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Abstract: Based on the two-dimensional linear wave theory, the effects of the front wall thickness
and the bottom profile of an Oscillating Water Column (OWC) device on its efficiency were analyzed.
Using the potential flow approach, the solution of the associated boundary value problem was
obtained via the boundary element method (BEM). Numerical results for several physical parameters
and configurations were obtained. The effects of the front wall thickness on the efficiency are
discussed in detail, then, various configurations of the chamber bottom are presented. A wider
efficiency band was obtained with a thinner front wall. In a real scenario having a thinner front
wall means that such a structure could have less capacity to withstand the impact of storm waves.
Applying the model for the case of the Mutriku Wave Energy Plant (MWEP), findings showed that
the proposed bottom profiles alter the efficiency curve slightly; higher periods of the incoming water
waves were found. This could increase the efficiency of the device in the long-wave regime. Finally,
the numerical results were compared with those available in the literature, and were found to be in
good agreement.

Keywords: boundary element method; oscillating water column; front wall thickness; submerged
gap; bottom geometry; hydrodynamic efficiency

1. Introduction

It has been suggested that wave power has the potential to provide most of the world’s electricity
needs in the short term [1]. A wide variety of systems have been proposed, of which only a few have
reached full-scale prototype deployments [2]. Among the deployed systems, the OWC system has been
shown to be one of the most promising devices. It is probably the system that has been most studied
and is one of the few to have been tested at full-scale. OWCs can be located offshore, near-shore or on
the shoreline, and placed on the seabed or fixed to a rocky cliff [3]. Since the design and construction of
OWCG:s are strongly site-dependent, their location and anchorage points are of the most critical aspects,
as well as the most influential in economic terms.

In light of this, installing an OWC device into a breakwater was seen as a means to provide many
benefits and thus encourage further development of OWC technology [4]. The breakwater provides
shelter and contributes to coastal protection by reducing wave reflection. An OWC power plant within
a breakwater has the advantage of being relatively easy to install and maintain, having no mooring
systems and underwater electric cables. With construction and maintenance costs shared, and the
operation of the power plant being easier, energy extraction is more cost-effective. Although the waves
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found near the coast are less energetic, this can, in part, be compensated by the natural concentration
of wave energy due to shoaling, refraction and diffraction [5].

The first integrated breakwater-OWC system was built in the port of Sakata, Japan, in 1990 [6].
Subsequently, the Basque Energy Agency (Ente Vasco de la Energfa or EVE for its acronym in Spanish)
employed this concept in Mutriku, The Basque Country, Spain, opening the Mutriku Wave Energy
Plant in July 2011, Figure 1. This plant consists of 16 units built onsite that are 4.5 m wide, 3.1 m depth,
and 10 m high (above Maximum Equinoctial Spring Tide Low Water). For each unit, a hole of 0.75 m
diameter leads to a Wells turbine and electrical generator of 18.5 kW [7], yielding the total 296 kW
with a 100 m breakwater. The MWEDP section of the breakwater is the first multiple OWC plant in
the world and is currently the only OWC device in operation that regularly supplies power to the
grid. However, regarding its performance, the initial expectations have not been met because of the
poor design in some of the chambers that provide moderately different pressure at the inlet of their
turbines [8]. This is because the breakwater that houses the Wells turbines was manly designed to
maximizing the protection of Mutriku harbour and not for wave energy harnessing.

(@) (b)

Figure 1. Location and turbo-generators of the MWEP. (a) Location of the harbour at Mutriku (source:
Google Maps [9]). (b) Bird’s eye view of Mutriku harbour and the OWC-breakwater system. (source:
geoEuskadi [10]). (c) Mutriku Wells Turbo-generators (source: EVE [11]).

In this context, another factor contributing to the plant’s reduced electricity output could be
the changes made to the front face of the original design. The area is regularly affected by severe
storms and during the construction of the power plant, three storms hit the MWEP producing severe
structural damage to a number of the OWC chambers [12]. As a consequence, the front face of the
chambers was reinforced to withstand the wave loads, using prefabricated concrete slabs, so that now
the thickness of the front wall has doubled the length of the chambers, Figure 2. This alteration was
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made to save the structure of the plant, but without considering the effect that this would have on the
device performance. The main focus of this work is, therefore, the evaluation of the influence that the
front wall thickness of an OWC-breakwater system has on its hydrodynamic performance as an OWC.

It is important to note that the success of the OWC system will depend on the coupling between
the chamber and the power take-off (PTO) system. In this sense, a good turbine design, an effective
control strategy and the matching of the turbine to the OWC collector to ensure efficient collector
operation are essential [13]. Furthermore, the peak performance of most OWC systems occurs at
resonance, which takes place when the incident wave frequency coincides with the natural frequency
of the converter. Therefore, to operate optimally at resonance, the OWC chamber design plays a
significant role to obtain higher efficiencies. Typically the chamber geometrical configuration is chosen
to produce a column whose natural frequency of oscillation coincides with that of the most occurring
wave at the location where the OWC will be installed [14]. In this sense, the variability of sea state
conditions can influence the OWC feasibility, because, once installed, the size and shape of the structure
can be hardly modified.

(a) (b)

Figure 2. Comparison between the original and the present-day design of the integrated
breakwater-OWC system in Mutriku. (a) View of the MWEP in 2008 (Reproduced with permission
from [6]). (b) Mutriku OWC (source: EVE [11]).

Over the last years, a variety of analytical, numerical and experimental techniques have been
employed to study the effects of the geometrical configuration of an OWC on its hydrodynamic
efficiency. Wang et al. [15] studied the hydrodynamic performance, both numerically and theoretically,
of an OWC device with arbitrary topography near the shoreline. They reported that as the bottom slope
increases, the peaks in capture-width ratios become lower frequency values, concluding that a change
in water depth at the shoreline has a significant effect on the hydrodynamic performance of an OWC.
The effect of front wall geometry on OWC hydrodynamic efficiency was analyzed by Thomas et al. [16].
Their experimental study concluded that the overall peak in hydrodynamic efficiency is not influenced
greatly by the front wall geometry. Martins-rivas and Mei [17] presented a theoretical model for a
cylindrical OWC installed on a cliff coast. It was found that air compressibility helps optimize the
power absorption efficiency while the angle of incidence significantly affects the waves outside the
chamber but not the averaged response inside or the capture length of energy absorption. Senttirk and
Ozdamar [18] carried out a theoretical analysis of an OWC which had a gap in its fully-submerged
front wall. They showed that it is possible to increase the efficiency of an OWC with a surface piercing,
barrier-type front wall when appropriate geometrical parameters are taken into consideration.

