0
12: while (patrolnum < psizen)
13: Generate the next target k of target d by (24)-(27)
14: Xk

i = [〈d, k〉]
15: end
16: Calculate the fitness of particle i
17: pBesti+1 = min(pBesti, Xi)

18: gBest = min(pBesti, gBest)
19: end
20: end
21:end

5. Experiment and Evaluation

In this section, we design experiments to evaluate the proposed scheme and analyze the
simulation results.

5.1. Experimental Setup

In the experimental cooperative control scenario, we consider a 100 km × 100 km ocean area,
where M targets are generated and located in the area randomly. Each target vm is randomly assigned
an importance level wm ∈ {1, 2, 3}, which indicates visiting frequency to the target in the patrol task.
A mother ship is in the middle of the area, as the recharge base station. N USVs are dispatched from
the base to patrol the targets in the area. Considering that the fuel of every USV is limited, the limit
of USV’s maximum range Lnmax(un) is set for each USV, that is, before the fuel is exhausted, the USV
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must return to the base station and replenish fuel, and then continue to visit the area to be visited.
The size of targets to be patrolled is selected from the set {100, 200, 400}, while the USV team with
different size is used to perform the patrol task, that is 2, 4, and 8, respectively.

Besides, we also consider that it is essential that each target is not allowed to be visited twice
in succession. The path length of each patrol of the USV is limited by the maximum range, that is,
to guarantee that the USV returns to the base station before the fuel is exhausted.

To evaluate the performance of the proposed scheme, we conduct comparative experiments
with Weighted Targets Sweep Coverage (WTSC), comprehensive learning particle swarm
optimization (CLPSO), and random method (RM).

• WTSC: In this method, the patrolling path is generated by a centralized planning algorithm, that is,
the WTSC proposed in [25].

• CLPSO: In this method, the patrolling path is generated based on the velocity and position update
of CLPSO proposed in [26].

• The random method (RM): In this method, USV randomly selects an available target to visit.

5.2. Results Analysis

We evaluate the proposed partition algorithm based on the importance level with different sizes
of targets and the different sizes of the USV team. Figure 2 shows the partition results of 400 patrolling
targets with different USV team sizes and different importance level settings in the given ocean area.
Figure 2a–c respectively represent the partition results of the 400 target evenly allocated to two, four,
and eight USVs under the first importance level setting wm ∈ {1, 2, 3}. The dots in Figure 2 represent
the targets in the patrolling area. The targets marked with the same color belong to the same partition
and are patrolled by the same USV.

Figure 2. The partition result of 400 targets allocated to the USV team of different sizes with different
importance level settings: (a) 400 targets divided into two partitions for two USVs with; (b) 400 targets
divided into four partitions for four USVs; (c) 400 targets divided into eight partitions for eight USVs.

Figure 3a,b show the partition results obtained after two kinds of importance level settings.
Figure 3a shows the partition results of targets separately and randomly weighted by an importance
level wm ∈ {1, 2, 3}, while Figure 3b shows the results with an importance level w′m ∈ {1, 2}. It can be
seen that when the importance levels of targets are different, the partition results generated by the
partition algorithm are also different.
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Figure 3. The partition result of 200 targets with different importance level settings allocated to four
USVs: (a) 200 targets with an importance level wm ∈ {1, 2, 3} divided into four partitions for four USVs;
(b) 200 targets with an importance level w′m ∈ {1, 2} divided into four partitions for four USVs.

Figure 4 shows the workload on each partition when the different sizes of targets are split
into eight partitions according to the USV team’s size. We can see that the workload on each
partition is balanced, while the workload of each USV increases with the increase of the targets
to be patrolled. Therefore, the proposed partition algorithm can divide the patrolling area into
effectively-balanced partitions.

Figure 4. The workload on each partition when different numbers of targets are divided into
eight partitions.

