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Abstract: In the past few years, unmanned aerial systems (UAS) have achieved great popularity
for civil uses. One of the present main uses of these devices is low-cost aerial photogrammetry,
being especially useful in coastal environments. In this work, a high-resolution 3D model of a
beach section in Guardamar del Segura (Spain) has been produced by employing a low maximum
takeoff mass (MTOM) UAS, in combination with the use of structure-from-motion (SfM) techniques.
An unprecedented extensive global navigation satellite system (GNSS) survey was simultaneously
carried out to statistically validate the model by employing 1238 control points for that purpose.
The results show good accuracy, obtaining a vertical root mean square error (RMSE) mean value of
0.121 m and a high point density, close to 30 pt/m2, with similar or even higher quality than most
coastal surveys performed with classical techniques. UAS technology permits the acquisition of
topographic data with low time-consuming surveys at a high temporal frequency. Coastal managers
can implement this methodology into their workflow to study the evolution of complex, highly
anthropized dune-beach systems such as the one presented in this study, obtaining more accurate
surveys at lower costs.

Keywords: UAS; GNSS; coastal environment; validation; DSM; dune systems; survey; 3D point
cloud; SfM

1. Introduction

The coastal dune ecosystems located in arid climate regions represent a unique biotope because of
the mutual influence between marine and terrestrial systems. In addition, coastal areas are some of the
most popular tourist destinations worldwide. Due to its good climate, together with the great number
and length of its beaches, the Spanish Mediterranean coast constitutes one of the most important
attractions for domestic and international mass tourism, exploiting the “sun and beach” tourism
model [1]. For those reasons, a precise understanding of the beach-dune ecosystems is critical, as they
are dynamic areas subject to rapid changes. Apart from natural factors, these ecosystems can be greatly
altered by human action, which affects their stability, eventually causing their destruction [2,3].

Dunes in coastal environments are problematic landforms to analyze, owing to the complex
interaction among vegetation, topography, aeolian, and marine processes that affect them. For that
reason, it is crucial to frequently monitor the terrain to detect dune changes over time in an appropriate
way. Traditional surveying methods for obtaining accurate data usually require a large amount of time
and labor, even using cutting-edge technologies such as real-time kinematic (RTK) global navigation
satellite system (GNSS) surveys [4]. Even though the use of transects might be adequate for modeling a
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linear and fairly uniform element such as a beach, in a dune area the probability for different transects
to correctly represent the behavior of a wider zone decreases dramatically because of the existing
horizontal distance between transects [4,5]. Additionally, the reduced resolution of the field data often
makes it difficult to obtain accurate volumetric measurements of the dune system.

Emerging terrestrial laser scanning (TLS) technologies offer very accurate infield measurements
but they often need to deploy multiple scanning stations throughout the study area due to their
limited scanning range and shadow effects caused by obstacles, topography, and vegetation, causing a
decrease in performance [6,7]. Moreover, TLS surveys generate an enormous volume of data, which is
time-consuming to process, as well as requiring large amounts of storage. Light detection and ranging
(LiDAR) systems employed on low altitude flights have been shown to deliver both accurate horizontal
and vertical measurements [8]. Various studies have proven the capacity of LiDAR data to represent
large coastal areas with sufficient precision (with vertical root mean square (RMS) accuracy values
typically ranging from 0.13 to 0.19 m), and its capability to monitor changes over time [9–11]. However,
it cannot provide data with a comparable spatial resolution and vertical accuracy with respect to TLS
and GNSS-based methods. In addition, airborne missions (especially those involving LiDAR) are
expensive and complex to organize, so data collection depends in most cases on government-sponsored
flights, which reduces or even interrupts their coverage over time [4].

In the present decade, the appearance of affordable low maximum takeoff mass (MTOM)
unoccupied aerial systems (UAS) for civil uses, combined with the progress made in modern imagery
algorithms, such as structure-from-motion (SfM), has rapidly increased the use of photogrammetric
techniques based on UAS to build high-resolution digital surface models (DSM) for studying a
wide variety of surface processes [12]. UAS-based photogrammetry provides numerous advantages
in contrast with the aforementioned methods. It permits the study of specific zones through fast,
high-performance surveys at the desired sample frequency with quality results [13,14].

There are multiple examples of UAS applications in dynamic natural environments: (i) landslide
monitoring [15–17]; (ii) fluvial dynamics [18,19]; (iii) vegetation monitoring [20–22]; or (iv) coastal
environment surveying [13,23–28].

This investigation is performed on the dune-beach system of Guardamar del Segura coast in
Alicante (Spain), where the sustained recession of the shoreline caused by the anthropogenic pressure
has severely damaged the dune system and ruined nearby buildings (Figure 1) [29]. The motivation of
this work is to assess the feasibility of UAS to undertake periodic precision surveys at much lower
costs in the Spanish Mediterranean coast and similar environments by comparing it with classical
ground surveying methods, considering the current restrictions existing in these protected zones, as
well as national and local UAS regulations [30]. The present study evaluates the applicability of UAS to
dune-beach surveys in terms of costs and accuracy. It also analyzes and validates the obtained digital
surface model (DSM) with respect to the different types of existing surfaces and contrasts the resulting
validation parameters with previous studies made in similar conditions and environments.

