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Abstract: This study aimed to adjust the turbulence models to the real behavior of the numerical wave
flume (NWF) and the future research that will be carried out on it, according to the turbulence model
that best adjusts to each particular case study. The k-ε, k-ω and large-eddy simulation (LES) models,
using the volume of fluid (VOF) method, were analyzed and compared respectively. The wavemaker
theory was followed to faithfully reproduce the waves, which were measured in an experimental wave
flume (EWF) and compared with the theory to validate each turbulence model. Besides, reflection
was measured with the Mansard and Funke method, which has shown promising results when
studying one of the most critical turbulent behaviors in the wave flume, called the breaking of the
waves. The free surface displacement obtained with each turbulence model was compared with the
recorded signals located at three points of the experimental wave flume, in the time domain of each
run, respectively. Finally, the calculated reflection coefficients and the amplitudes of the reflected
waves were compared, aiming to have a better understanding of the wave reflection process at the
extinction zone. The research showed good agreement between all the experimental signals and the
numerical outcomes for all the turbulence models analyzed.

Keywords: CFD; experimental wave flume; numerical wave flume; reflection; turbulence
modelling; VOF

1. Introduction

Computational modelling is one of the most important tools when working in offshore and coastal
engineering applications. Its increasing interest can be seen in academia where an important number
of articles have been published in relation to wave generation [1], wave breaking [2], floating wind
platforms behavior [3], or wave energy converters performance [4]. More specifically, computational
fluid dynamics (CFD) show, supported by the evolution of the hardware, great potential in the study of
these topics. This is reflected in the creation of numerical wave flumes (NWFs) [5] and numerical wave
tanks (NWTs) [6] in the last years. They are used to support the research in experimental infrastructures
but not to substitute them, because CFD applications still cannot replace the experimental work [7].

In most of these studies, the turbulence appears as a vital part of the process. Because of this,
a good definition is of a great importance when trying to reduce the total cost of testing prototypes [8].
Thus, the correct selection of the turbulence model is essential in the different methods, such as the
Eulerian multiphase volume of fraction (VOF) [9] or the smoothed particle hydrodynamics method
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(SPH) [10], when studying these types of processes. Nowadays, the most extended turbulence models
in engineering applications are the two-equation models k-ε and k-ω [11]. Both methods are applied to
the Reynolds average Navier–Stokes (RANS) equations to have a better definition of the turbulence.
They add two transport equations, where the first one is the turbulence kinetic energy (k) and the second
defines the turbulence dissipation (ε) and the specific dissipation rate (ω). Both models have been
developed and modified all over the years, with the realizable k-ε [12] and the k-ωMenter’s shear stress
transport (SST) [13] being the most known ones due to their improvements on the original models.

The offshore and coastal research has used these two models extensively in the last years for
solving diverse technological challenges. The k-ε model developed by Launder and Sharma [14] is the
most used model throughout the different engineering applications [8]. In ocean and coastal research,
the k-ε model has been used to study the propagation of solitary waves and their interaction with
submerged barriers [15] and submerged slotted barriers [16]. In these studies, Wu and Hsiao studied
the free surface displacement, velocity, and vorticity generated by the submerged barriers, as well as
the reflection, dissipation, and transport coefficients. Propagation of group of waves in shallow waters
has been also studied [17] besides the study of the wave breaking. This last area of research has been
studied by several researchers, such as Xie [18], who applied the k-ε model for spilling and plunging
breaking waves. Moreover, Bakhtyar [19] studied these types of breaking waves and the evolution of
waves in a sloping bed, along with the velocity field and its vertical distribution. Casalone et al. [7]
used this turbulence model to study the motion of a hull.

The other two-equation model, the k-ω, which was developed by Wilcox [20] and afterwards
modified by Menter [13], has also been used in offshore and coastal applications due to its better
prediction of near-wall turbulence. Devolder [21] applied a buoyancy term in the model in order to
avoid wave damping in the propagation of the waves. Once this term was applied, the model was
used to study regular wave run-ups around a monopile. With the same model and buoyancy term,
Devolder also studied wave breaking [22]. With the application of the buoyancy term, the turbulence
model significantly reduced the overestimation of the turbulent kinetic energy in the flow field.
Higuera et al. [23] used the turbulence model for realistic wave generation by combining the theories
of piston-type wave maker motion and active wave absorption, which is also used for the study of
sediment transport. Jacobsen compared the numerical model with experimental data to study the
cross-shore sediment transportation, both free surface displacement and turbulence, over a fixed
breaker bar [24,25]. Oggiano [26] used the model to reproduce extreme events by simulating long
crested irregular waves around a monopile in 2-D. The k-ω was also used by Zhou et al. to study
the response of a floating offshore wind turbine (FOWT) for a first-order irregular waves group [3].
Besides, some researchers have compared both methods in order to define their differences and see
how the selection of each one affects to the final result [27].