Rezanejad et al. [19] analyzed the impact of stepped bottom topography in the efficiency of
a nearshore OWC device. They reported that there are significant effects when there is a stepped
bottom profile outside of the chamber. Ning et al. [20] studied the performance of a fixed OWC
device based on a time-domain higher-order BEM in a 2D fully nonlinear numerical wave flume.
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They investigated the hydrodynamic performance, with, and without, a bottom slope in the OWC
chamber, and reported that the geometric parameters of the air chamber have a significant influence on
hydrodynamic efficiency. The configuration of the bottom profile on the hydrodynamic performance
of the OWC was investigated experimentally by Ashlin et al. [21]. Flat, circular, curved and sloped
bottom profiles were tested in a wave flume. It was found that the OWC with a circular curved
bottom profile was more effective in wave energy conversion, as was the wave amplification factor
inside the chamber. The effects of the incident wave amplitude and geometric parameters on the
hydrodynamic efficiency of a fixed OWC were investigated by Ning et al. [22]. They concluded that
the incident wave amplitude and the bottom slope have a small influence on the resonant frequency,
while the optimal hydrodynamic efficiency increases with an increase of bottom slope. A theoretical
model based on linear potential flow theory to study the performance of a circular cylindrical OWC
along a vertical coast/breakwater without the thin-wall restriction was proposed by [23]. The authors
concluded that the incident wave direction and the thickness of the circular chamber wall both play an
important role in the wave power captured by the OWC. By employing the eigenfunction matching
method, Zheng et al. [24] developed a theoretical model to evaluate the hydrodynamic performance
of multiple circular cylinder OWCs installed along a vertical straight coast. It was found that due to
the effects of constructive wave interference from the OWCs array and the coast, the hydrodynamic
performance of the OWC devices was enhanced significantly for a certain range of wave conditions.
Zheng et al. [25] studied the effect of the radius of the entrance to the chamber and the finite wall
thickness of the tubular-structure. They demonstrated that wave power extraction is greater with
a thinner chamber wall thickness, mainly in terms of a broader primary band of efficiency curves.
Using a coupled eigenfunction expansion—BEM—Koley and Trivedi [26] analyzed the hydrodynamic
performance and efficiency of an OWC device placed on an undulated seabed. They concluded that
the OWC structural design and bottom profile can significantly increase the hydrodynamic efficiency.
A 2D BEM model for analyzing the OWC’s response in general bathymetry regions was carried out
by [27]. They showed that the effects of the bottom slope and curvature on the OWC performance
could be important, especially when the wave climate leads the site-specific optimal design to low
resonance frequencies.

2. Aims and Methodology

In the specialized literature, there still remains a lot to be investigated regarding the improvement
of the OWC efficiency by modifying its structural configuration. To the authors’ knowledge,
a numerical study for analyzing the interaction of water waves with an OWC-breakwater system
considering a wide front barrier has not been examined in the past. The fundamental hypothesis
of the present work is that the hydrodynamic efficiency can be highly affected when a thick front
barrier is employed. This reduction to the efficiency could be explained by the fact that the transfer of
energy from the incoming wave to the internal free surface due to the orbital wave motion is reduced.
A reduction in energy transmission then may lead to a decrease in the internal free surface oscillation
for driving the air column, which consequently diminishes the output power.

Furthermore, by following the same idea of a wide front barrier but now considering the physical
dimensions of a chamber in the MWED, three different bottom profiles inside the chamber are then
proposed to analyze their influence on the hydrodynamic efficiency. These proposed varying bottom
profiles are a slope, a cycloid and an ellipse. This proposal is motivated by the fact that a curve bottom
profile can exhibit better performance in terms of wave energy conversion and wave amplification
inside the chamber, as it was experimentally studied by [21]. For this purpose, a numerical study for
analyzing these curved profiles inside the chamber is also proposed.

Thus, this work examines the two-dimensional hydrodynamic interaction of ocean waves with an
OWC device. Linear wave theory for a constant sea depth is employed and the viscous effects and the
nonlinear air compressibility are neglected. The associated Boundary Value Problem (BVP) is then
solved by the BEM employing three noded quadratic elements. The present formulation is novel in
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addressing the influence of a wide front wall and the use of BEM with a second-order discretization.
The main interest of this work a) lies on the analysis of the bandwidth reduction on the efficiency
curves due to an increment on the front wall thickness, and then, b) based on the geometric dimensions
of the MWED, to study alternatives for increasing the efficiency by considering a modification in the
bottom profile inside the OWC chamber. Numerical estimates for the hydrodynamic efficiency and
the radiation susceptance and radiation conductance coefficients are presented for a range of different
parameters. Furthermore, numerical results for particular cases are validated with the previous results
obtained by Evans and Porter [28] for a thin vertical surface-piercing barrier next to a vertical wall,
and Sentiirk and Ozdamar [18] for an OWC with a gap on a fully submerged front wall.

3. The Boundary-Value Problem

For the present study, the Cartesian coordinate system was chosen, with the x—axis corresponding
to the opposite direction of the wave propagation and the z—axis corresponding to the upward
direction. The origin of the coordinate system lies on the undisturbed free surface and the left-vertical
wall inside the chamber. The OWC is this rigid wall, situated at x = 0, extending down to the sea
bottom and complemented by a vertical, surface-piercing barrier, at x = b, with a thickness w and
a draft h,, as shown in Figure 3. The front barrier is denoted by L, = {(x,z) : (x = b, —h, < z <
OUb<x<b+wz=—h)U(x=b+w,—h, <z<0)}, at the left side of the chamber entrance,
the vertical length of the gap between the immersed tip of the barrier and the bottom is defined by
Ly = {(x,z) : x = b,—he < z < —h,}, the rigid vertical wall by S, = {(x,z) : x = 0,—h < z < 0},
the internal free surface inside the water column by S; = {(x,z) : 0 < x < b,z = 0}, the external free
surface by S¢ = {(x,z) : b+w < x < 00,z = 0} and the bottom by S, = {(x,z) : (0 < x < b,z =
—hU(x=b-h<z<-h)Ub<x<b+wz=—-h)U(x=b+w,~h<z<—-h)U((b+w<
x < oo,z=—h)}

b w
Z
1559 1
OWC Chamber Incident wave
-~
00) x ~7.
N A

Figure 3. Definition sketch of an OWC device with a thick front wall.

The fluid is assumed to be inviscid and incompressible and linear wave theory is applied, ignoring
the effect of surface tension. By assuming an irrotational flow and simple harmonic in time with
angular frequency w, there is thus a velocity potential ®(x,z,t) with ®(x,z,t) = Re{¢(x,z)e ¢!},
where Re{ } denotes the real part of a complex expression and ¢ is the time. The spatial velocity
potential ¢ then satisfies the Laplace equation

o ¢

— + =% =0, 1

o a2 @)
along with the no-flow boundary condition on the solid boundaries such as the barrier, the rigid
vertical wall and the bottom described by

g—i =0 for (x,z) €S Sy and L, (2)
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together with the continuity of pressure and horizontal velocity given by

_ 29 _ o x=b,
¢— =¢+ and Friiiatt- for (x,z) € Ly on {x:ber. (3)

Inside the chamber, by imposing a pressure distribution over the internal free surface P(t) and
after considering simple harmonic motions for the free surface 7 = Re{Ze '“!} and P(t) = Re{pe ¢!},
the dynamic and kinematic free surface boundary conditions are

g, _
<P+w§— pa)p on z=0, 0<x<b, (4a)
op

a—z+1wg:0 on z=0, 0<x<b, (4b)

and on the external free surface with p =0

¢+%C:O on z=0, b<x <o, (5a)
op .
g—l—m)C:O on z=0, b<x<oo. (5b)

