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Abstract: In marine environments, ships are bound to be disturbed by several external factors, which
can cause stochastic fluctuations and strong nonlinearity in the ship motion. Predicting ship motion is
pivotal to ensuring ship safety and providing early warning of risks. This report proposes a real-time
ship vertical acceleration prediction algorithm based on the long short-term memory (LSTM) and
gated recurrent units (GRU) models of a recurrent neural network. The vertical acceleration time
history data at the bow, middle, and stern of a large-scale ship model were obtained by performing a
self-propulsion test at sea, and the original data were pre-processed by resampling and normalisation
via Python. The prediction results revealed that the proposed algorithm could accurately predict
the acceleration time history data of the large-scale ship model, and the root mean square error
between the predicted and real values was no greater than 0.1. The optimised multivariate time series
prediction program could reduce the calculation time by approximately 55% compared to that of a
univariate time series prediction program, and the run time of the GRU model was better than that of
the LSTM model.

Keywords: artificial intelligence; recursive neural network; time series prediction; large-scale ship
model; vertical acceleration

1. Introduction

With the rapid economic development occurring worldwide, the scale of maritime transport is
constantly expanding, and ship safety requirements are increasing. When a ship is at sea, its motion is
affected by nonlinear winds, waves, currents, and other marine environment characteristics. In addition,
the ship hull may be damaged under rough sea conditions. Therefore, obtaining real-time and accurate
predictions of ship motion is vital to ensure ship safety and provide early warning of risks.

Over the last century, there has been steady advancement in the power of computers;
simultaneously, data science and artificial intelligence have undergone rapid developments [1,2].
The effective combination of machine learning and artificial neural network (ANN) has been the focus
of ship motion prediction research. The long short-term memory (LSTM) model is a recurrent neural
network (RNN) used in machine learning, which has great potential in time series data prediction [3,4].
Karim et al. [5] applied the LSTM model to several complex multivariate time series classification tasks,
such as activity recognition and action recognition. Srivastava et al. [6] studied the LSTM model as a
powerful time series prediction method and investigated its potential in predicting solar irradiance.
It was observed that the LSTM model outperformed the stringent machine learning benchmarks,
proving its high accuracy in predicting irradiance. Wang et al. [7] simultaneously estimated the optical
signal-to-noise ratio and nonlinear noise power caused by fibre nonlinearity through the LSTM model.
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The aforementioned research results highlight the favourable prediction effect of the LSTM model
on time series data and its high prediction speed. These factors satisfy the accuracy and real-time
performance requirements in practice and can be used to predict ship performance.

The LSTM model has been widely used for predicting ship data. Gao et al. [8] used the LSTM
model to predict ship tracks, proving that the LSTM model has the advantages of high accuracy,
fast prediction, and easy realisation. Zhong et al. [9] used a two-way LSTM model to restore the
missing tracks of inland river ships. Sun et al. [10] used an LSTM model to predict the position, speed,
course, and other navigation parameters of a ship, verifying that the LSTM model could effectively
generate navigation time series data for an automatic identification system. Moreover, the LSTM
model provided a reliable basis for early warnings of ship collisions, search and rescue operations, and
safety monitoring. Hu et al. [11] applied an LSTM model to the shipboard winch speed predictive
control method, which addressed the poor control effect of an early neural network under complex
working conditions.

In addition to the LSTM model, remarkable progress in ship-related predictions has been made
using various neural network models. Yin et al. [12] designed an on-line prediction model of ship
rolling motion based on a variable structure basis function neural network. Beşikçi et al. [13] developed
a ship fuel consumption prediction system based on an ANN, which considers parameters such
as ship speed, draught, propeller revolutions, and marine environment effects. Wang et al. [14]
established an intelligent collision avoidance model for unmanned ships through a deep reinforcement
learning obstacle avoidance decision-making algorithm based on the Markov decision process.
Ferrandis et al. [15] compared the performance of a standard RNN with the gated recurrent units
(GRU) and LSTM models by inputting random wave elevation under certain sea conditions and
outputting the main motion of the ship, such as the pitch, heave, and roll. Gao et al. [16] employed
the genetic algorithm to optimize the radial-based neural network to predict the load demand
under fast-changing conditions. In addition, the authors used the Markov chain model to predict
the load demand under slowly changing conditions to obtain the future load demand of the ship.
Nagalingam et al. [17] presented an ensemble of extreme learning machine to estimate the longitudinal
and side force coefficients as well as the yaw moment coefficient. Abebe et al. [18] used various machine
learning regression techniques, such as the linear regression, polynomial regression, decision tree
regressor, gradient boosting regressor, extreme gradient boosting regressor, random forest regressor,
and extra trees regressor techniques, to predict ship speed. The models were finally used for actual
ship route optimization purposes. Besides, the neural networks can be used for the implementation of
continuous propeller torque demand prediction under rough sea conditions [19–21].