However, another turbulence model has arisen in the last years and has shown promising results
in the field of marine energies. This model is named large-eddy simulation (LES) and it was firstly
introduced by Deardoff [28] for engineering applications. Hieu et al. used the LES model with the VOF
method to study propagation, shoaling, breaking, and reflection of waves [2]. Lakehal and Liovic [29]
used this model to focus on the wave breaking of steep water waves on a constant slope. Besides,
Lubin et al. [30] used the model to study plunging breaking waves. Finally, Thorimbert et al. used the
strengths of this model to simulate the behavior of oscillating water column devices (OWC) [31].

The scope of this paper was to directly compare different turbulence models for future research,
such as OWC device behavior or breaking waves studies. The tuning of a turbulent model capable
of reproducing such a high dissipative process as wave breaking will lead to wide possibilities in
modeling wave–structure interaction by means of CFD codes in the marine energy field. This study
allows us to see the behavior of three turbulence models generating second-order waves with a moving
wall and the energy dissipation of an extinction system. Besides, an optimization of the computational
mesh was done to reduce the computational cost. In Section 2, the experimental wave flume (EWF)
and its instrumentation is defined, as well as the NWF and the models used. Then, the methodology
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followed is defined in Section 3. The turbulence models are presented in Section 4, and then, the results
are presented and discussed in Section 5. Finally, in Section 6, some conclusions are presented.

2. Description of the Wave Flume

2.1. Experimental Wave Flume

All the simulations are replicas of the tests carried out in the EWF of the Energy Engineering
Department at the School of Engineering in Bilbao (University of the Basque Country, UPV/EHU).
The EWF is 12.5 m long, 0.6 m wide, and 0.7 m high. The walls of the flume are made of laminated
and tempered glass and the tank base of stainless steel. The commercial software ASDA-Soft (V5) [32]
controls the piston-type wavemaker of the flume by controlling the servo drive and servo motor.
The period and amplitude of the paddle are defined in the software, which converts the input data in a
sinusoidal curve of progressive acceleration and deceleration of the motor. The motor is connected
to a linear actuator, which is attached to the paddle, creating the linear movement of the paddle.
Then, the intended wave is generated according to the wavemaker theory [33,34] for a piston-type
wavemaker. The wave energy extinction area consists of a self-designed parabolic extinction system,
which can be adjusted in height and slope to situate it in the position of maximum wave absorption.
The scheme of the extinction system can be seen in Figure 1.
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Figure 1. (a) The general view of the EWF from the piston-type wavemaker (left) to the extinction
system (right). (b) Picture of the self-designed extinction system installed in the wave flume and the
highlights of the join (A) and the position of the cranks (B and C) to modify the angle
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The free surface variation (η (m)) is measured in three different points by using resistive-type
probes, the position of which can be modified to adjust them according to the wavelengths of the
waves generated. The free surface displacement is recorded by means of an ad hoc LABVIEW in time
intervals of 3 ms. It is important to highlight that the probes must be separated in equal distances, as it
can be observed in Figure 2, avoiding the half and quarter of the wavelength of study to avoid errors
due to their positioning. The first resistive probe is situated at 5.5 m from the paddle to ensure, at least,
a minimum distance of two wavelengths of the wave generated. In this study, the wavelengths of all
the waves are smaller than 2.75 m, which allow, on the one hand, the waves to be fully developed
when reaching the first probe and, on the other hand, to have a maximum flume length for each study.
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Figure 2. Disposition of the resistive probes in the EWF. The arrows highlight the join with the structure
that allows them to move along the flume.

2.2. Numerical Wave Flume

The NWF, unlike the EWF, has a 12-m length, due to the elimination of the volume of water that
is behind the wavemaker. As this volume has no influence in the wave generation and reflection,
its implementation is unnecessary and would only increase the computational cost of each simulation.

2.2.1. The Mesh

For the two-equation models, a 2-D mesh is generated, while for the LES simulations, a 3-D one is
used. In both meshes, the paddle is created as a moving wall in one end of the flume, which follows
first- or second-order sinusoidal curves, depending on the wave planned. The condition introduced to
the wall in the simulations is a grid velocity, so that the equations must define the velocity of the wall
in each time-step. Then, the first-order equation is:

v(t) = (2A·π/T) · sin(2π t/T), (1)

where A[m] is the amplitude of the paddle, T[s] the period, and t[s] the time. For the second-order
curve, the equation of velocity is:

v(t) = [(2A1/T)π · sin(2π/T · t)] − [(4A2/T)π · sin(4π/T · t)], (2)

where A1 [m] is the amplitude of the principal curve and A2 [m] the amplitude of the secondary one.
The meshes can be divided in different areas. The air area (number 1 in Figure 3) has no impact in the
wave generation and, therefore, has the biggest cells to reduce as much as possible the computational
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cost. The area below the extinction system (number 2 in Figure 3) has the same cell size than the air
area due to its negligible influence in the experiments. The “deep-water” area is the section below
the free surface that always contains water (number 3 in Figure 3). This area has smaller cells than
the air area because it is affected by the particles’ movement in the waves but is bigger than the free
surface and extinction areas also to reduce the computational cost of the simulations. These last areas
(number 4 and 5 in Figure 3) have a cell size that depends on the wave generated. The height of the
cells is calculated by dividing the wave height (H [mm]) by 20, with this being the biggest cell size that
ensures the good definition of the wave. The length of each cell is calculated by having an aspect ratio
(AR) of 4, which is the relation between the length and height of the cell:

