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Abstract: A vessel must navigate along designated routes within a harbor area to ensure navigation
safety. The impact of strong currents is one of the most dangerous factors in coastal navigation.
However, it is challenging to determine the deviation of a ship in advance from the ship’s position
data in the case of a marine accident. In this study, to support the decision-making of ship navigators
and vessel traffic service (VTS) operators in track monitoring tasks, tracks were classified according
to the tidal stream, and the track distribution was analyzed according to the tidal current situations.
Marine accident analysis was performed to investigate the tidal influence on ship tracks. Track data
were collected for 12 months from a VTS center in Korea, and tidal information was collected through
a meteorological observation buoy. Representative tracks were extracted from the track data using
the support vector regression (SVR) seaway model. K-fold cross-validation and a grid search were
performed to determine the optimal parameters. The ship tracks appeared in specific patterns
according to the forces and directions of tidal currents, and specific deviation patterns were observed.
This study is expected to contribute to the reduction of marine accidents by predicting ship trajectories
according to the tidal situations in advance.

Keywords: vessel traffic services; vessel trajectory analysis; anomalous behavior; support vector
machine; machine learning; SVR seaway model; marine accident

1. Introduction

In recent years, it has become possible to use ship navigational data and real-time marine
environmental data for traffic analysis, with the advancement of maritime information and
communication technology. In addition, the results of marine traffic analysis contribute to the
development of the vessel traffic services (VTS) monitoring system and navigational decision-making
equipment applications, which are used for the prevention of potential marine accidents.
Despite advances in technology and efforts, marine accidents have continued to occur. According to a
report by the Korean Maritime Safety Tribunal (KMST), a total of 20,064 marine accidents occurred from
2010 to 2019, of which 2371 occurred in the waters near ports, including harbors, and in the waterways
entering ports [1]. With the enlargement of vessels, a large amount of cargo can be transported at
lower costs. However, in the event of a marine accident, the scale of the marine accident is also
larger, causing serious environmental pollution and enormous economic loss along with the loss of
human life. Therefore, to prevent potential marine accidents and maximize the efficiency of ship
navigation, it is recommended that ships be navigated through designated routes in the port and
its approaching waters, and a VTS system be installed and operated. VTS has been established by
authorized governments in necessary areas to promote safe and efficient navigation and prevent marine
accidents according to the International Convention for the Safety of Life at Sea 1974 (SOLAS 1974)
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Rule 12 in Chapter 5 and the International Maritime Organization (IMO) RESOLUTION A.857 (20) on
Guidelines for Vessel Traffic Services [2,3].

For cases wherein a ship navigates an area with a high risk of accidents or with sensitive conditions
for navigation, such as a route within a port limit and its approaching areas, the master or navigator
checks the location of the ship and confirms whether the vessel maintains an appropriate route.
Maintaining the proper course and speed to be taken by the ship at a specific location is the most basic
means of navigation for the ship to maintain its designated route. The relative position of the ship in
the near future with respect to the current location is determined on the basis of the engine operation
and course selection. However, the ship position in the near future is affected not only by the course
selection and speed control, but also by the navigational environment in which the ship is located.
The depth of the route and the width of the waterway can be predicted in advance through information
inferred from the nautical chart; however, the effects of traffic conditions and marine environment,
such as tidal currents and winds, are difficult to predict solely on the basis of the observation and
confirmation of the ship’s navigator.

A ship’s dead reckoning position (DRP) has traditionally been used as a method for predicting
the position of a ship [4]. DRP is used to predict the navigational relationship with other vessels
and the situation when the ship encounters situations in traffic that are considered to be dangerous.
In addition, DRP is used to know the position of the ship in question or another ship after a certain
time. In an open sea with a large margin of water, the position of the ship in the near future can be
determined from the current course and speed of the ship, assuming that there is no change in the
track of the ship. However, this type of method cannot be used in waters within harbors where there
are frequent variations in course and speed to keep track of the designated route. To address these
problems, a modified DRP calculation method reflecting the ship’s planned route was proposed [5,6].
In addition, as machine learning is used for route prediction, a method for predicting the ship’s position
by learning the ship’s trajectory data was proposed [7]. However, the aforementioned methods have a
limitation in utilizing location-based automatic identification system (AIS) data, which do not consider
the navigational environment of the ship. In the conventional prediction method, DRP is predicted
using the ship’s current position, speed, and course [4], and the DRP calculation reflecting the track
does not consider the ship’s external forces [6]. Therefore, it is necessary to analyze the influence of
external forces with extracted sailing routes in calculating the ship’s DRP or estimating the ship’s
future positions. Even if a ship navigates an identical route, factors that affect the ship’s movement,
such as the directions and tidal stream forces, differ depending on the situation and the time at which
the ship sails [8]. In particular, the ship can be made to drift by the influence of strong currents in areas
with large tidal differences. The ship’s drift is one of the causes of marine accidents, such as swerving
from the designated route and striking aground.