Thus, by combining Equations (4) and (5), the internal and external linearized free surface
boundary conditions are

0 WP on z=0, 0<x<b,
ET(P_K(P: P8 (6)
z 0 on z=0, b<x<oo,

respectively, where K = w?/g, with ¢ being the gravitational constant and p the seawater density.
Here, as described by [28], the potential is decomposed into two parts as follows

iwp

R, 7
pg<i> 7)

9(x,2) = 9" +

The scattered potential ¢° represents the solution of the scattering of an incident wave coming

from x = +c0 in the absence of an imposed pressure on the internal free surface inside the chamber,

satisfying Equations (1)-(6) with p = 0; while the radiated potential ¢R represents the solution

of the radiation problem due to the pressure imposed on the internal free surface and satisfies
Equations (1)—(6) with Equation (6) replaced by

P~ R
g—Kgb =1 on z=0, 0<x<b, (8)
which is due to an oscillating pressure distribution on the internal free surface in the absence of
incoming waves.

The Sommerfeld radiation condition describes the far field boundary condition for the diffraction
and radiation problems as follows:

a(PD’R

Fra ikpPR =0 as X — +0o, 9)

where ¢ represents the diffracted potential that together with the incident potential ¢! composed the
scattered potential ¢°, while k represents the wave number and is the real root of the wave dispersion
relation given by

w? = gktanh kh, (10)
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whose solution of this expression can be easily determined by a root-finding algorithm.
On the other hand, the time harmonic induced volume flux across the internal free surface,
Q(t) = Re{ge !} (see [28]) is given by

_ [ 9, 5, iwp g
q—/siaZdX—q+pgq, (11)

where % and gR are the volume fluxes across S; in the scattering and radiation problems, respectively.
Thus, by using the continuity of volume flux across the internal free surface and the gap between the
barrier tip and the sea bottom, we obtain

. 34)5,1% a¢S,R
SR _ _
g7t = /Si e dx = /Lg py dz. (12)

Finally, the volume flux g for the radiation problem is separated into real and imaginary parts

as follows .
iwp

4

where Z = B —iA is a complex admittance and A and B are analogous to the added mass and

R =—(B-iA)p=-Zp, (13)

the radiation damping coefficients of the forced oscillation of a rigid body system immersed in an
ideal fluid and, following [28], are called the radiation susceptance and the radiation conductance
parameters, respectively, described by

~ w

A = ZRe{g}}, (14a)
og {a°}

~ w R

B = ZIm{g}}, (14b)
Py {97}

where Im{ } denotes the imaginary part of a complex expression.

Efficiency Relations

Since in practice it may be easier to control the volume flux through the turbines than the pressure
drop across it [29], a linear relationship between these two without a phase lag is assumed,

q=(A—i0)p, (15)

where A is a real control parameter, related to the damping induced to the airflow by the linear turbine
and 0 = wVy/ (ypa) represents the effect of compressibility of air in the chamber with Vj being the
air volume inside the chamber, 7y the specific heat ratio of air equal to 1.4 and p, the atmospheric air
pressure [30]. The sign in A is taken to be positive since, in contrast to Equation (13), the pressure forces
and volume fluxes are both measured vertically upwards. Equation (15) assumes that the pressure
inside the chamber is uniform and the air exits to the atmosphere through the turbine, a characteristic
of Wells turbines that has been widely investigated for OWC devices. Using Equations (11), (13)
and (15) an expression for the pressure in the chamber can be found

S
1 (16)

P=A¥z—ig
The total rate of working of the pressure forces inside the OWC is basically Q(t) x P(t).
By averaging this over one period, the mean power absorbed per unit width of pressure distribution
is obtained .
W= ERe{p*q}, (17)
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where * denotes complex conjugate. Now, by using Equations (11) and (13) on this last expression,
we obtain

W= %Re{p* (1" -2p)} = % (Re{p*a°} - BlpP?). (18)

The expression (18) can be re-written in the form

* ~ 2
1sosa1 1 q° °\ _1¢°F _B| ¢°
g1 1 2 (p 2B 2B 88 2|7 2B (19)
where if B! exists, the maximum work is
Wmax - |qs~‘2/ (20)
8B
when
qS
=1 21
P=3E (21)

showing that A = (Z — ig)" for maximum power.
By combining previous Equations (16) and (19), it is finally obtained Equation (22):

. 2
P [1_<|AZ+1Q>1. 2

8B A+ Z —io|

Now, in order to optimize the power conversion efficiency, the last term in the square brackets
must be minimized. As in Sentiirk and Ozdamar [18], this can be done by finding the optimum value
of A, which can be evaluated by applying zero value to the derivative for the squared-right term inside
the brackets of Equation (22) with respect to A, and thus obtaining

~ ~ 1/2
Nopt = 1Z —ig| = (B2 + (A+9)*) . (23)

Therefore, the maximum value of extracted work at this condition becomes,

, (24)

SR [ Aopt— B
Wope = 17 [1_ ot

8B Aopt + B

where A, B and A are function of the angular frequency w which means that for each wave frequency,
the turbine parameter must be altered appropriately to satisfy Equation (23).
Thus, the expression for maximum efficiency is expressed as

Wopt o 2B

= = —, 25
Nmax W Aopt+B (25)

where the maximum hydrodynamic efficiency is bounded by 0 < #4x < 1. From expression (23),
it is clear that when the radiation susceptance parameter is zero and the air compressibility term
is neglected, it results in Agpr = B, Wopt = Winax and #ax = 1, thus implying that the device has
effectively absorbed all of the incident wave energy. In this situation, the free surface inside the
OWC chamber is characterized by a piston-like resonant mode and the PTO damping optimization
is satisfied [31]. To remain at this condition, the rate of energy extraction must equate to the rate of
radiation damping while the internal free surface must remain in a state of resonance. Physically,
this requires that the radiated waves, resulting from the oscillatory heave motion of the internal free
surface, superpose and cancel the incident and scattered waves; in this instance, the device has thereby
captured all of the incident wave energy [16].
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Now, as in [28] the non-dimensionalised quantities # and v to represent the radiation susceptance
and radiation conductance coefficients are defined as

_ P8 &

B= wa, (26a)
_ P8

V= bi (26b)

respectively, where the radiation conductance coefficient v is related to the transfer of energy into the
system, while the radiation susceptance coefficient i to the energy that remains un-captured [19].
Therefore, by substituting these coefficients into Equation (25), the efficiency #ax is

2
(1+ (%)Z)MH

which is independent of the incident wave power and only depends on the radiation solution of the
volume flux g.