AR = ∆x/∆y. (3)

In the walls where an important interaction with the fluid exists, the paddle and extinction system,
prism layers are introduced to have a better definition of the interaction. The total height of the free
surface area (FSH [mm]) is calculated depending on the wave height too, with the total height of this
area being:

FSH = H + 20. (4)

All the boundaries in the 2-D meshes have a non-slip condition and the bottom and the top have a
morphing boundary plane constraint to reproduce a realistic movement of the paddle. In the 3-D mesh,
the walls satisfy the non-slip condition except the lateral ones, with a slip condition to delete the friction
influence of the walls in the wave generation and propagation. This allows a proper comparison with
the experimental flume, in which this friction can be neglected due to its much larger width.
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2.2.2. Reynolds-Averaged Navier–Stokes Equations (RANS)

Every Newtonian and continuum flow can be described using the Navier–Stokes equations.
The turbulence is represented by the instantaneous values of the flow properties [8]. The equations
for turbulence fluctuation are obtained by Reynolds de-composition, which substitutes instantaneous
velocity and pressure fields for a mean value and a fluctuating component [27]. These components are
substituted into the non-dimensional continuity and momentum equations using the time averaging:

ρūj(∂ūi/∂xj) = ρfi + (∂/∂xj) [−p∂ij + µ((∂ūi/∂xj) + (∂ūj/∂xi)) − ρui’uj’], (5)

where ūi is the time-averaged velocity, p is the pressure field, ρ is the density of the effective flow, µ is
the viscosity, and –ρui’uj’ is the Reynolds operator.

2.2.3. Volume of Fluid Method

The VOF method presented by Hirt and Nichols [9] determines the percentage of the volume of a
cell that is occupied by a certain fluid:

αi = Vi/V. (6)

In this study, two fluids are used, water and air, and the free surface data are determined according
to the volume fraction of the water, which is 1 if the cell is full of water and 0 if there is no water in
the cell. For those cells where the free surface appears, the volume fraction of the water takes a value
between 0 and 1, and this determines the amount of water that is in that cell [9]. The orientation of the
free surface is perpendicular to the gradient of the volume fraction that the cell has in relation with its
adjoining cells. The physical properties of each fluid are obtained from the fluids and their volume
fraction as:

ρ = Σi (αiρi), (7)

µ = Σi (αiµi), (8)

where ρi is the density of each fluid and µi is their viscosity. The general conservation equation that
describes the transport of volume fractions can be defined as:

(∂/∂t)
∫

v(αidV) +

∫
s(αi (v − vg)da) =

∫
v(Sαi − [(αi/ρi)(Dρi/Dt)]dV), (9)

where v is the velocity of the fluid, vg is the grid velocity, and Sαi is the source of the ith phase. It is
important to highlight that, in our case, the source term is 0.

3. Aims and Methodology

The aim of the present work was to characterize different scenarios of wave generation to be
fully reproduced inside a wave flume, aiming to be able to properly adjust the key parameters of
the turbulence models to the real behavior of the numerical models, depending on the turbulence
model that best adjusts to each particular case study. The methodology followed in this research can be
divided in 4 different stages: first, the experiments were theoretically specified to ensure their possible
reproduction by the wavemaker of the EWF. Thereafter, the planned experiments were carried out and
the data obtained were processed in MATLAB, and compared with the theoretical values given by the
wave theory. Next, the simulations were run to validate the numerical model by comparison with
the experimental values. Finally, a comparison of experimental and numerical results when studying
reflection accomplished all the objectives of this study.

3.1. Experimental Procedures

All the waves were generated following the same methodology. First, the position of the paddle
was specified (amplitude) using the ASDA-Soft Software. After this, the period was specified,
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which determines the time interval needed for each complete movement of the paddle. Since the
wave period is the same as the period of the paddle, the theoretical value of the wavelength (λ) was
calculated with the dispersion Equation (10), which relates the depth (h), period (T), and wavelength
(λ). Then, the velocity propagation of the wave, (c [m/s]), was calculated by (11) in order to determine
the time, tE, for which the wave will travel forward and backward along the EWF, until it reaches the
position of the last probe (x3) again:

λ = (gT2/2π) tanh(2πh/λ), (10)

c = λ/T, (11)

tE = (2LTank + x3)/c. (12)

Each sensor acquired all the data corresponding to the free surface displacement (ηi [m]). When the
experiment in the EWF ended, the paddle was situated at 0.5 m from the wall to ensure the same
starting point for every experiment.