For these purposes, a field campaign of flights with a consumer low-cost UAS has been conducted
to map the foredune and the adjacent beach. The procedure of UAS image collection and the SfM-based
photogrammetric process is described and subsequently analyzed by comparing and validating the
results obtained with an unprecedented simultaneous extensive GNSS-based survey involving 77
ground control points (GCP) and 1238 validation points. Results show that UAS is a more precise,
faster, and less expensive method than the classical ground surveys. The methodology and results
obtained in this work may be useful for studying these valuable areas at risk over time.
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Figure 1. Effects of the shoreline recession on nearby buildings, caused by anthropogenic stress: (a) 
shoreline in 2008; (b) same view in 2017. 
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2.1. Area of Study 

The study area comprises the coastal area that extends from the north of the town of Guardamar 
del Segura (Alicante, Spain) to the mouth of the river Segura, belonging to Los Viveros Beach. In 
particular, it ranges from the shoreline and a nearby pedestrian road for accessing the zone, covering 
a surface area of 57,000 m2, forming a rectangular region with a length of approximately 525 m and a 
width of 120 m (Figure 2). The prevalent wind directions are ENE and NE, both with a frequency of 
15%. A small increase in both frequencies and speeds has been detected in the last decade, with 
maximum speeds not exceeding 10 m/s. The tidal range is negligible and is only influenced by 
weather conditions, giving values of approximately 0.3 m [31]. 

 

Figure 1. Effects of the shoreline recession on nearby buildings, caused by anthropogenic stress: (a)
shoreline in 2008; (b) same view in 2017.

2. Materials and Methods

2.1. Area of Study

The study area comprises the coastal area that extends from the north of the town of Guardamar
del Segura (Alicante, Spain) to the mouth of the river Segura, belonging to Los Viveros Beach. In
particular, it ranges from the shoreline and a nearby pedestrian road for accessing the zone, covering
a surface area of 57,000 m2, forming a rectangular region with a length of approximately 525 m and
a width of 120 m (Figure 2). The prevalent wind directions are ENE and NE, both with a frequency
of 15%. A small increase in both frequencies and speeds has been detected in the last decade, with
maximum speeds not exceeding 10 m/s. The tidal range is negligible and is only influenced by weather
conditions, giving values of approximately 0.3 m [31].
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As it is one of the main tourist places in the county, this area is under enormous anthropogenic
pressure, not only from the town’s inhabitants, but also from residents of nearby cities and foreign
tourists. Additionally, the surrounding urban area recently experienced a strong growth, becoming
massively populated, especially during the summer season.

2.2. UAS Field Campaign

The UAS field campaign for data acquisition took place on 12 June 2017, with clear skies and calm
periods alternating with weak winds of 2–3 m/s. The equipment used for this study was a low take-off

weight UAS model, the DJI Phantom 4 quadcopter (Dà Jiāng Innovations Science and Technology Co.
Ltd., Shenzhen, China), valued at $1500 (Figure 3a). This device was equipped with a FC330 built-in
camera and a 1/2.3” CMOS sensor with a maximum resolution of 12.4 Mpixel. The lens has a 94◦ field
of view (FOV), with a 35-mm equivalent focal length of 20 mm and a f/2.8 aperture. It was provided
with three 6000 mAh smart batteries that allowed a net flight time of nearly 20 min per battery, totalling
one hour per field session. For the mission planning and flight control, the iOS application Pix4D
Capture (Pix4D SA, Prilly, Switzerland) was used. The UAS position, status, and the video signal were
continuously monitored on the operator screen during the whole flight.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 5 of 16 
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Only two 15-min flights were needed to complete the survey, departing from two different
take-off and landing points. The flight path was established in a double mesh layout (longitudinal and
latitudinal), permitting redundant overlap of the pictures taken, which is essential for creating a 3D
model using SfM algorithms. The flight altitude was set at 60 m above ground level, taking a picture
every 2–4 s. The latitudinal overlap was set to 70%, and the longitudinal overlap was fixed to 80%.
The average spatial resolution of the images was 2.5 cm/pixel. Two flights were necessary to cover the
study area, and a total of 622 images were taken. The flight mission was developed as planned, with
no remarkable incidents that could add possible sources of uncertainty.

As the study area is classified as a public domain protected space, it is not allowed to leave
any permanent element, including ground control points (GCPs). This fact is even more relevant
considering that the zone is frequently crowded during the summer and other holiday periods, making
it extremely difficult to keep the permanent GCPs away from people. A total of 77 temporary GCPs
were placed before the flight mission and acquired using a Leica Viva GS16 GNSS receiver equipped
with real-time kinematic (RTK) positioning technology, used to improve the accuracy of location data
acquired from the GNSS (Figure 3a). These points are indispensable for accurately georeferencing the
aerial images in the SfM process. Figure 3c shows the target model used for that purpose.