, (27)

Nmax =

4. Solution

In this section, the BEM is used to solve the BVP in the frequency domain. In order to solve the
governing equation together with the appropriated boundary conditions, a quadratic distribution of
variables along each element is considered. The integral representation of the solution for the Laplace
equation Equation (1) at any point source P inside the domain Q) in terms of the boundary values of ¢
and d¢/0n is given by

a(P)¢p(D) + / ¢(q _q dry = / (P a}i‘_’)drq, (28)

where ¢ is the unknown flow potential; d¢/dn is the derivative of the potential relative to normal unit

vector on the boundary I'; dT is the length of an infinitesimal piece of I'; § an arbitrary point; while ¢

and d¢/dn are the fundamental solution of Laplace equation and its normal derivative at point § of

the boundary, respectively; and & = 6 /27, where 0 is the internal angle of the corner in radians [32].
The fundamental solution of Laplace equation is given by

p=-inr, (29)

where 7 is the distance between the source P and the arbitrary point §.
Now, discretizing the boundary into a series of NE elements, Equation (28) can be written as

i NS [0 o
ap +]Z%/r¢and 2/1/; dr. (30)

In order to define the values of ¢ and d¢/9dn on each element, three noded quadratic elements are
employed, Figure 4. The variables ¢ and d¢/dn are thus written in terms of interpolation functions,
$1,2,3, which are function of a homogeneous coordinate & as follows

P(Z) = P19" + P29 + G3¢°, (31a)
0 0 o3
(gf) = a(l;q 92 a(l; s aq; (316)
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where the superscript indicates the number of the node, while the interpolation functions are given by

r=5EE-1), (322)
=5 (1-0)(1+0), (32b)
p3=5E0+0), (320

with the dimensionless coordinate ¢ varying from —1 to 1. Now, carrying out the integrals from
Equation (30) over an element j, these can be written as

4)1
Y . 0P . 0P L 0P
—dl‘:/ % ar / % ar / War| e 33
/rjqban lrj ‘Plan T ‘Pzan T (p38n j;a (33)
and

o’

o¢p dn,
—dr:/Adr,/Adr,/Adr-ai. 34
| van [rﬁ””" [ oyt [ gy ] - G4

9

on

d)j+3 or ¢nj+3 d)/+2 or ¢nj+2

A ‘ ¢j+1 or ¢nj+l
¢j+4 or ¢nl+4 (j+1) -element >
EEE U
—

J -element

¢or ¢,

i - element

i-node i+1 -element

i+1-node
i+2-node

Figure 4. Schematic diagram of the modeling of the boundary with quadratic elements.

Here, it is observed that in order to solve the integrals Equations (33) and (34), the calculation
of the Jacobian is required since they are a function of the boundary I' in the x — z plane, while the
interpolation functions are a function of ¢. This transformation is given by

oo () () - e

where | indicates the Jacobian and can then be substituted into Equations (33) and (34). Additionally,
in order to calculate the value of Equation (35), the variation of the x and z coordinates in terms of ¢
must be also known. This can be carried out in the same way as the variables ¢ and d¢/9dn, with the
use of the quadratic interpolation defined by

x = g1t + ox® + ¢3x°, (36a)

z = ¢12' + go? + §32°, (36b)
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where again the superscript indicates the number of the node. Thus, Equation (30) can be written as

NE ¢! / NE o3 J
aig'+ Y (), nd, W] S h =Y ol o &) ez (37)
j=1 4)3 j=1 4)13;
where
ij o9
I =/71 ¢k(§)£|f|d«§, (38a)
sl = [ a@wiriaz, (38b)

withk =1,2 and 3 and h;(] and g;cj are estimated by using a Gauss integration method with ten points
to account for the quadratic variation of the element geometry, the potential and flux. More details
regarding the numerical procedure for solving these integrals can be found in [33,34].

Furthermore, as explained by [33], in order to consider the possibility of having different values
of ¢, at node 3 of an element and at node 1 of the next adjoining element, the fluxes are arranged
in a 3x NE array where a position is held for each nodal value of every element. However, in the
case of the potential ¢, its value is always considered unique in the connection between two elements.
Therefore, the values of ¢ can be arranged in an N array, where N is the number of nodes equal to
2NE for closed boundaries. Thus, Equations (37) can be written as

1)/

1

n

"
4)1 ] %

ai<pi+[H“, HfN] ;4 =[G, .. GINE]. : , (39)

¢N 1 NE

>

n

3

n

with AY being equal to the h; term of an element plus the i3 term of the previous element for odd
nodes and equal to the /i, term of the corresponding element for the central nodes. On the other hand,
Gl are 1x3 matrices with the elements {gij , g;j, g;/} . Therefore, the whole system of equations can be
simply written as follows

H® = GO, (40)

where H is a square matrix N x N, ® is an N x 1 vector, G is a rectangular matrix N x 3NE and ®, is
an 3NE x 1 vector.

Furthermore, as previously described by [19], in order to avoid the numerical errors arising from
the cases where a very thin front wall of the device is considered, the method of subdomains is used to
solve the BVP by applying the BEM separately to each of its regions [32,35]. The domain is then divided
into three separate regions which have a common interface boundary on both lateral sides of the front
wall as shown in Figure 5a. For each subdomain the following vectors are defined: in region R1

° CID%, <I>n% Nodal values on I'; of the external boundary.
o ol ®,1, Nodal values on the interface I'j,

where the superscript denotes the region, while the subscript denotes the corresponding external
boundary or interface. The number of the nodal points on I'; and I'y; are Ny and Ny, respectively.
In region R2

e @ ®,3 Nodal values on I'; of the external boundary.
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. @%2, ®,3, Nodal values on the interface I'15.
o @3, ®,,3; Nodal values on the interface '3,

where the number of the nodal points on I'y, I'j; and I'>3 are Np, Ny and Np3, respectively. In region R3

° <D§, (I>n§ Nodal values on I's of the external boundary.
. d)%3, d)n%3 Nodal values on the interface I'p3,

with N3 and N3 being the number of the nodal points on I'; and I'p3, respectively.
Since ¢ is unknown on either side of the interfaces I'i and I'p3, the number of boundary unknowns
in each subdomain is:

e Region1l: NjonI'j and Ny onT'y).
e Region2: Ny on Iy, Njp on Ty and Np3 on I'3.
e Region 3: N3 onI'3 and Np3 on I'ps.
On the other hand, for ¢, which is defined on the three nodes of each element, it is given by:
e Region1l: M; =3NE; onI'; and Mj; = 3NEj; onTI'.
[] Region 2: Mz = 3NE2 on Fz, Mu = 3NE12 on F12 and M23 = 3NE23 on 1"23.
e Region 3: M3 = 3NE; onI'3 and Mj3 = 3NEj3 onI'p3,
where NE; denotes the number of elements depending on the boundary or interface.
Furthermore, in order to match the regions and to obtain the same number of unknowns and
equations, the physical consideration of continuity of the potential and flux at the interfaces Equation (3)

should be made. Thus, assuming that the nodes in I';» of R1 and R2, and the nodes in I'y3 of R2 and
R3 are in perfect contact, Figure 5b, the following physical consideration at the interfaces can be made:

o  Continuity of the potential: The values of the potential on each side of the interface separating
two subdomains must be equal
1 _ @2

2 _ @3
Dy = P

o  Continuity of the flux: The outcoming flux from one subdomain is equal to the incoming flux in
the adjacent subdomain. Thus, the flux along the normal of the interface requires

1 2
®ny; = —Paiy (42)
®n3; = —Pnis,

where the minus signs in the right hand side of Equation (42) indicate that the two flux vectors at
the common interface of adjacent subdomains are in opposite directions.