In this study, we aimed to analyze the effect of external forces on the trajectory formation of a
vessel and propose a method that can be used by navigators and VTS operators according to the
case of an accident of a vessel that has run aground in the limits of a harbor. The target ship was
selected from among the cases of marine accidents for trajectory analysis, and the data were collected
for 12 months. In addition, tidal information was collected through a meteorological observation
buoy, and the track dataset was classified according to tidal directions and forces. The classified
track datasets were reclassified into current situations, such as flood current, ebb current, and near
slack, according to the directions and forces of the tide. Machine learning was performed on the track
data, and representative tracks were extracted. In addition, a method was proposed to support the
decision-making of navigators and VTS operators by selecting a reference point in the designated
route of the target area, analyzing the degree of deviation of the track according to each tidal situation,
and deriving a linear equation for the distribution of the ship’s deviations.
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2. SVR Seaway Model

The support vector regression (SVR) seaway model is based on SVR, which is a representative
machine learning methodology. It is based on the assumption that a ship’s track is a passage with a
certain pattern when the ship navigates along the designated route, and the start and end points of the
ship’s leg are identical [9]. SVR utilizes the method of structural risk minimization, which minimizes
the probability of error in data with a fixed but unknown probability distribution, while traditional
pattern recognition techniques are based on an empirical risk minimization method using a statistical
pattern recognition method according to the data distribution [10,11].

The SVR seaway model is a method of learning datasets collected and processed using SVR,
consequently extracting a representative trajectory model [9]. Because the method defines a
representative route on the basis of a ship’s classified track dataset by selecting a certain period,
it can be applied to complex marine traffic environments, such as within a port and adjacent waters.
The characteristic of machine learning through SVR is to determine the output model by selecting the
number of support vectors (SVs) to be learned according to the selected parameter [12,13]. The route
extraction method of the SVR seaway model was used in this study because it is suitable for application
to complex port waters with frequent changes in navigation patterns due to factors such as port
development and changes in navigational environment. Since this method can analyze patterns
using navigational datasets for a specific period that requires learning through data and obtain the
output from the learned result, it is possible to extract a track model reflecting the navigational
characteristics during specific periods. The k-fold cross-validation and grid search techniques were
used to select the most important kernel function and optimal parameters in constructing the SVR
model for extracting the representative tracks. This technique is derived from the Library for Support
Vector Machines (LIBSVM) algorithm proposed by Hsu et al. [14]. This method has been widely
used since its proposal and has been recognized for its high reliability. It is also used in constructing
the optimal parameter combinations in various machine learning algorithms [15–17]. The process of
extracting the representative track model through the SVR seaway model is illustrated in Figure 1.

Figure 1. Support vector regression (SVR) seaway model algorithm.

First, the ship’s navigational data are collected and classified on the basis of the target ship
and area. Data for individual ships are converted into a data structure and classified according to
the sailing section (leg) to form datasets to serve as input feed for the machine learning algorithm.
The track data used for learning are reclassified, and the curved and straight sections are defined by
discriminating the curvature of the track distribution and extracting the veering points. The reclassified
data are divided into sub-datasets, which form the final dataset for learning and training. For the
process of learning, the final track data are selected through data scaling and parameter selection.
From the data learning, the final representative track model is extracted, and the database of the track
model is constructed. This method of pattern extraction can be used for predicting a ship’s track and
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determining any anomaly in the behavior. However, most route pattern recognition methods extract
the track model according to the ship’s path and target leg. In these methods, there is a limitation
that the influences of external forces are not considered. In this study, using the SVR seaway model
proposed previously, the ship’s track pattern is classified and learned according to the type of tidal
stream, and a representative track model is extracted for each tidal current situation.

3. Methods

The track data were collected by classifying the fusion track data of the AIS and radar images
collected at the Incheon Port VTS center, Republic of Korea. The tidal data provided by the Korea
Hydrographic and Oceanographic Agency (KHOA) were also used [18]. The KHOA tide information
comprises data predicted in real time and the actual measurement data collected every 30 min. In this
study, the data provided from a meteorological observation buoy every 30 min were converted into
units of seconds through curve fitting using a spline function. The tidal information was used at the
time when the target ship passed through the designated area (gate line).