The existing studies on the real-time prediction of ship motion are primarily focused on full-scale
ship rolling and track predictions; however, there is inadequate real-time prediction of large-scale ship
model acceleration motion. In comparison to the time history data of ship rolling motion, the vertical
acceleration time history curve of a ship model has a higher oscillation frequency and more complex
nonlinear characteristics; thus, the time series prediction is more challenging. In this study, starting
with the method of collecting vertical acceleration time history data for a large-scale ship model, a data
pre-processing method based on Python was introduced. In addition, LSTM and GRU neural network
models under the framework of TensorFlow2 were established and were respectively applied to the
training and prediction of univariate and multivariate time series of the nonlinear vertical acceleration
time history data of large-scale ship models at sea. Finally, the prediction results were compared
and analysed.

2. Data Acquisition

In this study, the real-time prediction of the ship model vertical acceleration was performed based
on the self-propulsion test data obtained through a large-scale ship model comprehensive test system
at sea [22]. The experiment was conducted in the sea area near Qingdao, China (35.9◦ N, 120.2◦ E).
As shown in Figure 1, the glass fibre-reinforced plastic large-scale ship model was a single machine,
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single propeller, bulbous bow, square stern ore carrier type. The main parameters for this ship model
are summarised in Table 1.

Figure 1. Self-propulsion test of a large-scale ship model at sea.

Table 1. Main parameters of the large-scale ship model.

Loa, m Lpp, m B, m D, m d, m 5, m3

24.99 24.20 4.04 1.87 1.39 115.2

Loa—overall length; Lpp—length between perpendiculars; B—breadth; D—depth; d—draft; 5—displacement.

The overall layout of the related equipment on the large-scale ship model is shown in Figure 2.
As demonstrated, the data acquisition system and control system were located in the cab; the propulsion
system and auto-pilot system were installed in the aft cabin, and three vertical acceleration sensors
were arranged in the bow, midship, and stern of the ship model (10% length between perpendiculars
(Lpp), 50% Lpp, and 90% Lpp, respectively). The power of the self-propulsion ship model was provided
by the propulsion system, including the generator, integrated cabinet, motor, and propeller. Through
the console, Global Position System (GPS) and Inertial Navigation System (INS) antenna, and auto-pilot
system, the ship speed and heading could be controlled. The self-propulsion instrument could obtain
the thrust and torque of the propeller. In addition, the gyroscope could measure the roll and pitch
angles of the ship model. The acceleration time history data (a1, a2, and a3) obtained by the sensors
were stored in a computer through the dynamic signal data collector, which provided the original data
for the real-time prediction of the ship model vertical acceleration. The sensitivity of the accelerometer
was 0.40 mA/EU, and the accuracy of the accelerometer was 10−6 m/s2. The acquisition frequency of
the data collector was 100 Hz. The frequency resolution corresponding to the fast Fourier transform
(FFT) parameters was 0.0488 Hz. The FFT block length of the linear average spectrum analysis was
2000. The number of spectral lines was 800; the overlap rate was 0, and the acquisition mode was
continuous recording. The inputs (a1, a2, and a3) were obtained under the same conditions, as shown
in Table 2. For a detailed introduction of the self-propulsion test of a large-scale ship model at sea,
please refer to reference [22].

Figure 2. General arrangement of the relevant equipment on the large-scale ship model.
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Table 2. Experimental environment and conditions.

Ship Speed,
m/s

Wind Speed,
m/s

Current Speed,
m/s

Wave Period,
s

Significant Wave Height,
m

Sea Surface Temperature,
◦C

2.0 0.8 0.3 4.0 0.1 21

3. Data Pre-Processing

3.1. Resampling

Resampling is a process of converting the frequency of a time series, in which aggregating
high-frequency data into low-frequency data is called downsampling and the inverse process is called
upsampling [23]. The original data that were obtained from the large-scale ship model self-propulsion
test in the real sea area contained 180,000 points. The training and prediction efficiency of the data
would have been significantly affected by the excessive number of samples in the time series. Therefore,
it was necessary to downsample and process the equal interval time calendar data of the vertical
acceleration of the large-scale ship model. Based on the resampling method, the acquisition frequency
of the acceleration time series was reduced from 100 Hz to 1 Hz. In addition, the mean value of the
resampled packet data set was processed to use all the original time-history data.