Therefore, the matrix equation for each boundary subdomain is as follows: for the boundary
subdomain R1

@} Dy
1 1 1 1
[(H)} [HL] [q,fj = (G161 |t |- (43)
while for the boundary subdomain R2
2 2 2 <I)%22 2 2 2 (Dn%zz
(H2, (HE (HE] | 2| = [[Gh, (GB (G |@ad . (44)
3 D3
23 n23
and for the boundary subdomain R3
3 31193 _ e (o3 ] | Pn3 45
15 (3] | g7 | =168 168:] | g (45)
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Equations (43)—(45) of the three subdomains may then be combined in a single matrix equation as

] d’ﬁ_
[H]} [H):, © 0 0 0 0 2122
! 12 2 2 2 22 —
0 0 [H]Z [H]12 [H]23 0 0 q>12 -
0 0 0 0 0 [H] [HE] |%;
@3
(@3
TRE
@nj
G} G, 0 0 0o 0 0 .3

0 0 [G [Gl, [Gl3 0 0 | |®nd|, 6)

where the left-hand side matrix and vector have dimensions of N x N and N x 1, respectively, with N =
N1 + Nz + N3 + 2Nj) + 2Np3, while the right-hand side matrix and vector of N x 3NE and 3NE x 1,
respectively, with SNE = M + My + M3 + 2Mj; + 2M>3. Now, since the nodes on I'1; and I'p3 are

in perfect contact, the matrices can be further arranged by combining the coefficients of the related
variables as follows

—Q%_
@},
[H} [Hp 0 0 0 0 0] |®3
0 [Hf, [H 0 [H3 0 of|0|=
0 0 0 0 [Hj [H} of |®%
@3
L 0 |
_¢n%_
®n1,
G} [Gli 0 0 0 0 0] | ®n3
0 —[G} [G3 0 [G33 O 0O 0 |. @
0 0 0 0 —[Ch [G5 0] @3
¢3
n3
[ 0 |

Finally, after inserting the boundary conditions specified in Equations (2), (6), (8) and (9),
and shifting the known variables to the right-hand side and the unknowns to the left-hand side,
a matrix of the following form is obtained

[AJ{X} = {B}, (48)

where {X} is a vector consisting of all the unknown values on the external boundary and on the
interfaces of dimension N x 1; [A] is known square coefficient matrix of dimensions N x N whose
columns are columns of H and columns of G after a change of sign or sum of two consecutive columns
of G with the opposite sign when the unknown is the unique flux at the interfaces at a node connecting
two elements [33]; while { B} is a known vector of dimension N X 1.
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Figure 5. Boundary element discretization of the composite domain. (a) Separation of the BVP into
three regions. (b) Discretization of the three regions.

5. Results and Discussion

In this section, numerical results based on the BEM discussed in the previous section are presented.
First, by considering a thick front wall and ignoring the influence of the air compressibility (i.e., ¢ = 0),
the effect of the chamber configuration on the hydrodynamic efficiency, radiation susceptance and
radiation conductance coefficients is analyzed. Then, based on the physical dimensions of a single
chamber of the MWEDP, the effects of three different bottom profiles and the air compressibility on
the efficiency are studied. It should be mentioned here that in order to minimize the effect of local
disturbances at the far-field boundary, for the boundary discretization the distance between the front
wall and the far-field boundary was considered to be 4 times the water depth h.

On the other hand, before performing the rest of the numerical calculations, a convergence
analysis was carried out. In Table 1, the results of the hydrodynamic efficiency 7, radiation susceptance
# and radiation conductance v for four different Kh values are given. It is observed that around
480 nodes (240 quadratic elements) are enough to ensure convergence of the numerical results within
three decimal places and also to avoid numerical instabilities that arise when the front wall thickness
w tends to zero. Therefore, in the present calculations, all the BVPs are discretized through 480 nodes.

Table 1. Values of hydrodynamic efficiency #,qx, radiation susceptance coefficient s and radiation
conductance coefficient v computed for different number of nodes N with h,; /h = 0.125,b/h = 1.0 and
w/b=0.5.

Kh = 3.8329 Kh = 2.2657 Kh = 1.2054 Kh = 0.5074
1 # v 1 # v 1 # v 1 I v
560 02808 —02926 0.0484 04335 —03595 0.1035 08621 —0.6287 07299 09425 0.6507 1.2787
480 02814 —02940 00488 04337 —03598 01037 08622 —0.6295 07312 09425 06519 1.2806
400 02822 —02957 0.0492 04340 —03602 01039 08624 —0.6305 07329 09424 06534 1.2830
328 02833 —02982 00499 04343 —03608 01042 08626 —0.6318 07352 09423 06556 1.2861
256 02848 —03018 00508 04349 —03616 01046 08629 —0.6338 07386 09422 0.6587 1.2906
200 02856 —03071 00519 04370 —03644 01061 08636 —0.6373 07451 09418 0.6649 1.2978

N

5.1. Front Wall Thickness

To validate the numerical method described here, the numerical results for the limiting case of
Evans and Porter [28] were used. In the case of h,/h = 0.125, b/h = 1, while w and k. tending to zero,
the efficiency obtained by the present formulation was compared with the corresponding results of
[28] for an OWC device with a horizontal topography, as shown in Figure 6a. The circles in Figure 6a
depict the results of [28], whereas the line represents the results calculated by the present method. It
can be seen that both results are in good agreement.

The numerical results of the efficiency #uqx versus Kh for different thickness ratios
w/b(=20,1.5,1.0,0.5, and 0.01) in a flat bottom (without considering h,) are shown in Figure 6a.
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In this figure, it is seen that by increasing the thickness of the front barrier, the bandwidth of the
efficiency curves is reduced and their first peak frequency value is shifted to lower values of the
non-dimensional frequency Kh. This reduction in the efficiency is explained by the fact that the energy
transfer due to the wave motion over small periods is reduced when the front barriers are greater
in thickness. However, in a real scenario, during severe storm events, or during times of high water
levels, the front barrier is subjected to high loads, due to direct wave action [36-39], and a slender front
wall cannot offer protection to the whole system, as occurred at the MWEP [12]. Therefore, special
consideration should be given to this structural aspect.

On the other hand, Figure 6b shows the effect on efficiency of different submergance ratios
ha/h(= 0.125,0.250,0.500, and 0.750), together with a front barrier of the same thickness as the OWC
chamber (i.e,, w/b = 1.0). In this figure, it is observed that the effective area of efficiency, under the
curve, and the magnitude of the first natural frequency, both increase when the front wall h;/h
decreases. Nevertheless, for a relatively small i, /h, and considering that changes in water depth due
to tidal variations and extreme waves may take place, a small draft may mean that the trough of a
wave propagates below the front wall. This should be considered at the design stage, since in this
situation the pressure within the chamber would be equivalent to the atmospheric pressure, causing
the power available inside the OWC device to be zero and thus decreasing the efficiency.
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Figure 6. Hydrodynamic efficiency versus Kh. (a) For various thickness ratios w/b with h, /h = 0.125
and b/h = 1.0. (b) For different submergence ratios h,/h withw/b = 1.0and b/h = 1.0.