2.3. GNSS Survey

For the purpose of statistically validating vertical and horizontal errors from the UAS survey
and to assess the accuracy of the obtained DSM, a total of 1238 complementary GNSS points were
surveyed (Figure 4a) in dissimilar characteristic surfaces: dune, beach, road, and wooden walkways.
To perform this survey the same Leica Viva GS16 GNSS equipment was used (Figure 4b). This device
was linked to the GNSS reference station network of Valencia (ERVA network) via GPRS/3G connection,
using RTK with the NTRIP-based network solution to obtain the coordinates in ETRS89 datum. This
technology does not consider the distance to the closest station, but the receiver must be inside the area
of the triangle defined by the reference stations, as in this case. The accuracy of the acquired data was
±20 mm, both in XY and Z coordinates. The GNSS campaign was carried out the same day as the UAS
survey, which involved a 12-h work session, in order to have identical topographic conditions as for
the UAS survey.
J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 6 of 16 

 

(a) 

 

 

(b) 

Figure 4. (a) Location of GNSS survey points; (b) co-author performing the GNSS survey in the study 
area. 

2.4. SfM-Based Photogrammetry 

A photogrammetric procedure based on a SfM algorithm is required for building a high-
precision 3D terrain model from the UAS images. Agisoft Photoscan (recently renamed as Agisoft 
Metashape)Professional Edition software (version 1.2.4, Agisoft LLC, St. Petersburg, Russian 
Federation) was selected for this work due to its essentially automated workflow, founded on multi-
view 3D reconstruction technology, and for its suitability for UAS image processing. Moreover, this 
software is widely used by researchers worldwide, as it requires little training in SfM 
photogrammetry, but at the same time offers good quality results. The general workflow for 
processing the UAS images is divided into seven different steps (Figure 5). 

  
Figure 5. Workflow followed for SfM modelling (left); a snapshot of Agisoft Photoscan software, 
showing the position of the images, photo alignment, and camera settings, the location of GCPs, and 
the dense point cloud finally obtained (right). 

Figure 4. (a) Location of GNSS survey points; (b) co-author performing the GNSS survey in the
study area.



J. Mar. Sci. Eng. 2019, 7, 297 6 of 16

2.4. SfM-Based Photogrammetry

A photogrammetric procedure based on a SfM algorithm is required for building a high-precision
3D terrain model from the UAS images. Agisoft Photoscan (recently renamed as Agisoft Metashape)
Professional Edition software (version 1.2.4, Agisoft LLC, St. Petersburg, Russian Federation)
was selected for this work due to its essentially automated workflow, founded on multi-view 3D
reconstruction technology, and for its suitability for UAS image processing. Moreover, this software is
widely used by researchers worldwide, as it requires little training in SfM photogrammetry, but at the
same time offers good quality results. The general workflow for processing the UAS images is divided
into seven different steps (Figure 5).
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The first step consists of adding images obtained from the UAS, and their camera positions and
orientation derived from the UAS sensors, which are contained in the EXIF metadata of the image files.
In the next stage, i.e., photo alignment, the software locates tie points among each pair of overlapping
images, then adjusts the camera position and orientation for each photo, and eventually builds the
sparse point cloud model. The parameters used are shown in Figure 5.

The third step consists of marker placement. Markers are high-precision points distributed
throughout the studied area used to optimize camera positions and orientation. This process produces
better model reconstruction results and comprises the location of the visible GCPs on each image
and the placement of a marker on the corresponding place. The software automatically identifies the
position of the markers on every related image, but a manual inspection and a position refinement of
the markers is often required to assure good accuracy of the resulting point cloud. For that reason, this
stage is usually the most time-consuming one. Lastly, the actual marker coordinates are imported from
a file containing the actual coordinates of the GCPs obtained from the GNSS survey.

In the fourth stage of the workflow, camera alignment optimization, the position of the images is
recomputed taking into account the previously defined GCPs. PhotoScan settings are established to
ensure that the optimization procedure will not consider the camera position given in the images’ EXIF
metadata, which is less accurate than that obtained via GCPs. For this purpose, the camera accuracy is
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set to 10 m and the marker accuracy is 0.001 m, so the resulting point cloud will be georeferenced in
terms of XYZ coordinates.

In the next stages, the software calculates the depth map for each camera and combines all of
them into a single dense point cloud. The resulting output can be exported as an orthoimage or as a
raster DSM, both using the desired coordinate system in a GeoTIFF file format.

SfM techniques demand high computing capability to process and view the resulting models.
The technical specifications of the computer used for this task are shown in Table 1.

Table 1. Technical specifications of the computer used for the photogrammetric process.

Element Specifications

CPU model Intel Core i7-2670QM
CPU speed 2.2 GHz

CPU cores/threads 4 cores, 8 threads
CPU internal cache 6 MB

Memory 8 GB DDR3 RAM
GPU NVIDIA GeForce GT 540M

GPU memory 2 GB DDR3 RAM
Hard disk Samsung 850 EVO SSD 250 GB

Operating system Microsoft Windows 10 64-bit

3. Results and Discussion

3.1. SfM Process Results

The main parameters resulting from the SfM process are presented in Table 2. After processing
the images obtained from the two flights, the resulting orthoimage (Figure 6a), the DSM, and the dense
point cloud (Figure 6b) were merged into a single dataset for the entire area of study. Almost 2.8 million
points form the dense point cloud, which constitutes a three-dimensional model of the surface, with
an average density of nearly 30 points per square meter. The digital surface model of the study area
was created from the dense point cloud (Figure 6c), with a mean planimetric accuracy of 0.089 m and
0.079 m accuracy for elevation data. The orthoimage created using the UAS imagery and the DSM
showed a spatial resolution of 2.5 cm/pixel, precise enough to observe footprints left on sand dunes.