3.2. Normalisation

Through the normalisation, different variables with different dimensions can be compared in
terms of their numerical values, significantly improving the calculation accuracy. The objective of
normalised scaling is to ‘flatten’ the data to a specified range, and the scaling size only involves the
maximum and minimum values. In this study, the data collected by three vertical accelerometers were
scaled uniformly to the range of (0, 1) and were converted into dimensionless data to improve the
prediction accuracy of the neural network model. When outputting the variables, it was also necessary
to perform anti-normalisation to restore the prediction sequence to the dimensional data.

4. Neural Network Model

It is suitable to use RNN for supervised learning problems with sequential data sets, such as
time series forecasting [24]. As a generalisation of the feedforward neural network, a ring structure
is added to the RNN to ensure that the output data of some neurons are fed back as input variables.
The result of the RNN is a combination of the previous time input and historical input, which can
be used to predict the time series; however, it will produce gradient divergence on the time axis.
The standard RNN model has both exploding and vanishing gradients, which are caused by the
iterative property of an RNN, whose gradient is essentially equal to the higher power of the recursive
weight matrix. The power of these iterative matrices leads to exponential growth or contraction of the
gradient in time steps. Simply reducing the gradients whose norms exceed a certain threshold makes
the explosive gradient problem relatively easy to handle; this technique is called gradient clipping.
If the gradient is frequently reduced by a large factor, learning will be affected, but if the norm of the
gradient is small most of the time, gradient clipping is very effective. The vanishing gradient issue
is more challenging because it does not cause the gradient itself to become smaller. Although the
component of the gradient is small in the direction corresponding to the long-term correlation, it is
large in the direction corresponding to the short-term correlation. Consequently, the RNN model can
learn short-term dependences more easily than long-term dependences [25].

Two popular and efficient improved RNN models showing excellent performance are the LSTM
and GRU models, which can learn and remember the characteristics of time series and avoid gradient
divergence. In this study, the LSTM and GRU models were used as the basic neural networks of
the real-time prediction algorithm of the large-scale ship model vertical acceleration to address the
aforementioned problems. Figure 3 shows a flow chart explaining the process from data collection to
the pre-processing and post-processing results.
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Figure 3. Scheme of the methodology.

4.1. LSTM Model

In the LSTM model, the neural network state is divided into long-term and short-term types.
The long-term state ct is unique to the LSTM model, whereas the short-term state ht resembles an
ordinary RNN. Moreover, ht is the output of the current hidden layer and input of the next hidden
layer. The architecture of the LSTM model in a single time step is shown in Figure 4, which includes
three gating units, namely, the input gate it, forget gate ft, and output gate ot. Among these gating
units, it and ft are fundamental to determining whether the LSTM model can achieve long-term and
short-term memory. The LSTM model unit has three inputs, namely, the current time input xt, previous
long-term state ct−1, and short-term state ht−1, where xt and ht−1 are simultaneously input into the
three gating units. ft determines the number of previous memory values that should be removed from
the cell state, whereas it specifies the new input to ht−1. In addition, ot determines the data output to ht

at the current time [26].

Figure 4. Long short-term memory (LSTM) model structure in a single time step (where ct is the
long-term state, ht is the short-term state, it is the input gate, ft is the forget gate, ot is the output gate, xt

is the current time input, ct−1 is the previous long-term state, ht−1 is the previous short-term state, σ is
the sigmoid function, and tanh is the activation function of the hidden layer).

The LSTM model can realise the memory function of the vertical acceleration time series of a
large-scale ship model through the switch of the gate control unit and can prevent gradient divergence.
Therefore, it can be used to deal with and perform predictions in problems that have long time intervals
and delays. Concurrently, the LSTM model can deal with noise, distributed representation, and
continuous values [27]. The specific calculation formula of the LSTM model is as follows [28]:

it = σ
(
WT

hi · ht−1 + WT
xi · xt + bi

)
, (1)

ft = σ
(
WT

h f · ht−1 + WT
x f · xt + b f

)
, (2)

ot = σ
(
WT

ho · ht−1 + WT
xo · xt + bo

)
, (3)

gt = tanh
(
WT

hg · ht−1 + WT
xg · xt + bg

)
, (4)

ct = ft ⊗ ct−1 + it ⊗ gt, (5)
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ht = ot ⊗ tanh(ct), (6)

where σ is the sigmoid function; tanh is the activation function of the hidden layer; gt is the output of
the middle layer; Whi, Wh f , Who, and Whg are the weight matrices that are connected to ht−1 for each
layer; Wxi, Wx f , Wxo, and Wxg are the weight matrices that are connected to xt for each layer; and bi, b f ,
bo, and bg are the bias vectors of the layers.