The variation of the radiation susceptance and radiation conductance coefficients versus Kh
when h,;/h = 0.125 and b/h = 1.0 for different values of w/b(= 2.0,1.5,1.0,0.5, and 0.01) is shown
in Figure 7a,b, respectively. In Figure 7a it is observed that the frequencies for which y is zero are
related to the peaks of maximum efficiency shown in Figure 6a, which is also evident from the
maximum efficiency Equation (27). Figure 7a also shows that when the thickness ratio w/b increases,
the range of the non-dimensional frequency Kh for which y is negative also increases. As previously
mentioned, the radiation susceptance y is related to A which is analogous to the added mass of the
forced oscillation of a rigid body system. In this sense, the above-mentioned negative values in u
are may be due to the relevance of the free-surface effects of the internal free surface enclosed by the
rigid wall and the surface-piercing front barrier. Negative values in the added mass are a common
phenomenon in the theory of submerged and floating moving bodies in a fluid, such as when one or
more elements of a structure enclose a portion of the free surface or two-dimensional cylinders are
close to the free surface [40,41]. Furthermore, as demonstrated by Falnes [42], negative added mass
occurs when an oscillating body produces a water motion where the associated potential energy is
greater than the associated kinetic energy.
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Figure 7b shows that the peaks in the radiation conductance v are associated with those observed
in Figure 6a. Together with Figure 7a, this shows that by increasing the radiation conductance
coefficient v, with respect to the radiation susceptance coefficient y, an increase in the power extraction
capacity can be attained. In this sense, the radiation conductance coefficient v indicates the degree to
which the system absorbs energy at different frequencies.

Figure 7c,d show the numerical results of the radiation susceptance and radiation conductance
coefficients, respectively, versus Kh with w/b = 1.0, b/h = 1.0 and for different submergance ratios
ha/h(= 0.125,0.250,0.500, and 0.750). In Figure 7c it is observed that by increasing the front wall
draft h, with respect to h, the value of Kh for which y first become zero decreases, which is associated
with the first resonance frequency inside the chamber, while the range of Kk for negative values of u
increases. On the other hand, Figure 7d shows that a larger draft decreases the frequency at which
this resonance occurs. It can also be observed that the peak resonance become more prominent the
further the barrier is submerged. With a large draft, conditions are similar to those in a closed tank
with parallel sides, where a second resonance mechanism occurs when the incident wave frequency is
such that the fluid inside the chamber is excited into an antisymmetric sloshing mode [28]. In this case,
the sloshing frequencies occur at values of the dimensionless wave number kb = n7, with n being the
sloshing mode. For the case presented in Figure 7d, it is observed that the second peaks in v due to the
first sloshing frequency take place close to Kh ~ 7.

Figure 8a plots the numerical results of the efficiency #,4x versus Kh for various wall to front
barrier spacing ratios b/h(= 1.0,0.5,0.25, and 0.125) with h,/h = 0.125 and w/b = 1.0 with in a flat
bottom. As reported by [19,28], large motions inside the chamber occur when the fluid between the
front barrier and the back wall is excited by the incident wave into a resonant piston-like motion inside
the OWC. An estimation of this natural frequency of oscillation can be obtained for small values of
b/h and so the water contained between the walls can be regarded as a solid body. By employing
simple hydrostatic modelling gives that the expected resonance occurs at Kh =~ h/h,. In the present
case, this resonance would occur at Kk = 8, which is seemed to be approached for smaller values of
b/h. On the other hand, for a longer chamber, the frequency at which this resonance occurs is smaller.
Physically, this is due to the fact that by increasing the length of the device, the horizontal distance a
typical fluid particle must travel during a period of motion increases. This can also be obtained in the
vertical direction by increasing the draft of the front wall. As a consequence, a decrease in the value of
Kh at which resonance occurs is caused, and since an increase in b/h allows more local fluid motion
inside the chamber, this leads to a breakdown in the solid-body model of resonance, and the amplitude
of oscillation decreases.

Figure 8b illustrates the condition when a step, as long as the front wall, is placed below the latter
with b, /h = 0.125,b/h = 1.0 and w/b = 1.0. First, a comparison of the present formulation with the
limiting case of Sentiirk and Ozdamar [18] of an OWC device with a gap in its fully submerged thin
front wall, together with the nondimensional parameters h,/h = 0.125, ho/h = 0.625,b/h = 1.0 and
w/b = 0.01, is shown in Figure 8b. It can be seen that both results agree very well. Then, it can be
observed that the smaller the distance between the front wall and the step, the lower the magnitude of
the non-dimensional frequency Kh at which resonance occurs. This is similar to the trend observed
when the draft of the front wall is increased without considering the step, Figure 6b. A larger gap leads
to a wider range of frequency bandwidth as it increases the transference of energy due to wave motion.

The numerical results for the radiation susceptance and radiation conductance coefficients versus
Khwhen h,; /h = 0.125 and w/b = 1.0 for different values of b/h(= 1.0,0.5,0.25, and 0.125) are shown
in Figure 9a,b, respectively. In Figure 9a, it is observed that when the wall to front barrier spacing is
sufficiently small, compared to the depth h, the range of the non-dimensional frequency K# for which
the radiation susceptance is negative decreases. Thus, when a small draft is considered, the b/ ratio
is important for the occurrence of negative values of the radiation susceptance coefficient. On the
other hand, Figure 9b shows that when the length of chamber b increases with respect to the depth £,
the radiation conductance coefficient peaks are maximum for longer periods. Consequently, since v is a
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measure of the transfer of energy into the system, it may be beneficial to design the chamber length of
the OWC device so that the range of frequency bandwidth in the radiation conductance coincides with
the most occurring wave period of a particular location and thus exploit the available wave energy as
much as possible.

Figure 9¢,d show the radiation susceptance and radiation conductance coefficients, respectively,
versus Kh for various step to bottom ratios h./h with h,/h = 0125, b/h = 1.0 and w/b = 1.0.
On one hand, Figure 9c shows that the variation from positive to negative in the radiation susceptance
increases when the vertical spacing between the step and the front wall decreases. On the other hand,
Figure 9d shows an increasing and narrowing peak for the radiation conductance coefficient, as the
gap is reduced, decreasing the magnitude of the resonance frequency.
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Figure 7. The radiation susceptance and radiation conductance coefficients versus Kh. (a) The radiation
susceptance coefficient for various thickness ratios w/b with h,/h = 0.125 and b/h = 1.0.