Table 2. Results of the SfM process.

Parameter Value

Number of images used 622
Actual flying altitude 61 m

Coverage area 98,600 m2

Number of GCP used 77
GCP RMSE XY 0.089 m
GCP RMSE Z 0.079 m

Dense Cloud Points 2,792,354
DSM Point density 29.6 pt/m2

Ground resolution 2.5 cm/pixel
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the orthoimage and DSM surveyed by the UAS.

The time elapsed in each stage of the SfM process is displayed in Table 3. The most time-consuming
step was the GCP markers placement, as this task requires human intervention to refine the position of
each marker in every image. Because of the high quantity of images and GCPs used (8–12 visible GCPs
per image), it took a time span of nearly 5 hours to finalize this phase. The image alignment was the
second most time-consuming stage, followed by the dense point cloud generation. Note that these
time frames are closely related to the computational power of the computer utilized, so they can be
shortened by simply using more powerful computers. The overall time required to complete all the
stages of the SfM process was 10 hours and 37 minutes. Nonetheless, in view of the amount of time
and labor needed to carry out classical ground surveys, the photogrammetric techniques employed by
UAS offer superior performance.

Table 3. Time performance of the SfM process.

Stage Processing Time (HH:MM:SS) Relative Time Consumption (%)

1. Add images 0:00:30 0.1
2. Align images 3:13:00 30.3
3. Place markers 4:45:00 44.7

4. Optimize alignment 0:01:59 0.3
5. Build dense point cloud 2:27:00 23.1

6. Generate DSM 0:05:12 0.8
7. Generate orthophoto 0:04:29 0.7
Total time consumed 10:37:10 100.0

As previously mentioned, dunes are complex surfaces to model, so for this study it was necessary
to take such a high number of GCPs. On less complex areas, such as the one described in [14], taking
fewer GCPs at the edges and some in the middle of the area of interest (AOI) could be sufficient.
However, in this case, apart from the outer edges of the AOI, it was necessary to position targets at both
edges of the dune slope (both at the crest and at the dune toe), as well as at the centre of the images.
Despite that fact, the processing time could be reduced considering a lesser amount of GCPs per image,
considering recent studies in similar zones as the one developed by Laporte-Fauret et al. [32].
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3.2. Validation of the DSM Using the GNSS Survey

Cross-validation was performed between the measurements taken with the GNSS equipment
and those taken from the DSM obtained by means of the UAS survey and SfM processing. For each
collected RTK-GNSS point, the elevation of the nearest point from the UAS DSM was extracted. The
mean difference (or bias) and RMSE (that is, the standard deviation of the sample) were adopted as
measurement error indicators, where positive bias implies that, on average, the UAS exceeded the
surveyed elevation using GNSS.

One remarkable contribution from this study is the outstanding number of validation points used
in comparison with recent studies carried out in coastal environments, such as the one conducted
by Laporte-Fauret et al. using similar image resolution and flight altitude [32]. As the distribution
curve of the residuals fits to a normal distribution, the minimum number of validation points n can be
obtained using the Equation (1):

n =
(
σ
e

)2
Z2
α (1)

where σ is the standard deviation of the population, e is the absolute sampling error, and Zα is the
normal probability distribution value for the desired confidence level α. In order to obtain a sampling
error of 1 cm with a confidence interval of 99% (Z99 = 2.575), the minimum sample size, that is, the
minimum number of validation points to survey is:

n =
(0.121

0.01

)2
2.5752 = 971 samples (2)

As this study has used 1238 validation points, the results presented in this study can be assumed
to be statistically representative.

The average value of vertical RMSE was acceptable (0.121 m), with a highly reduced bias of 0.0161
m, indicating a good general accuracy for performing this sort of work in this kind of environments. In
fact, previous studies obtained roughly the same RMSE values [13,32,33]. If we compare the obtained
RMSE values for the present UAS survey with those achieved using airborne LiDAR surveys [9–11],
the accuracy is about the same, or even higher.

The detailed results of the vertical RMSE obtained for each type of surface are shown in Figure 7.
An analysis of the different surface types shows, in general, a good agreement of measurements and a
near 1:1 fit between GNSS and UAS data, which means that the accuracy of UAS measurements is
equivalent to the obtained GNSS point dataset. The coefficient of determination (COD) values obtained
are greater than 0.97 in all of the surface types, except for beach points, where it is close to 0.90. The
residuals graphs show similar distribution curves, with mean errors close to zero (Figure 8).
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Figure 7. Vertical RMSE per surface type.
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Figure 8. Linear fit and residual analysis of the generated DSM model according to the surface type: (a)
dune; (b) beach; (c) road; (d) walkways.

It is commonly accepted that the threshold to determine if a point has been accurately measured
or not is that its residuals are below twice the standard deviation (that is, twice of RMSE value). Table 4
provides the fit equation parameters, which provide an error correction based on the surface type that
other authors can use to quantify DSM uncertainty; for instance, in flood studies, where resolving curbs
and pavements can alter flood wave propagation. The table also shows the validation threshold and
UAS accuracy values. Overall, 93.2% of the points were accurately measured. In roads and walkways,
only one point is over the validation threshold, which means an accuracy of more than 98% (note the
variation caused by the different number of points surveyed). The points surveyed in the beach area
also have an accuracy of more than 90%. Finally, 84.4% of the 980 points surveyed in the dune area are
below the validation threshold, showing a fairly good RMSE Z value of 0.096 m.