In general, the tidal movement occurs as shown in Figure 2a; the intensity of the tide changes
simultaneously, as shown in Figure 2b. Meanwhile, the direction of the tide follows the pattern shown
in Figure 2c.

Figure 2. General relationship and alteration between tide and tidal streams: (a) general tidal movement;
(b) change in current velocity; (c) change in current direction.

As shown in Figure 3, the track dataset was classified into three cases (flood current, ebb current,
and near slack), according to the direction of the current and intensity of the tide when the target ship
passes through the preset gate line.
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Figure 3. Data learning and classifying process reflecting the results of tidal currents.

As shown in Figure 3, the collected track data are classified on the basis of the tidal data and
each sub-dataset is extracted from the track model in accordance with the track extraction method of
the SVR Seaway Model. The classified tracks are analyzed by calculating the deviated distance from
the reference point of the nautical mark in the curved area and by analyzing the relationship of the
deviation range of the target ship with the tide intensity for each tide.

4. Simulation and Results

The simulation environment was the designated route of Incheon Port, Korea. Incheon Port is the
entrance of Seoul, which is the capital city, and the harbor is the second largest international trade port
in Korea. Incheon Port consists of Inner Port, Northern Port, Southern Port, Coastal Port, and New Port.
There are many large and small islands scattered around this port, which form natural walls. Thus,
there is a reduction in wind and waves in this area. However, the tidal range is severe and reaches up
to 10 m [19]. The flood current flows to the north-northwest, and the ebb current flows to the south
and south-southwest. The speeds of flood current and ebb current are similar. The flood current turns
its direction around 0.1–0.8 h after the low water and lasts for about 6.5–6.6 h until 0.5–1.1 h after the
high water. The maximum flood current is about 2.0–2.7 knots in the annual mean spring tide rise and
occurs around 1.6–2.3 h before the high water. The ebb current turns its direction around 0.5–1.1 h
after the high water and last for about 5.8–5.9 h until 0.1–0.8 h after the low water. The maximum ebb
current occurs around 2.3–3.3 h before the low water, and the maximum current speed in the annual
mean spring tide rise reaches up to 2.0–2.7 knots [19]. The target area in Figure 4 (the black square)
shows the area where 27 cases of route swerving were reported in 2018 [20].

The ship passes between the bridge posts and navigates through the curved area to the berth at
the scheduled pier in the target area. In particular, according to KHOA’s West Coast of Korea Pilot,
the target area is a region where the tide moves strongly with a maximum current of 2.7 knots [19],
and a maximum of 2.1 knots was recorded in the data collected by the meteorological observation
buoy. The route in the area is presented in nautical charts and publications as a sea area where there
are obstacles to navigation such as shallow waters and small islands on both sides of the curve [20].
Vessels navigating the area frequently change their course and speed in curves. Therefore, the target
area provides an appropriate navigational environment for analyzing the proposed tidal effects.
Meanwhile, the tide information was processed and used as shown in Figure 5. The meteorological
observation buoy is located 0.78 nautical miles from the reference point. To classify the track dataset,
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the gate line was set at the Young-jong Great Bridge in Figure 4, and the track classification criteria
were based on the tide information at the time the target ship passed through the gate.

Figure 4. Target area and reference points.

Figure 5. Results of tide information analysis: (a) changes in current direction; (b) changes in
current velocity.

Meanwhile, the direction and intensity of the tide when the target ship passes through the gate
line can be derived from the data analysis shown in Figure 5. For instance, if the ship passes through
the gate line on 14 November 2018 at 10 h 45 min 49 s, from the analysis result of the tide observation
data, we can infer that the direction of the tide is 352.4◦ and the force is 1.0 knot. In this case, the track
data are classified as the flood current dataset. The entire track data were classified according to the
proposed method and divided into three types of tides, as shown in Figure 6.

Figure 7 compares the track data for each tidal current situation. The representative tracks were
extracted from the learned data of the tracks of each classified dataset, as shown in Figure 8. The track
data classified according to the direction of the tide showed a specific pattern, as presented in Figure 8.
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Figure 6. Track distribution according to tidal current: (a) all current situations; (b) flood current;
(c) near slack; (d) ebb current.

Figure 7. Track comparisons according to the tide situation: (a) flood current vs. ebb current; (b) flood
current vs. near slack; (c) near slack vs. ebb current.