4.2. GRU Model

Compared with the LSTM model proposed in 1997, the network structure of the GRU model
designed in 2014 is simpler, with only two gated units (an update gate zt and a reset gate rt) and
without a storage unit [29]. Specifically, it and ft in the LSTM model are merged into zt without ot.
This combination is achieved by introducing a linear dependency between the current network state
Ht and the previous network state Ht−1, without distinguishing between the long and short states, to
solve the gradient divergence problem of the RNN. The architecture of the GRU model in a single time
step is presented in Figure 5. zt controls the amount of Ht−1 to be saved in Ht and the amount of the
candidate state Gt to retain in the current time. Meanwhile, rt combines the current time input xt with
Ht−1, and it specifies the degree of inheritance of Gt to Ht−1.

Figure 5. Gated recurrent units (GRU) model structure in a single time step (where zt is the update
gate, rt is the reset gate, xt is the current time input, Ht is the current network state, Ht−1 is the previous
network state, Gt is the candidate state, σ is the sigmoid function, and tanh is the activation function of
the hidden layer).

The GRU model can be regarded as a variant of the LSTM model, which simplifies the neural
network structure and retains the effect of the LSTM model. It is suitable for situations with low
hardware conditions or high time cost. The specific calculation formulas for the GRU model are as
follows [28]:

zt = σ
(
WT

Hz ·Ht−1 + WT
xz · xt

)
, (7)

rt = σ
(
WT

Hr ·Ht−1 + WT
xr · xt

)
, (8)

Gt = tanh
(
WT

HG · (rt ⊗Ht−1) + WT
xG · xt

)
, (9)

Ht = (1− zt) ⊗ tanh
(
WT

xG ·Ht−1 + zt ⊗Gt
)
, (10)

where WHz, WHr, and WHG are the weight matrices that are connected to Ht−1 for each layer and Wxz,
Wxr, and WxG are the weight matrices that are connected to xt for each layer.

5. Results and Discussion

In this experiment, the common open-source third-party libraries Pandas and NumPy that use
Python language and the TensorFlow2 deep learning framework developed by Google were utilised.
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The program ran on a desktop computer graphics processing unit (GPU). The specific configuration
of the computer is presented in Table 3. Based on the LSTM and GRU models, the univariate and
optimised multivariate time series prediction models were validated and compared, and the prediction
error performance index of each model was studied.

Table 3. Main parameters of the computer.

Operating System Windows 7 64 Bits

Central processing unit (CPU) model Intel Core i5-6500
Graphics processing unit (GPU) model NVIDIA GeForce GT 720

CPU frequency, GHz 3.2
Memory size, GB 2.0

NVIDIA GPU compute capability 3.5

Three groups of pre-processed vertical acceleration time series of the large-scale ship model were
used as the input datasets of the LSTM and GRU models. The first 60% of the time series data in each set
were used for training, and the remaining 40% of the data were used for prediction. After testing and
optimising the hyper-parameters of the neural network model, the numbers of hidden layer nodes and
training epochs in this experiment were 50 and 500, respectively, and the batch size was 128. By using
the Adam optimiser, the objective function to be minimised in the training process was the mean square
error. A regularisation method commonly used in deep learning, called dropout, was used to deal with
the prediction data to avoid the over-fitting phenomenon. In the process of neural network training,
some of the hidden layer neurons were randomly removed; the fully connected network was sparse,
and the complex co-adaptability between the neurons was reduced. Only the remaining neurons were
used to build a new neural network, enhancing the robustness of the algorithm model [30]. However,
the dropout method has a disadvantage in the sense that it will lead to decreased peak prediction
accuracy. Owing to the pitching motion of the ship model at sea, the peak accelerations of the bow
and stern of the ship model are certainly larger than those of the midship under the same working
conditions, resulting in a large overshoot.

Table 4 lists the input and output variables corresponding to 12 sets of forecast conditions.
In addition, the table presents the total run times, root mean square errors (RMSEs), and coefficients of
determination (R2) of the different programs. For the univariate time series prediction program, the
RMSE of the GRU model is lower than that of the LSTM model, the total run time of the GRU model
is reduced by approximately 8%, and the R2 of the GRU model is increased by approximately 40%.
These results are related to the simpler network structure of the GRU model mentioned in Section 4.2.
For the multivariate time series prediction program, the RMSE of the GRU model is slightly higher
than that of the LSTM model; however, its time consumption is low and R2 is higher. Moreover, the
time consumption of the multivariate time series prediction program can be reduced by approximately
55% compared to that of the univariate time series prediction program, its RMSE can be reduced by
approximately 20%, and its R2 can be increased by approximately 2.5 times. Thus, this approach has
advantages in terms of time cost and calculation accuracy. Furthermore, the time cost can be further
reduced by enhancing the hardware performance, such as the GPU computational capability.