Table 4. Fit equation parameters and errors (y = a + bx), elevation RMSE, bias, and validation
parameters for the different types of surfaces surveyed.

Type of Surface Dune Beach Road Walkways

Intercept, a −0.00506 ± 0.01022 −0.15193 ± 0.03978 0.04925 ± 0.0152 0.15714 ± 0.0895
Slope, b 0.99778 ± 0.00183 1.10907 ± 0.03791 0.97409 ± 0.00682 0.93385 ± 0.02304
COD, r2 0.99671 0.88155 0.9956 0.9721

RMSE Z (m) 0.0960 0.1668 0.0433 0.1758
Bias (m) 0.0161 0.0464 0.0059 0.0895

Validation threshold (m) 0.1920 0.3336 0.0866 0.3517
No. of validation points

within the validation
threshold

827 107 91 48

Number of validation points 980 117 92 49
UAS accuracy (%) 84.4 91.5 98.9 98.0

However, some differences in accuracy appear when the different surfaces are considered separately.
The results show a similar trend to those obtained by Elsner et al. [33]. In this case, DSM data show little
systematic differences on the asphalt surface (RMSE Z of 0.043 m), but a more significant divergence
on the beach area (RMSE Z mean value of 0.167 m). One of the possible causes that explain that
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value is the low optical contrast of the beach surface. Homogeneous or reflective surfaces are often
problematic for the image matching stage, which leads to a high number of outliers [33]. Surfaces with
a heterogeneous and distinct texture are preferred for a more accurate image matching process [34].
The problem of “smooth” surfaces, such as the sand in a beach area, is also highlighted in [35], making
them very difficult zones from which to extract highly accurate SfM topographic datasets. This reason
might explain the relatively low performance of the UAS-based DSM model when validated using
GNSS control points. In the dune zone, however, the presence of shadows cast by the shape of the
dune and the existing vegetation helps to increase the heterogeneity of the surface, hence the RMSE
value for elevation is considerably lower than on the beach, which is a flat extension of homogeneous
sand. The road is a surface with greater contrast than the wooden walkway, the color of which is very
similar to the surrounding sand. In consequence, the RMSE Z value in the first surface is lower than in
the second case.

Table 5 develops a comparison between previous coastal surveys, indicating the main parameters
used for the flight campaign and the vertical accuracy obtained in terms of bias and RMSE. The results
show RMSE values ranging from 0.041 m to 0.13 m, with an average value of 0.087, and bias values
from ±0.01 to ±0.11, with a mean value very close to zero. Regarding the uncertainty of the GNSS
measurements (usually from ±15 to ±20 mm), the different studies show a consistent and similar
accuracy, which could be sufficient for surveying this kind of environment.

Table 5. Comparison between UAS survey parameters for different coastal studies.

Author
Image

Resolution
(Mpixel)

Mean Flight
Altitude (m)

Mean
GSD

(cm/pixel)

Number
of GCP

No. of
Validation

Points
Bias Z (m) RMSE Z

(m)

Mancini et al. (2013) [13] 18.0 40 0.6 18 126 −0.010 0.11

Gonçalves et al. (2015) [25] 12.0
137 4.7 13 170 0.024 0.062
131 4.5 13 170 0.035 0.068
93 3.2 12 148 0.013 0.041

Turner et al. (2016) [27] 18.2 100 3.4 0 (RTK
UAS) 15,247 0.026 0.068

Elsner et al. (2018) [33] 16.0 70 1.7 49
1542 −0.053 0.113
3567 −0.069 0.108

Ruessink et al. (2018) [36] 12.1
Not

specified
Not

specified

39 147 0.029 0.084
39 262 0.053 0.107
33 3191 0.014 0.067

Laporte-Fauret et al. (2019) [32] 12.0
50

4.5
10 65

−0.11 0.13
20.0 1.78 −0.02 0.05

Bañón et al. (2019) 12.4 61 2.5 77 1238 0.016 0.121

Average value 15.1 85 3.0 30 2156 −0.004 0.087

Figure 9 shows a graphical comparison between the different accuracy values from the studies
mentioned in the previous table. It can be seen that the present study comparatively obtains a better
value for bias and a higher RMSE value but is very close to some of the analyzed studies. This could
be due to the reasons previously described in this article.

3.3. Digital Surface Model and Profile Comparison

Figure 10a shows the DSM obtained from the UAS survey. To check the coherence of the model,
two representative profiles of the beach-dune system were selected—one from the north side of the
study area and another from the south side. Figure 10b,c shows a comparison of these two profiles
using both GNSS and UAS derived datasets. It can be observed that both lines practically overlap. The
slight differences shown between the two profiles are caused by the presence of low vegetation, which
is difficult to filter with current aerial imaging methods.