3.2. Data Processing by MATLAB

Once the simulations and the experiments were finished, the data were analyzed by MATLAB
to obtain the resulting parameters (H, T, and λ) of the incident wave. The results of the EWF were
compared with the theoretical values to ensure the correct generation of the wave. Then, these results
were used to calculate the corresponding reflection coefficient.

For the analysis of both the experimental or numerical test, the time domain was divided in
three stages, depending on the characteristics of the wave: (i) the initial transitory when the wave is
developing, (ii) the time interval in which the wave travels along the flume without any influence of
reflected waves, and (iii) when the reflection affects the free surface displacement of the incoming
incident wave. Therefore, the time interval corresponding to each stage must be defined. As an example,
the tR corresponds to the instant when the reflection phenomenon is first measured on each probe:

tR = (2LTank − xi)/c, (13)

where Ltank is the length of the tank and xi is the position of each sensor. Then, the re-reflection time was
calculated with Equation (12) for the position of each probe, respectively. To obtain the parameters of
the waves, a specific height condition was created in MATLAB that disregards the data corresponding
to the interval in which the wave is still developing. This condition was applied until the height was,
at least, 70% of the maximum height before reflection appears. This time value was defined as the start
time (tS [s]). In each analysis, the time before tS and after tE were deleted. Then, each run was divided
into incident wave and reflection analysis.

For the analysis of the incident wave, the data between tS to tR were selected and fitted according
to the corresponding wave theory, first (linear, Airy’s theory) or second (non-linear, Stokes’ theory)
order, to obtain the experimental and numerical parameters of that wave (H, T, and λ). The values
obtained from this fitting were compared to the theoretical values. It is important to highlight that the
fitting avoids the variations from the theory that appear in the free surface displacement data.

Finally, the reflection coefficient (K [-]) was calculated with the method developed by Mansard and
Funke [35]. This method uses three wave probes to obtain H at each position, and three phase-shift to
calculate the amplitude value of both the incident (AI) and the reflected wave (AR). Then, the reflection
coefficient is obtained:

K = AR/AI. (14)

3.3. Numerical

Based on the experiments theoretically defined, a wave selection was carried out to reproduce
numerically waves of different properties for the validation of the models. Then, linear and non-linear
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waves at the intermediate and deep-water regions were simulated. These simulations were created
following the descriptions of Section 2.2. Then, the mesh was converted to 2-D for the k-ε or k-ωmodels
to reduce the computational cost, taking advantage of the 2-D nature of the EWF. For the LES model,
STAR CCM+ does not allow a 2-D mesh, so a 5-mm-wide mesh was created to not create an excessive
increase in the number of cells. Perpendicular planes were defined to replicate the resistive-type probes
of the EWF and measure the free surface displacement at the exact position than in the EWF, for which
a user-generated function was imposed to determine the position of the free surface. This function
uses the volume fraction of the water that can be defined as:

ηsim = (VOFwater · 700) − hstudy, (15)

where ηsim is the position of the free surface in mm, VOFwater is the mean volume fraction of water
measure in the study plane, 700 is the total height of the NWF in mm, and hstudy is the depth of study
in mm. Thus, the value of ηsim at the beginning of each simulation was 0.

3.4. Results Comparison

The results were compared for all the turbulence models and for both the theoretically and
experimentally obtained results. This comparison was carried out to study the feasibility of the
turbulence models for the wave generation, which was the main objective of this research. In order to
minimize the variables, the turbulence models were compared at a constant cell size.

4. Turbulence Models

To have a better definition of the turbulence in the RANS equations, different models have been
created throughout the years. Normally, they are ordered with the number of equations that they used,
such as zero-equation, one-equation, or two-equation models. In this article, we used two variations of
the two-equation models of k-ε and k-ω, apart from the large-eddy simulations.

4.1. The Low Reynolds k-ε Model

The standard k-ε low-Re model has the same coefficients as the standard k-ε model; however,
it introduced some damping functions to enable its application in the viscous affected regions
near-wall [36], making it more compatible with the law of the wall. However, it does not solve the
problem with adverse pressure gradients. In this model, the kinematic eddy viscosity can be defined as:

νt = Cµfµ(k2/ε), (16)

where Cµ is a model constant, fµ is a damping function, k is the turbulent kinetic energy, and ε is the
turbulence dissipation rate. The mathematical modelling can be written in a boundary layer form:

ū(∂k/∂x) + v(∂k/∂y) = (∂/∂y)[(ν + (νt/σk)) (∂k/∂y)] + νt(∂u/∂y)2
− ε

ū(∂ε/∂x) + v(∂ε/∂y) = (∂/∂y)[(ν + (νt/σk)) (∂ε/∂y)] + Cε1f1(ε/k)νt(∂u/∂y)2
− Cε2f2(ε2/k) + E.