We compare the performance of the proposed partition-based patrolling algorithm with different
methods. Figure 5 shows the total and average number of patrols with different size of USVs and
the different size of targets in the ocean area, when the USVs are all limited by the maximum range
Lnmax(un) = 300 km. In Figure 5, 100T-2P means 100 targets divided into two partitions allocated
to two USVs. Figure 5 shows that the total number of patrols and the average number of patrols
increase with the increase of targets to be patrolled. Besides, the limit of the maximum range also
increases the number of times for USVs to return to the base station for refueling. The patrolling path
generated by the proposed scheme is better than in other methods, which means the fewer number of
total and average patrols for the USV team. The proposed scheme can achieve the best performance
compared with other methods. As for the CLPSO [26], the velocity update of the particle only learns
from its individual optimal experience with a certain probability. When the algorithm reaches the
preset maximum number of iterations, it does not get a very good result, that is, its velocity update
and position update methods are slightly poor. As for the RM, the points in the patrolling path are
chosen randomly, which results in the high total and the average number of patrols for the USV team.
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Figure 5. The total and the average number of patrols with different sizes of USVs and the different
sizes of targets in the ocean area, limited by the maximum range: (a) Total number of patrols of the
USV team; (b) Average number of patrols of the USV team.

Figure 6 shows the comparison of patrolling path length for USVs in each partition by the proposed
scheme and other methods when 400 targets are divided into four partitions. We note that the proposed
PSO-based patrolling path planning algorithm can better perform the patrol task in each partition with
the predefined number of visits, which results in a shorter total length of the patrolling path than other
methods [26].

Figure 6. Comparison of patrolling path length for USVs in each partition by different patrolling
planning algorithms when 400 targets are divided into four partitions.

Figure 7 shows the average patrolling length with different sizes of targets and fixed size of the
USV team, not limited by maximum range, where the size of targets, M is 100, 200, 400, and the
USV team’s size, N is 8. The USV can dispatch from the base station, complete the patrol task in its
partition with the predefined number of visits. It can be seen that the proposed scheme can achieve
a shorter average patrolling length than WTSC [25] and CLPSO [26], which means the proposed
scheme can obtain better patrolling paths with the minimum length compared with other schemes.
The reason is that the proposed scheme can provide optimal patrolling path based on the local optimal
experience and global optimal experience, whereas the WTSC and CLPSO are planning based on the
local optimal operation.
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Figure 7. The average patrolling length with different sizes of targets and fixed size of the USV team,
not limited by the maximum range.

On the contrary, Figure 8 shows the average patrolling length with different size of targets and
eight USVs, limited by maximum range, Lnmax(un) = 300 km. The proposed scheme designs a new
improved PSO to solve the combinational optimization problem modeled in Section 4.1. The goal of
patrolling planning is to minimize the global patrolling path. We can see that the proposed scheme can
obtain the best performance for partition patrolling under the limit of the maximum range of USVs.
The average length of patrolling paths in the proposed scheme is shorter. The reason is that the
proposed scheme can provide a better patrolling path through the centralized partition and distributed
patrol planning. As for WTSC [25], a centralized planning method is adopted to assign the local
optimal targets in a given area to each unmanned aerial vehicle in turn. The CLPSO [26] updates the
velocity by learning from its own best experience without the global best experience of its neighbors.
Besides, it can be observed that the average patrolling length with a maximum range limit is longer
than that without a maximum range shown in Figure 7. The main reason is that when limited by
a maximum range limit, to ensure that each USV can return smoothly after each patrol, each USV
tries to visit more targets within the range and returns to the base station before the fuel is exhausted.
Each USV patrols its partition repeatedly like this until all the targets are visited with predefined visits.
In case of no limit of maximum range, USVs do not have to return to the base station for refueling
many times.

Figure 8. The change of average patrolling length with different sizes of targets and fixed size of the
USV team, limited by the maximum range.
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6. Conclusions

This paper has proposed a hybrid partition-based patrolling scheme of multiple USVs in an ocean
scenario. Firstly, a partitioning algorithm based on importance level has been presented to divide the
targets according to the USV team’s size to balance the workload among multiple USVs. The importance
level of each target shows its required times of being patrolled. Secondly, the partition’s patrol task is
mathematically expressed as a combinatorics optimization problem to achieve minimum patrolling
path length. Thirdly, a distributed patrolling path planning algorithm based on the designed PSO has
been proposed to plan the patrolling path for each USV in its partition. In path planning, the importance
levels of the targets and the limit of the maximum range of the USVs are considered, which will increase
the difficulty of patrolling planning. Finally, experiment results have demonstrated that the proposed
partition-based patrolling scheme can improve the performance of cooperative patrol tasks compared
with other schemes. As for the future work, the real-time environmental information is considered to
realize online patrolling planning with dynamic change of the environment, such as the breakdown of
the mother ship or the USV team.
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