J. Mar. Sci. Eng. 2019, 7, 297 12 of 16

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 12 of 16 

 

Turner et al. 
(2016) [27] 

18.2 100 3.4 0 (RTK 
UAS) 

15,247 0.026 0.068 

Elsner et al. 
(2018) [33] 

16.0 70 1.7 49 
1,542 −0.053 0.113 
3,567 −0.069 0.108 

Ruessink et al. 
(2018) [36] 

12.1 Not 
specified 

Not 
specified 

39 147 0.029 0.084 
39 262 0.053 0.107 
33 3,191 0.014 0.067 

Laporte-Fauret 
et al. (2019) [32] 

12.0 
50 

4.5 
10 65 

−0.11 0.13 
20.0 1.78 −0.02 0.05 

Bañón et al. 
(2019) 12.4 61 2.5 77 1,238 0.016 0.121 

Average value 15.1 85 3.0 30 2,156 −0.004 0.087 

Figure 9 shows a graphical comparison between the different accuracy values from the studies 
mentioned in the previous table. It can be seen that the present study comparatively obtains a better 
value for bias and a higher RMSE value but is very close to some of the analyzed studies. This could 
be due to the reasons previously described in this article. 

 
Figure 9. Mean accuracy values obtained by different authors in coastal surveys. 

3.3. Digital Surface Model and Profile Comparison 

Figure 10a shows the DSM obtained from the UAS survey. To check the coherence of the model, 
two representative profiles of the beach-dune system were selected—one from the north side of the 
study area and another from the south side. Figure 10b,c shows a comparison of these two profiles 
using both GNSS and UAS derived datasets. It can be observed that both lines practically overlap. 
The slight differences shown between the two profiles are caused by the presence of low vegetation, 
which is difficult to filter with current aerial imaging methods. 

Figure 9. Mean accuracy values obtained by different authors in coastal surveys.
J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 13 of 16 

 

 
 

Figure 10. (a) Digital surface model (DSM) from UAS images. (b) Profile 1 surveyed by GNSS and 
derived from UAS DSM. (c) Profile 2 surveyed by GNSS and derived from UAS DSM. 

A key factor in coastal area monitoring is the determination of the sedimentary budget, which 
can be used by the coastal or the beach manager to determine which zones of the coast are 
experiencing regression or transgression processes. For that purpose, it is fundamental to estimate 
the volume of the sediments, and field surveys are required. To estimate the possible error involved 
when using UAS-derived data for that task, the cross-section surface area of the two representative 
profiles has been obtained and presented in Table 6. It can be easily seen that the margin of error 
obtained in both profiles is negligible at less than 1%, which validates the UAS methodology hereby 
explained for performing sedimentary budget estimations with sufficient precision.  

Table 6. Surface area and differences between GNSS and UAS surveys in two representative 
transects of the study area. 

Parameter Profile 1 Profile 2 
UAS surface area (m2) 409.57 357.54 

GNSS surface area (m2) 407.77 355.07 
Difference UAS-GNSS (m2) 1.80 2.47 
Difference UAS-GNSS (%) 0.44 0.70 

3.4. Final Remarks 

The novelty in this research is the extensive field survey by GNSS conducted together with the 
UAS survey. The complexity of the surveyed surface and the homogeneity of the sand may affect the 
process to create a DSM using the UAS image-based photogrammetry [33–35]. For that purpose, 77 

Figure 10. (a) Digital surface model (DSM) from UAS images. (b) Profile 1 surveyed by GNSS and
derived from UAS DSM. (c) Profile 2 surveyed by GNSS and derived from UAS DSM.

A key factor in coastal area monitoring is the determination of the sedimentary budget, which can
be used by the coastal or the beach manager to determine which zones of the coast are experiencing
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regression or transgression processes. For that purpose, it is fundamental to estimate the volume of
the sediments, and field surveys are required. To estimate the possible error involved when using
UAS-derived data for that task, the cross-section surface area of the two representative profiles has
been obtained and presented in Table 6. It can be easily seen that the margin of error obtained in
both profiles is negligible at less than 1%, which validates the UAS methodology hereby explained for
performing sedimentary budget estimations with sufficient precision.

Table 6. Surface area and differences between GNSS and UAS surveys in two representative transects
of the study area.

Parameter Profile 1 Profile 2

UAS surface area (m2) 409.57 357.54
GNSS surface area (m2) 407.77 355.07

Difference UAS-GNSS (m2) 1.80 2.47
Difference UAS-GNSS (%) 0.44 0.70

3.4. Final Remarks

The novelty in this research is the extensive field survey by GNSS conducted together with the
UAS survey. The complexity of the surveyed surface and the homogeneity of the sand may affect
the process to create a DSM using the UAS image-based photogrammetry [33–35]. For that purpose,
77 GCPs and 1238 validation points were surveyed, a much higher volume than previous recent
studies [13,32,33], obtaining statistically sound results. With this wide field survey, this research also
outlines the significant reduction in time and costs obtained using UAS and SfM technologies instead
of classical GNSS surveys (Table 7). The surveying time is dramatically reduced from 720 to 30 min,
permitting more surface area to be covered within the same session. That is an important factor,
especially for extensive zones, such as beaches or dune fields. The model generation time using the
SfM methodology could be easily reduced by using less GCPs, as the main time-consuming task is
the semi-manual marker placement (see Table 3). Furthermore, the current times and costs will be
decreasing rapidly over time as new improvements arrive to the UAS sector.