(17)

In the standard model, the turbulence kinetic energy is defined as:

∂k/∂t + ūj(∂k/∂xj) = ∂/∂xj [ν + νt/σk ∂k/∂xj] − ε + τij∂ūi/∂xj. (18)

Turbulence dissipation rate (ε) equation:

∂ε/∂t + ūj(∂k/∂xj) = ∂/∂xj [ν + νt/σk ∂ε/∂xj] − Cε1(ε/k)τij(∂ūi/∂xj) − Cε2(ε2/k), (19)

where the σk = 1 and σε = 1.3 are the Prandtl numbers for k and ε. The damping functions in the
standard k-ε low-Re are f 2:

f2 = 1 − C·exp(−Ret
2), (20)



J. Mar. Sci. Eng. 2020, 8, 881 9 of 19

and fµ:
fµ = 1 − exp[−(Cd0

√
(Red) + CdlRed + Cd2Red

2)]. (21)

4.2. The Shear Stress Transport (SST) Model

First presented by Kolmogorov [37], the most important development of the k-ω model was
presented by Wilcox and is the one that the program Star-CCM+ uses as a standard. This model is a
two-equation model that has clear advantages in comparison with k-ε, achieving higher accuracies
in boundary layers with adverse pressure gradients and in shear and separated flows. This model
defines the kinematic viscosity as:

νt = (k/ω), (22)

where k is the turbulence kinetic energy and ω is the specific dissipation rate. The turbulence kinetic
energy (k) is defined as:

∂k/∂t + ūj(∂k/∂xj) = ∂/∂xj[(ν + σ* k/ω) ∂k/∂xj]β* kω + τij (∂ūi/∂xj). (23)

The specific dissipation rate (ω) equation is:

∂ω/∂t + ūj(∂ω/∂xj) = ∂/∂xj [(ν + σk/ω) ∂ω/∂xj] − β kω2 + (σd/ω)(∂k/∂xj)(∂ω/∂xj) + a (ω/k)τij (∂ūi/∂xj). (24)

The SST model developed by Menter combines advantages from both k-ε and k-ω. Its complete
formulation is in [13], where the author shows that the model works with small variances in the
shear-stress and improvements for the predictive accuracy for industrial application, reducing the
influence of the user-generated grid.

4.3. Large-Eddy Simulation (LES)

In the LES approach, the large-scale turbulence is fully resolved while the sub-grid turbulence is
modelled. In comparison with RANS approach, only the small isotropic turbulent scales are modelled.
It is extremely useful for applications with high Reynolds numbers. The filtered Navier–Stokes
equations of LES can be defined as [38]:

∂ρ/∂t + ∂ρui/∂xi = 0
∂ρui/∂t + ∂ρuiuj/∂xj + ∂p/∂xi − ∂σij/∂xj ≈ − ∂τij/∂xj

∂ρE/∂t + ∂(ρE + p)uj/∂xj − ∂uiσij/∂xi − ∂qj/∂xj ≈ − 1/γ−1 ∂(puj − puj)/∂xj − uj(∂τij/∂xj).
(25)

However, a subgrid model is necessary to have a good definition. For this, the one developed
by Smagorinsky was used. This model uses a mixing-length hypothesis to model the subgrid-scale
stresses [36].

It is based on a sufficiently high Reynolds number, which ensures the energy transfer from large
to small scales, which are responsible for dissipation. It predicts that eddy viscosity reaches its highest
values in areas, for example, solid boundaries, where a strong shear appears. The model provides the
mixing-length type formula for the subgrid viscosity:

µt=ρ∆2S, (26)

where ρ is the density, ∆ is the length scale, and S is given resolving the velocity field:

∆ = fv Cs V1/3, (27)

where CS is the model coefficient and fv is the Van Driest damping function, which in the software can
be computed as:

fv = 1 − exp(−y+/A), (28)
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where A is another model constant and wall y+ is the dimensionless wall distance.

5. Results and Discussion

Six different waves were used in this study to compare the turbulence models, the defining
parameters of which are shown in Table 1. These theoretical values were obtained by combining
the Le Méhauté chart [39] and the dispersion Equation (10). The selected wave heights and periods,
combined with a wide range of depths in the EWF, from 0.3 to 0.5 m, were selected in order to represent
the different waves that appear in the Biscay Marine Energy Platform (BIMEP) [40,41].

Table 1. Theoretical values of the studied waves.

h (m) H (mm) T (s) λ (m) c (m/s)

Wave 1 0.3 40 1.25 1.88 1.54
Wave 2 0.3 30 1.42 2.20 1.54
Wave 3 0.4 39 0.81 1.01 1.24
Wave 4 0.4 64 1.27 2.11 1.65
Wave 5 0.5 29 1.20 2.06 1.71
Wave 6 0.5 60 1.42 2.64 1.85

The fittings of the free surface displacement signals were done using the incident wave interval,
which corresponds to all the data between the tS and tR time values. This fitting, shown in Figure 4,
matches almost perfectly with the free surface variation data obtained from the experimental runs.
This adjustment constantly achieves a quality of overlapping over 95% in the 3 probes for every wave.
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Figure 4. Fitting of the free surface displacement for the wave 3: fitting (orange) and experimental
(blue) measured by the first probe of the EWF.