Comparisons between the predicted and actual vertical acceleration time history data of the
large-scale ship model are shown in Figures 6–8. Combined with Table 4, the RMSEs of the LSTM
and GRU models are observed to be approximately equal and lower than 0.1, which verifies the
reliability of the neural network model and the algorithm implemented in this study. The overall
trend of the acceleration data can be predicted accurately in each case, and the multivariate time series
prediction algorithm can maintain a favourable prediction effect when the acceleration amplitude
changes significantly. Because the predicted values of the acceleration time series of the bow, midship,
and stern cannot accurately capture the actual high amplitude, the RMSE of its prediction program is
higher than that obtained from the ship data. Although there are some differences in both the R2 values
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and the plots presented, the error mainly originates from the prediction of the peak value, and the
prediction RMSE of the algorithm remains acceptable. Figure 9 considers case 8 as an example to show
the loss curve of the neural network model training and prediction. The final loss is approximately
0.02. Moreover, no over-fitting occurs, which further verifies the accuracy of the prediction results.

Table 4. Forecast conditions.

Cases Neural Network
Model

Input
Variable

Output
Variable

Total Run
Time, s RMSE R2

1 LSTM a1 a1 76.71 0.093 0.189
2 GRU a1 a1 70.54 0.091 0.293
3 LSTM a2 a2 76.67 0.061 0.116
4 GRU a2 a2 70.62 0.060 0.154
5 LSTM a3 a3 76.75 0.087 0.179
6 GRU a3 a3 70.76 0.085 0.231
7 LSTM a1, a2, a3 a1 34.01 0.077 0.510
8 GRU a1, a2, a3 a1 32.95 0.079 0.535
9 LSTM a1, a2, a3 a2 33.58 0.043 0.599

10 GRU a1, a2, a3 a2 32.65 0.043 0.601
11 LSTM a1, a2, a3 a3 33.47 0.069 0.610
12 GRU a1, a2, a3 a3 32.92 0.071 0.617

Figure 6. Predicted bow acceleration.

Figure 7. Predicted midship acceleration.
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Figure 8. Predicted stern acceleration.

Figure 9. Loss comparison (Case 8).

6. Conclusions

Accurate prediction of the ship motion state is essential to ensure the safety of ships and provide
early warning of risks. This report proposed a real-time ship model vertical acceleration prediction
algorithm based on the LSTM and GRU models. Through pre-processing operations, such as resampling,
and normalisation of the vertical acceleration time series of a large-scale ship model, the data structure
could be simplified and the computational efficiency of the algorithm could be significantly improved.
By comparing and analysing the prediction results of the different neural network models with
univariate and multivariate inputs, the following conclusions can be drawn:

(1) The proposed algorithm can accurately predict the acceleration time history data of large-scale
ship models at sea. In addition, the RMSE between the predicted and actual values was less than
0.1, the local prediction accuracy was affected by the high amplitude of the time history data,
the final loss for neural network model training and prediction was approximately 0.02, and no
over-fitting occurred.

(2) The optimised multivariate time series prediction program could reduce the computing time
by approximately 55% compared to that of the single-variable time series prediction program.
In addition, the GRU model presented several advantages in terms of simplifying the neural
network and improving the run time.

Consequently, multivariate time series prediction algorithm based on the GRU model has better
application value in the actual environment that was considered in this study. The algorithm proposed
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in this report can predict future acceleration values even tens of seconds in advance. Combined with the
risk assessment procedure, safety warning can be provided, and measures, such as reducing the speed,
changing the course, and starting an anti-rolling device can be considered in advance. The acceleration
can be utilized to evaluate the ship strength and seakeeping performance by analysing the hydroelastic
responses and obtaining the response amplitude operators using Fourier analysis. Additionally,
the algorithm can be employed to make predictions for other artificial intelligence systems, including
motion prediction, risk assessment, and structural deformation detection. Future studies need to focus
on improving the generalisation ability and stability of the LSTM and GRU models. Finally, more key
parameters should be introduced into the prediction model in future research, and these parameters
should be combined with more variables to obtain more accurate prediction results.
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