Table 7. Time and cost estimations for UAS and GNSS coastal survey methodologies in this study.

Stage
UAS-SfM Methodology Classical GNSS Methodology

Time (min) Cost (USD) Time (min) Cost (USD)

Planning and setup 60 40 90 60
Field survey 30 40 720 550

Model generation 637 250 60 150
Total 727 330 900 760

Nevertheless, there are some disadvantages to consider. Firstly, flight regulations can be restrictive
in survey areas, especially near inhabited zones. Particularly, current Spanish regulations for UAS
limit their use overcrowded areas without specific permission, such as beaches and over building
agglomerations, and the maximum flight altitude is set to 120 m [30]. Secondly, the generated 3D
point cloud often includes elevation data coming from undesired sources—buildings, power lines,
treetops, and many other elements—instead of from the ground surface, causing a partial distortion of
the obtained model. There are several algorithms that mitigate or even correct some of these issues, but
they usually demand near infrared (NIR) data to properly detect and filter the vegetation cover [37].
Unfortunately, low-cost UAS are normally not equipped with them.
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4. Conclusions

The dune-beach system of Guardamar del Segura has proven to be an exceptional testing site for
the methodology presented in the present article. The complex foredune surface and the contiguous
beach have been studied using a small, lightweight, inexpensive consumer UAS.

For this study, a twin field campaign was designed, acquiring data from UAS flights and from a
GNSS survey. The UAS images were processed through SfM software, obtaining a digital model of the
surface. By comparing the two datasets, the results show the high accuracy of UAS-based methodology,
obtaining an excellent distribution of residuals and RMSE mean values of 0.12 m, which are similar or
even higher than those obtained by employing other techniques, with a good profile fit with the high
resolution GNSS terrain model.

Despite the existing minor drawbacks, the advantages of UAS surveys combined with SfM
methodology are obvious—a time-saving, consistent, high-precision method that permits the modeling
of rapid-changing environments, such as beach-dune systems, at considerably lower costs. Additionally,
undertaking periodic and comprehensive surveys to monitor the progression of these complex
ecosystems with high reliability and sufficient data quality has been proven possible in this research.
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3. Burak, S.; DoǧAn, E.; GazioǧLu, C. Impact of urbanization and tourism on coastal environment. Ocean Coast.

Manag. 2004, 47, 515–527. [CrossRef]
4. Andrews, B.D.; Gares, P.A.; Colby, J.D. Techniques for GIS modeling of coastal dunes. Geomorphology 2002,

48, 289–308. [CrossRef]
5. Mitasova, H.; Overton, M.; Harmon, R.S. Geospatial analysis of a coastal sand dune field evolution: Jockey’s

Ridge, North Carolina. Geomorphology 2005, 72, 204–221. [CrossRef]
6. Nagihara, S.; Mulligan, K.R.; Xiong, W. Use of a three-dimensional laser scanner to digitally capture the

topography of sand dunes in high spatial resolution. Earth Surf. Proc. Landf. 2004, 29, 391–398. [CrossRef]
7. Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner

over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [CrossRef]
8. Woolard, J.W.; Colby, J.D. Spatial characterization, resolution, and volumetric change of coastal dunes using

airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology 2002, 48, 269–287. [CrossRef]
9. Sallenger, A., Jr.; Krabill, W.; Swift, R.; Brock, J.; List, J.; Hansen, M.; Holman, R.; Manizade, S.; Sontag, J.;

Meredith, A. Evaluation of airborne topographic LIDAR for quantifying beach changes. J. Coast. Res. 2003,
19, 125–133.

10. White, S.A.; Wang, Y. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North
Carolina coastline. Remote Sens. Environ. 2003, 85, 39–47. [CrossRef]

11. Stockdon, H.F.; Doran, K.S.; Sallenger, A.H., Jr. Extraction of lidar-based dune-crest elevations for use in
examining the vulnerability of beaches to inundation during hurricanes. J. Coast. Res. 2009, 59–65. [CrossRef]

12. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS
J. Photogramm. Remote Sens. 2014, 92, 79–97. [CrossRef]

13. Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles
(UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal
Environments. Remote Sens. 2013, 5, 6880–6898. [CrossRef]

http://dx.doi.org/10.1016/j.ocecoaman.2018.05.011
http://dx.doi.org/10.1016/j.ocecoaman.2004.07.007
http://dx.doi.org/10.1016/S0169-555X(02)00186-1
http://dx.doi.org/10.1016/j.geomorph.2005.06.001
http://dx.doi.org/10.1002/esp.1026
http://dx.doi.org/10.1016/j.geomorph.2018.12.013
http://dx.doi.org/10.1016/S0169-555X(02)00185-X
http://dx.doi.org/10.1016/S0034-4257(02)00185-2
http://dx.doi.org/10.2112/SI53-007.1
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.3390/rs5126880


J. Mar. Sci. Eng. 2019, 7, 297 15 of 16

14. Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.J.; García-Ferrer, A.;
Pérez-Porras, F.J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground
control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10.