The distribution of the track and tide intensity at the time of the accident is shown in Figure 9.
As shown in Figure 9, two cases of veering off the designated route and one case of a stranding accident
were found, and the tide force was 2.1 knots, which was the highest recorded value for that year.
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Figure 8. Representative track model extraction results: (a) flood current; (b) ebb current; (c) flood
current vs. ebb current.

Figure 9. Observed tracks and tide intensity of the accident situation.

Figure 10 shows the track deviation from the reference point for each tide situation. The reference
point is buoy no. 16 with the reference coordinates of latitude 37◦ 33.22’ north (N) and longitude 126◦

35.11’ east (E). Deviation is defined as the distance from the reference point according to the intensity
of the tide. In the flood current, the maximum deviation was 618.57 m, the minimum was 44.04 m,
and the average was 218.15 m. In the ebb current, the maximum deviation was 151.30 m, the minimum
was −83.43 m, and the average was 96.20 m.

Figure 10. Distribution of tidal strength and deviation at all situations.

Figure 11, Table 1, and Table 2 summarize the analysis results of the deviation of the target
ship from the reference point when the tide intensity is over 1.5 knots. A simple linear regression
analysis was performed to investigate the effect of the force of the current on ship deviation in flood
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current. The results show that the force of the current has a significant effect on the ship deviation
(p = 0.040 < 0.05), and, as the tidal current increases (B = 58.057), the ship tracks are formed outside
the route. The coefficient of determination (R2), where the force of the current determines the ship’s
deviation, is 69.3%. Meanwhile, in the case of ebb current, the intensity of the tide has a significant effect
on the ship’s deviation (p = 0.002 < 0.01), and, as the intensity of the current increases (B = −434.499),
the ship tracks are formed inside the route. The coefficient of determination (R2) is 83.1%. In the case
of flood current, as the intensity of the tide increased, the pattern formed on the outer side of the
route was detected, while, in the case of ebb current, the pattern formed on the inner side of the route
was detected. The simulation results of the proposed method were obtained from a specific ship in a
specific sea area on the west coast of Korea. Therefore, in order to apply the proposed method to other
cases, it should be verified through various navigational environments and ships in multiple sea areas.

Figure 11. Relationship between track deviation and current force: (a) flood current; (b) ebb current.

Table 1. Relationship between track deviation and current force in flood current. SE, standard error.

B SE β t p

(Constant) 128.329 32.242 3.980 0.016
Current Force 58.057 19.340 0.832 3.002 0.040

R2 = 0.693, F = 9.011, (p = 0.40)

Table 2. Relationship between track deviation and current force in ebb current.

B SE β t p

(Constant) 843.410 144.743 5.827 0.001
Current Force −434.499 80.076 −0.911 −5.426 0.002

R2 = 0.831, F = 29.442, (p = 0.02)

5. Conclusions

To enable a ship’s captain, who has intrinsic authority to navigate the ship or the VTS operator
(VTSOO) who observes multiple ships in a certain area, to make timely and correct decisions, it is
necessary to predict the situation on the basis of the information provided. Since the introduction of
modern VTS systems such as radio detection and ranging (RADAR), automatic radar plotting aid
(ARPA), and AIS, they have continued to support navigators in decision-making. However, the task of
the VTSO, such as collecting, processing, and providing more advanced information, increases the
workload as the VTSO handles a large amount of ships and data. The existing position determination
and pattern recognition methods use navigational data such as speed and course according to the
position to decide whether there is a risk in the future position. Furthermore, route learning methods
and position prediction methods using machine learning theories have been developed. However, it is
necessary to study the influence of the ship’s track movements in a more detailed manner, such as the
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influence of currents or winds depending on the navigating area. In this study, it was verified that
a specific traffic pattern appears according to the intensity and direction of the tide according to the
previously proposed SVR Seaway Model, and it is suggested that these factors be considered in the
navigator’s decision-making in determining the course and speed. In other words, it is recognized that
it is necessary to utilize weather information such as tide data in predicting a ship’s track. The proposed
method should be applied on the basis of the navigational area, and it can be used by applying the
navigational data and environmental data of various waters. To further develop the proposed method,
it is necessary to collect a large amount of data so that it can be processed through advanced big data
technologies and be applied to each vessel group considering the type, size, and other particulars.
These future studies are expected to improve the decision-making process, such as course change and
speed adjustment. In addition, on the basis of this study, we intend to construct a position estimation
and optimal route setting support system considering external forces. It is expected that the study will
contribute to the prevention of marine accidents by providing valuable information to support and
enhance the decision-making process of navigators. In the future, it is necessary to further study the
development of a decision-making support tool suitable for various characteristic regions and ships.
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