(b) The radiation conductance coefficient for various thickness ratios w/b with h,/h = 0.125 and
b/h = 1.0. (c) The radiation susceptance coefficient for different submergance ratios h,/h with
w/b =1.0and b/h = 1.0. (d) The radiation conductance coefficient for different submergance ratios
ha/hwithw/b=1.0and b/h = 1.0.
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Figure 8. Hydrodynamic efficiency versus Kh. (a) For various wall to front barrier spacing ratios
b/h with h;/h = 0.125 and w/b = 1.0. (b) For various step to bottom ratios h./h with h,/h = 0.125,
b/h=1.0and w/b = 1.0.
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Figure 9. The radiation susceptance and radiation conductance coefficients versus Kh. (a) The radiation

susceptance coefficient for various wall to front barrier spacing ratios b/h with h,/h = 0.125 and

w/b = 1.0. (b) The radiation conductance coefficient for various wall to front barrier spacing ratios b/h

with h,/h = 0.125 and w/b = 1.0. (c) The radiation susceptance coefficient for various step to bottom
ratios he /h with h;/h = 0.125,b/h = 1.0 and w/b = 1.0. (d) The radiation conductance coefficient for
various step to bottom ratios h./h with h;/h = 0.125,b/h = 1.0and w/b = 1.0.



J. Mar. Sci. Eng. 2020, 8, 751 19 of 27

Figure 10a,b show a comparison of the present formulation with the experimental results obtained
by Thomas et al. [16] and Wang et al. [43], respectively. First, in the case of a thick front wall considered
by Thomas et al. [16], the OWC dimensions employed in the calculations are h = 0.92m, b = 0.64 m
h; = 0.15m and w = 0.08 m, while in the case of comparison with Wang et al. [43], the dimensions
areh =080m, b =0.55mh; = 0.14 m and w = 0.04 m. From Figure 10a,b, it is observed that by
comparing the maximum theoretical efficiency and the experimental efficiency, the discrepancy is
significant. The numerical solutions overpredict the hydrodynamic efficiency since it neglects the
wave nonlinearity and the viscous dissipation, but the resonant frequencies and the shapes of the
hydrodynamic efficiency curves predicted by the present numerical method agree well with each
experiment [20,22]. It should be pointed out that the present formulation is based on the assumption of
an ideal fluid and, therefore, viscous effects and flow separation due to the front wall are apparently the
main cause of difference between the experimental and numerical results. Furthermore, another factor
contributing to this discrepancy may be attributed to the rate of energy extraction modelled by the
PTO system and the energy loss through it by viscous dissipation during the experiments.
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Figure 10. Hydrodynamic efficiency versus (a) Kk and (b) kh. (a) Comparison with experimental
results obtained by Thomas et al. [16] for a thick front wall. (b) Comparison with experimental and
numerical results obtained by Wang et al. [43].

In this sense, it is worth mentioning that #,,,x = 1 theoretically means that the OWC device
effectively captures all the incident wave energy, a condition that in practice is not feasible, due to the
radiated wave generated by the oscillatory motion of the internal free surface, the scattering waves by
the device and various viscous damping previously mentioned [20]. Thus, in a real scenario, a value
of #ax = 1 could never be achieved because of the energy loss through viscous dissipation as the
fluid flow interacts with the chamber geometry and the PTO modelling. It should be mentioned that
the effect of vortex and flow separation, which occur near the front wall, can be simulated well by
introducing an artificial viscous damping term to the dynamic free surface boundary condition inside
the OWC chamber and thus, to account for the energy loss due to vortex shedding and flow separation
as previously reported by [20,22,43-45].

5.2. Bottom Profile

In this subsection, an analysis is made, based on the physical dimensions of the MWEP and on the
highest and lowest tidal levels, Figure 11. The influence of different bottom profiles, the linear turbine
damping and the linearized air compressibility inside the chamber on the hydrodynamic efficiency are
evaluated. However, it should be noted that in this study the effect of the non-linear phenomena that
occur in the interaction between the waves, the OWC device and the trapped air inside the chamber,
such as viscous flow separation, turbulence, wave breaking and thermodynamic processes, are not
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taken into account. These aspects may play an important role in the performance of the OWC when
variations in the bottom chamber are considered.

3.10 6.65
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Chamber Incident wave
—(M—— Front wall B it ;v_———— —_—a——-
13.1 HEST 5.10
LEST 0.60
y
A
2.80
y
Flat bottom ~  reeeeeessssseeeeen Slope bottom
---------- Cycloidal bottom ————— Elliptical bottom

Figure 11. Definition sketch of a single chamber in the Mutriku Wave Energy Plant (Dimensions in
meters. Chamber width = 4.5 m; HEST = Highest equinoctial spring tide and LEST = Lowest equinoctial
spring tide).

The varying bottom profiles proposed are defined in the interval 0 < x < b and given by:

Q) x — hy, Sloped bottom,
z=—h(x) =4 ), bh (49)
5 ) Vb* — x2 — h, Elliptical bottom,

while the cycloidal bottom is given by the parametric equation
x(0) =7 (0 +sind — ) +b, (50a)

z(f) = # (cosO+1) —h, (50b)

with 0.56416 < § < 7t and # = 1.51759 m.

In Figure 12, the numerical results for 1:1 sloped bottom profile with different linear turbine
damping coefficients, A, are compared with the experimental results obtained by Ashlin et al. [21]
for a wave steepness Hy, /A varying from 0.0320 to 0.0371. Regarding the numerical results presented
here, it is worth noting that these are independent of the wave height since linear wave theory was
employed for the formulation of the BVP. In order to perform the calculations, the OWC dimensions are
those used by Ashlin et al. [21] in their experiments; these are i = 0.500 m, /1, = 0.200 m, b = 0.300 m,
w = 0.012 m, a chamber width of I = 0.471 m and a distance from the internal free surface to the top of
the chamber of s = 0.400 m. In order to see better the agreement between the results, the least-squares
method was applied to the experimental data presented by [21] to obtain a best-fit second-order
polynomial curve. Figure 12 shows that the numerical solution and the experimental results of [21]
are in good agreement for a linear turbine damping coefficient A =5 x 10~* m*:s/kg. However, it is
observed that by comparing the maximum theoretical efficiency obtained from Equation (27) and
the experimental efficiency, the discrepancy is high. Therefore, special attention should be paid to
turbine damping, as well as non-linear effects, in order to make an adequate estimation of the power
absorption of an OWC device.
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Figure 12. Hydrodynamic efficiency versus period T for different values of linear turbine damping
coefficient A, without considering the step.