The parameters of the wave were obtained by calculating the average of the parameters of the
fittings obtained from the signals of the three probes. Then, the values were compared with the
theoretical ones. The results and the corresponding relative errors in relation to the theoretical values
are shown in Table 2.

Table 2. Experimental results and relative errors of the incident wave with respect to the theoretically
intended values.

H (mm) T (s) λ (m) c (m/s) Error H (%) Error T (%) Error λ (%) Error c (%)

Wave 1 42.07 1.25 1.78 1.42 5.41 −0.63 −7.08 −6.48
Wave 2 30.04 1.41 2.10 1.49 0.14 1.19 4.59 3.40
Wave 3 36.89 0.79 0.99 1.24 5.39 1.36 1.47 0.10
Wave 4 66.29 1.27 2.11 1.65 3.58 0.15 0.15 0.01
Wave 5 28.34 1.18 2.02 1.71 2.26 1.80 1.83 0.03
Wave 6 56.50 1.41 2.68 1.90 5.82 1.23 1.78 3.06
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Focusing on the relative errors, it can be concluded that the piston-type wavemaker appropriately
generates the waves according to the wave theory. Only for the wave 1 were relative errors higher
than 6% measured.

The computational turbulence models were then compared, following a similar methodology.
In this case, the validation of the models was carried out using the experimental results obtained
in the EWF as a reference. This step was essential to compare the quality of the models and its
computational cost.

The k-ε turbulence model is the one that was first used in this and previous studies [5]. However,
a better definition of the turbulent kinetic energy and the turbulence dissipation rate was obtained to
improve the accuracy of the simulations. These values were modified to 1 × 10−5 for the turbulent
kinetic energy and 1 × 10−4 for the turbulence dissipation rate. These changes help to improve the
fitting between experimental and numerical values by defining the crests of the waves better, although
troughs are yet to be better defined.

The wave parameters obtained from the simulations using the k-ε turbulence model can be seen in
Table 3. A limit of 10% for the wave height and 2% for the period were selected to validate the models.
Although the errors are low, always below 2% in period, a better definition of the paddle movement is
needed because errors become higher when higher waves are generated. It is important to highlight
the satisfactory validation of the equation that the moving wall follows. Next, the wavelength was
calculated with the phase-shift of the signals between probes and finally the wave propagation velocity,
c. It is worth mentioning that the calculation of the wavelength through the phase-shift introduces a
cumulative error from the signal fitting, so it will be further studied for its improvement.

Table 3. Results obtained from the simulations carried out using the k-ε turbulence model and relative
errors with respect to the experimental values of the incident wave.

H (mm) T (s) λ (m) c (m/s) Error H (%) Error T (%) Error λ (%) Error c (%)

Wave 1 39.15 1.25 1.84 1.46 −6.96 −0.09 3.30 2.54
Wave 2 29.42 1.42 2.20 1.54 −2.08 0.64 4.48 3.19
Wave 3 36.90 0.80 1.00 1.24 −5.39 −1.36 −1.24 −0.69
Wave 4 63.65 1.27 2.14 1.67 −3.99 −0.70 1.06 0.86
Wave 5 28.31 1.20 2.18 1.81 −0.12 1.25 7.47 5.76
Wave 6 60.56 1.42 2.68 1.87 7.17 0.69 −0.37 −1.97

The results obtained for the k-ε model were close to the experimental ones, so that the same mesh
was used for the simulations carried out with the SST turbulence model. The value for the turbulent
kinetic energy was the same as for the k-εmodel, as well as the value of the specific dissipation rate (ω).
The similar behavior of both two-equation models reinforces the idea of the use of each model for the
problem that best suits each of them. The tendency in the relative errors is the same in both models,
as it can be seen in Table 4. However, the SST model has a worst definition in the measurements of the
wavelength and celerity, while its definition of the wave height has marginal improvements when
comparing it to the k-ε model.

Table 4. Results obtained from the simulations carried out using the SST turbulence model and relative
errors with respect to the experimental values of the incident wave.

H (mm) T (s) λ (m) c (m/s) Error H (%) Error T (%) Error λ (%) Error c (%)

Wave 1 39.28 1.25 1.88 1.49 −6.65 −0.09 5.54 4.65
Wave 2 29.52 1.42 2.22 1.55 −1.74 0.64 5.43 3.86
Wave 3 36.89 0.80 1.00 1.24 −5.39 −1.36 −1.24 −0.69
Wave 4 63.12 1.28 2.03 1.59 −4.79 0.09 −4.13 −3.97
Wave 5 28.29 1.19 1.97 1.65 −0.19 0.40 −2.88 −3.59
Wave 6 59.64 1.42 2.84 1.99 5.54 0.69 5.58 4.33
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As aforementioned, the LES model does not allow simulations in a 2-D mesh to be carried out
using Star CCM+. Despite using a 3-D mesh, the same rules of cell size were applied, having the same
height and length as the 2-D meshes. The model uses the coefficients CS = 0.1, Ct = 3.5, A = 25, and the
von Karman constant κ = 0.41. Table 5 shows the values and relative errors of each simulation using this
LES model. The adjustments of wave height are worse compared to the two-equation models, but the
definition of the wavelength is in the same error interval as the two other models. Because of this,
it can be concluded that this model reproduces significantly well the experimentally generated waves.

Table 5. Results obtained from the simulations carried out using the LES turbulence model and relative
errors with respect to the experimental values of the incident wave.

H (mm) T (s) λ (m) c (m/s) Error H (%) Error T (%) Error λ (%) Error c (%)

Wave 1 37.73 1.26 1.88 1.49 −10.34 0.55 5.51 4.93
Wave 2 28.31 1.43 2.21 1.55 −5.76 1.10 5.01 3.87
Wave 3 36.89 0.81 1.01 1.24 −5.39 −0.06 −0.49 −0.43
Wave 4 62.44 1.28 2.03 1.59 −5.82 0.27 −3.91 −4.16
Wave 5 28.99 1.20 1.97 1.65 2.27 1.08 −2.84 −3.88
Wave 6 58.91 1.42 2.84 2.00 4.25 0.84 5.57 4.68

A comparison of the free surface displacement was carried out between experiments and
simulations because of the low errors measured. This way allows a direct comparison between
incident and reflected waves and observation of whether the extinction system affects the free surface
displacement. Figure 5 shows these comparisons between the experimental and the three turbulence
models used in the first probe. The fitting is significantly good throughout all the experiment,
generating a similar energy dissipation by the extinction system, resulting in a similar free surface
displacement at all three points. Figure 5 shows a good definition of the wave crests in all the models,
but they fall short on the definition of the troughs, for which the LES models achieve a more constant
definition of them.

Once it was demonstrated that the free surface displacement fits properly with the k-ε, SST and
LES turbulent models for the incident wave, a statistical comparison of the adjustments of the free
surface displacement when reflection appears was developed in order to determine the influence of
the energy dissipation process and its turbulence modelling. This comparison focused on the wave
height and wave period, as shown in Table 6. From this table, it can be concluded that the k-ε turbulent
model obtained promising results, but high error in the height was measured for the wave with the
shortest period.

Table 6. Comparison of the wave height and period of the resultant wave between the experimental
and k-ε model, and the error between them.

Hexp (mm) Texp
(s) Hk-ε (mm) Tk-ε

(s) Error H (%) Error T (%)

Wave 1 40.34 1.26 38.83 1.25 −3.73 −0.79
Wave 2 31.02 1.45 31.72 1.42 2.26 −1.66
Wave 3 37.13 0.81 34.46 0.81 −7.19 0.41
Wave 4 65.27 1.25 63.76 1.25 −2.31 0.50
Wave 5 28.50 1.18 28.05 1.20 −1.61 1.88
Wave 6 56.78 1.43 59.42 1.41 4.66 −1.50

Similar results were obtained with the SST model. While the definition of the wave periods is
almost identical, a slight improvement is made in the wave height definition. The results can be seen
in Table 7, where wave heights do not surpass a 7% error, while wave periods are always maintained
at lower than 2%. This can be due to the improvements introduced by Menter, where the behavior of



J. Mar. Sci. Eng. 2020, 8, 881 13 of 19

the adverse pressure gradients is improved and thus, a better definition of the troughs is obtained,
reaching, in some cases, a better definition.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 13 of 19 
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Figure 5. Comparison of the free surface displacement for the turbulence model of (a) k-ε, (b) SST,
and (c) LES with the experimental data (blue) obtained in the EWF for the wave 3.
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Table 7. Comparison of the wave height and period of the resultant wave between the experimental
and SST model, and the error between them.

Hexp (mm) Texp
(s)

HSST
(mm)

TSST
(s)

Error H
(%)

Error T
(%)

Wave 1 40.34 1.26 38.69 1.25 −4.08 −0.78
Wave 2 31.02 1.45 31.59 1.42 1.85 −1.70
Wave 3 37.13 0.81 34.80 0.81 −6.28 0.30
Wave 4 65.27 1.25 63.76 1.25 −2.31 0.50
Wave 5 28.50 1.18 28.16 1.20 −1.21 1.87
Wave 6 56.78 1.43 59.40 1.41 4.61 −1.45

Finally, the LES results are shown in Table 8. Although a better definition of the waves is achieved
with this model in deeper depths, it shows limitations when working at smaller depths. However,
the tendency of the two other turbulence models when defining the wave period is constant and a
better definition of the troughs is reached.

Table 8. Comparison of the wave height and period of the resultant wave between the experimental
and LES model, and the error between them.