Figure 13a—d show the numerical results of the maximum #,y versus the incoming wave period
T for the cases when the HEST and LEST take place and the linearized air compressibility is considered.
The range of wave period used in these figures is related to mean wave periods reported by [8].
In Figure 13a,c the maximum efficiency was obtained from Equation (25) with ¢ = 0, while in
Figure 13b,d, the optimum value of the damping coefficient (A,pt), calculated from Equation (23),
was employed to obtain the hydrodynamic efficiency by considering the linearized air compressibility
inside the chamber. In all the figures it can be seen that the efficiency band shifts slightly to the right as
the bottom of the chamber becomes steeper, generating a slightly higher efficiency for higher periods.
Figure 13a,b show that for incoming wave periods of less than 8 s, the flat bottom inside the chamber
gives maximum efficiency. As reported by [21], this is due to the higher reflection generated by the
curved bottom, together with the energy reflection caused by the front and back walls of the OWC
device, for shorter wavelengths. The cycloidal and elliptical bottoms decrease the efficiency because
these profiles reduce the section of the entrance of fluid particles, obstructing the waves and leading
to a decrease in the internal free surface oscillation which drives the air column. This consequently
diminishes the output power. The natural frequency of the system is seen to alter slightly for the
different bottom profile configurations. Figure 13c,d show the efficiency in the case of the lowest
equinoctial spring tide. As expected, compared with the HEST, the period at which resonance takes
place is reduced due to the lower front wall draft, /1, = 0.60 m. Furthermore, as observed in Figure 6b,
Figure 13c shows that the efficiency effective area under the curve increases with a shorter front
wall draft. However, in the case of Mutriku, where significant wave heights of 4 m are common [8],
this small draft increases the possibility that the wave trough propagates below the front wall, and thus
reduces efficiency. Regarding the effect of the volume of air inside the chamber, compared with
Figure 13b, Figure 13d shows that efficiency is significantly reduced when the air volume is larger.
Comparing Figure 13d to Figure 13c shows that the period at which resonance occurs is independent
of the damping condition and is mostly determined by the natural frequency of the water column.
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Figure 13. Hydrodynamic efficiency in the cases of HEST and LEST versus T for different bottom

profiles. (a) Maximum efficiency versus T with ¢ = 0 for various bottom profiles with h = 7.90,
ha/h = 0.646,b/h = 0.392 and w/b = 2.145 in the case of the HEST. (b) Maximum efficiency versus
T for various bottom profiles with h = 7.90, h,/h = 0.646, b/h = 0.392 and w/b = 2.145. in the case
of the HEST. (c¢) Maximum efficiency versus T with ¢ = 0 for various bottom profiles with i = 3.40,
ha/h =0.176,b/h = 0.392 and w/b = 2.145 in the case of the LEST. (d) Maximum efficiency versus T
for various bottom profiles with i = 3.40, h,/h = 0.176, b/h = 0.392 and w/b = 2.145 in the case of
the LEST.

6. Conclusions

The effects of the chamber configuration of an OWC device on efficiency were numerically
analyzed, using the BEM, employing quadratic elements. Comparisons were made of these numerical
results with theoretical limiting cases obtained by Evans and Porter [28] and Sentiirk and Ozdamar [18]
for a thin front wall and very good agreement was achieved. Numerical estimates for the hydrodynamic
efficiency and the radiation susceptance and radiation conductance coefficients were then obtained
for different physical configurations. Experimental results reported by Thomas et al. [16] and
Wang et al. [43] were compared with those obtained by the present formulation; resonance frequencies
and shapes of the hydrodynamic efficiency curves were found to be in good agreement. The main
conclusions drawn from this study are as follows:

e By increasing the thickness of the front barrier, the bandwidth on the efficiency curves is reduced.
This reduction in efficiency could be related to the fact that the transfer of energy from the
incoming wave to the internal free surface, due to the orbital wave motion, is reduced for short
wave periods when the front barrier is thicker.

e  For a thick front barrier, a further reduction in the efficiency effective area under the curve is
obtained when the front wall draft is increased.
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e  When the OWC chamber length-water depth ratio b/h is decreased, the period of maximum
hydrodynamic efficiency is shorter. Consequently, an OWC chamber in which the range of
frequency bandwidth in 7,4, coincides with the predominant wave period of a particular location,
will mean the available wave power will be made better use of.

e It was observed that the incorporation of a step below the front wall reduces the bandwidth on
the efficiency. This step gives a similar effect as that observed when the draft of the front wall is
increased in an OWC with a completely flat bottom.

e It was also observed that when the wall to front barrier spacing is sufficiently small, compared to
the depth, the range of the non-dimensional frequency K#, for which the radiation susceptance
coefficient is negative, is significantly reduced.

e By comparing the maximum theoretical efficiency with the experimental efficiency reported by
Ashlin et al. [21] for a wave steepness H/ A varying from 0.0320 to 0.0371, the discrepancy is seen
to be high. Therefore, special attention should be paid to turbine damping, as well as to non-linear
effects, in order to make an adequate estimation of the power absorption of an OWC.

o  When sloped, cycloidal or elliptical bottom profiles in a chamber of the MWEP were considered,
it was seen that the efficiency band slightly shifts to longer periods, as the bottom of the chamber
becomes steeper, generating slightly higher efficiency for longer wavelengths.

e  For small periods, it was found that compared with the flat bottom, the sloped, cycloidal and
elliptical bottoms diminish the hydrodynamic efficiency. This is due to the reduction of the part of
the chamber entrance for the fluid particles, obstructing the waves and leading to a decrease in
the internal free surface oscillation which drives the air column.

e It was observed that in the case of LEST in the MWED, the efficiency band becomes wider as the
draft is reduced. However, when the air volume inside the chamber is greater, the efficiency is
significantly reduced.

e By comparing the different bottom profiles, it was found that the period in which resonance
occurs is almost independent of the bottom geometrical configuration and it is mostly determined
by the natural frequency of the water column.

This paper is only a numerical investigation on the hydrodynamic performance of an OWC device
based on the linear wave theory. Experimental investigations that include the non-linearities on the air
compressibility and the turbine damping should be carried out in the future. Finally, it is hoped that
the results of this study may provide valuable information for the clean and efficient harnessing of
marine renewable energy.
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Abbreviations

The following abbreviations are used in this manuscript:

BEM Boundary Element Method
BVP Boundary Value Problem
MWEP  Mutriku Wave Energy Plant
EVE Ente Vasco de la Energia
HEST  Highest equinoctial spring tide
LEST Lowest equinoctial spring tide
OWC Oscillating Water Column
PTO Power take-off
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A wave amplitude
[A] square coefficient matrix
A radiation susceptance parameter
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the imaginary unit

Jacobian
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front barrier boundary
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normal unit vector

number of boundary nodes
number of boundary elements
number of fluxes defined at the corresponding boundary
spatial pressure distribution
time-dependent pressure distribution
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atmospheric air pressure
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arbitrary point
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time-dependent volume flux
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bottom boundary
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S¢ internal free surface boundary
S; external free surface boundary
t time

T incident wave period

Vo air volume inside the chamber
w front wall thickness

W mean work absorbed

Wiy  maximum work
Wopt  optimum work

X horizontal axis

z vertical axis

Z complex admittance

Greek Letters

% internal angle parameter

specific heat ratio of air

boundary

spatial free surface elevation
time-dependent free surface elevation
maximum hydrodynamic efficiency
internal angle between two elements
parameter

wavelength

linear turbine damping coefficient
optimum linear turbine damping coefficient
radiation susceptance coefficient

radiation conductance coefficient
homogeneous coordinate

density of water

air compressibility term

spatial velocity potential

radiated velocity potential

scattered velocity potential

time-dependent velocity potential

vector containing the velocity potential values
interpolation functions

2D fundamental solution of Laplace equation
angular frequency
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