Hexp (mm) Texp
(s) HLES (mm) TLES

(s)
Error H

(%)
Error T

(%)

Wave 1 40.34 1.26 37.10 1.26 −8.03 0.05
Wave 2 31.02 1.45 30.29 1.42 −2.35 −1.66
Wave 3 37.13 0.81 36.47 0.81 −1.76 0.68
Wave 4 65.27 1.25 64.56 1.25 −1.08 0.54
Wave 5 28.50 1.18 28.82 1.20 1.12 1.89
Wave 6 56.78 1.43 59.43 1.41 4.66 −1.46

Finally, the reflection of the extinction system was studied to obtain more data for a proper
comparison of the behavior of the turbulence models. The wave breaking, which is related to reflection,
is the most turbulent process seen in the flume and therefore, it can result in higher differences between
the turbulent models under investigation. Besides, the reflection coefficients allow comparison of the
amplitudes of the incident and reflected waves, which confirms both fittings made to the free surface
displacement signal.

The reflection method developed by Mansard and Funke uses both heights and phase-shifts to
calculate the amplitudes of the incident and the reflected waves. The reflection coefficient is related to
the dissipated energy produced in the extinction system by the turbulent process that occurs. Because
of this, the study of the reflection phenomenon has great importance when defining the turbulence
model and the NWF. In Figure 6, a comparison of the reflection coefficients measured for all the waves,
both numerical and experimental, is shown. Despite the different values measured for the coefficients,
it is important to highlight that the errors using this method are magnified by the errors measured in
the incident and reflected waves.

A direct comparison of the incident and reflected amplitudes is shown in Figure 7 using the
method developed by Mansard and Funke. This provides better results in the study of the amplitude
of the incident wave when treating the simulations. This can be related to the high sensitivity of the
resistive probes of the EWF, which introduce noise in the signal and makes the measurements in some
waves difficult. Further research will be needed to improve the implementation of the method in the
experiments. Besides, the small variations in the reflected amplitude are magnified when dividing it
by the amplitude of the incident wave. For example, for the wave 1, the incident amplitude of the
experimental signal is significantly smaller; however, a marginally smaller amplitude of the reflected
wave generates a much smaller reflection coefficient.
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6. Conclusions

In this study, three different turbulence models were compared (k-ε, k-ω, and LES) and validated
using the EWF of the University of the Basque Country. To the knowledge of the authors, hitherto,
this is the first work comparing the three turbulence models to determine which of them reproduces the
reflection phenomenon studied in the NWF better. The three models showed good correlations when
measuring free surface variation in comparison with the experimental data measured in the laboratory.

A more specific study was made in wave generation, testing if the movement of the wavemaker
of the NWF follows the wavemaker theory. The performance of the moving wall showed good results,
validating the movement equations that were calculated, and accurately matching the wave period
and wave height.
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The fitting carried out using MATLAB for the experimental and numerical free surface displacement
allowed the parameters of the waves to be obtained and compared with each other, as well as the
values theoretically calculated.

The main contribution of this research related to the reflection coefficients that were calculated
to compare properly the three turbulence models between each other, and with the experimentally
obtained values. The reflection produced by the extinction system was studied in three different
ways. The first one, in which a direct comparison of the free surface variation was made, showed
good agreement between the experimental and the numerical signals, despite slight disparities in the
troughs. The reflection coefficient study showed promising results, although clear differences were
seen in them. The results for the simulations showed strong similarity when comparing the incident
wave amplitude measured using the Mansard and Funke method with the value measured with the
probes. However, the experimental signals showed significant differences in some waves. This could
be due to the noise and will be studied in future articles.

Finally, the three studied turbulence models showed a good performance throughout all the time
of the research, although they did not achieve a perfect matching with the experimental results. The aim
of the article, the use of three different turbulence models to simulate the behavior of the wave flume,
was achieved, creating a strong base for future studies, which will be the focus in the fluid–structure
interaction of floating breakwaters or wave energy converters, such as oscillating water columns.
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Abbreviations

The following abbreviations are used in this manuscript:

A Amplitude
AI Amplitude of the incident wave
AR Amplitude of the reflected wave
AR Aspect Ratio
c Wave celerity
CFD Computational Fluid Dynamics
Cµ k-ε model constant
EWF Experimental Wave Flume
FOWT Floating Offshore Wind Turbine
FSH Free Surface Height
fµ Damping function
H Wave Height
K Reflection Coefficient
k Kinetic energy
LTank Tank Length
LES Large Eddy Simulation
NWT Numerical Wave Tank
OWC Oscillating Water Column
p Pressure
RANS Reynolds-Average Navier Stokes
SST Shear Stress Transport
u Fluid velocity
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V Volume of the cell
v velocity
vg Grid velocity
VOF Volume of Fluid
xi Position of the probe
αi Volume Fraction of a fluid
∆ Length Scale
ε Turbulence dissipation rate
η Free Surface Position
µ Dynamic viscosity
νt Kinematic viscosity
ω Specific dissipation rate
σε Prandtl constant for turbulence dissipation rate
Sij Mean strain-rate tensor
σk Prandtl constant for kinematic energy
T Period
t time
τij Favre_averaged specific Reynolds-stress tensor
τxy Favre-specific Reynolds shear stress
µT Subgrid viscosity
NWF Numerical Wave Flume
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