15. Niethammer, U.; James, M.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the
Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [CrossRef]

16. Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM)
and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [CrossRef]

17. Huang, H.; Long, J.; Wu, Y.; Yi, Q.; Zhang, G.; Fei, B. A method for using unmanned aerial vehicles for
emergency investigation of single geo-hazards and sample applications of this method. Nat. Hazards Earth
Syst. Sci. 2017, 17, 1961–1979. [CrossRef]

18. Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using
structure-from-motion photogrammetry. Geomorphology 2014, 213, 166–182. [CrossRef]

19. Miřijovský, J.; Langhammer, J. Multitemporal monitoring of the morphodynamics of a mid-mountain stream
using UAS photogrammetry. Remote Sens. 2015, 7, 8586–8609. [CrossRef]

20. Dandois, J.P.; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010, 2,
1157–1176. [CrossRef]

21. Jaakkola, A.; Hyyppä, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtomäki, M.; Lin, Y. A low-cost multi-sensoral
mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens. 2010,
65, 514–522. [CrossRef]

22. Messinger, M.; Asner, G.; Silman, M. Rapid assessments of Amazon forest structure and biomass using small
unmanned aerial systems. Remote Sens. 2016, 8, 615. [CrossRef]

23. Delacourt, C.; Allemand, P.; Jaud, M.; Grandjean, P.; Deschamps, A.; Ammann, J.; Cuq, V.; Suanez, S. DRELIO:
An unmanned helicopter for imaging coastal areas. J. Coast. Res. 2009, Special Issue 56, 1489–1493.

24. Drummond, C.D.; Harley, M.D.; Turner, I.L.; A Matheen, A.N.; Glamore, W.C. UAV applications to coastal
engineering. In Proceedings of the Australasian Coasts & Ports Conference, Auckland, New Zealand, 15
September 2015; pp. 267–272.

25. Gonçalves, J.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J.
Photogramm. Remote Sens. 2015, 104, 101–111. [CrossRef]

26. Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the topography of a dynamic tidal
inlet using UAV imagery. Remote Sens. 2016, 8, 387. [CrossRef]

27. Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24.
[CrossRef]

28. Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-resolution monitoring of-beach
topography and its change using unmanned aerial vehicle imagery. Ocean Coast. Manag. 2018, 160, 103–116.
[CrossRef]

29. Pagán, J.I.; López, I.; Aragonés, L.; García-Barba, J. The effects of the anthropic actions on the sandy beaches
of Guardamar del Segura, Spain. Sci. Total Environ. 2017, 601–602, 1364–1377. [CrossRef] [PubMed]

30. Real Decreto 1036/2017, de 15 de Diciembre, Por el Que se Regula la Utilización Civil de Las Aeronaves
Pilotadas Por Control Remoto, Ministerio de la Presidencia y Para Las Administraciones Territoriales, Spain.
Available online: https://www.seguridadaerea.gob.es/media/4629426/rd_1036_17_rpas.pdf (accessed on 20
July 2019).

31. Estudio Ecocartográfico Del Litoral de las Provincias de Alicante y Valencia. Dirección General de Costas,
Ministerio de Medio Ambiente, Spain. Available online: http://www.mapama.gob.es/es/costas/temas/
proteccion-costa/ecocartografias/ecocartografia-alicante.aspx (accessed on 20 March 2019).

32. Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for
High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng.
2019, 7, 63. [CrossRef]

33. Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.; Bovington, J.; Horn, D. Coincident beach surveys using
UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type
heterogeneity on elevation accuracies. Remote Sens. Environ. 2018, 208, 15–26. [CrossRef]

34. Baltsavias, E. A comparision between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote
Sens. 1999, 54, 83–94. [CrossRef]

http://dx.doi.org/10.1016/j.enggeo.2011.03.012
http://dx.doi.org/10.1177/0309133313515293
http://dx.doi.org/10.5194/nhess-17-1961-2017
http://dx.doi.org/10.1016/j.geomorph.2014.01.006
http://dx.doi.org/10.3390/rs70708586
http://dx.doi.org/10.3390/rs2041157
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.002
http://dx.doi.org/10.3390/rs8080615
http://dx.doi.org/10.1016/j.isprsjprs.2015.02.009
http://dx.doi.org/10.3390/rs8050387
http://dx.doi.org/10.1016/j.coastaleng.2016.03.011
http://dx.doi.org/10.1016/j.ocecoaman.2018.04.007
http://dx.doi.org/10.1016/j.scitotenv.2017.05.272
http://www.ncbi.nlm.nih.gov/pubmed/28605855
https://www.seguridadaerea.gob.es/media/4629426/rd_1036_17_rpas.pdf
http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-alicante.aspx
http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-alicante.aspx
http://dx.doi.org/10.3390/jmse7030063
http://dx.doi.org/10.1016/j.rse.2018.02.008
http://dx.doi.org/10.1016/S0924-2716(99)00014-3


J. Mar. Sci. Eng. 2019, 7, 297 16 of 16

35. Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from
motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430.
[CrossRef]

36. Ruessink, B.; Arens, S.; Kuipers, M.; Donker, J. Coastal dune dynamics in response to excavated foredune
notches. Aeolian Res. 2018, 31, 3–17. [CrossRef]

37. Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation
Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed
Mediterranean Environment. Front. Plant Sci. 2017, 8, 1114. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/esp.3366
http://dx.doi.org/10.1016/j.aeolia.2017.07.002
http://dx.doi.org/10.3389/fpls.2017.01114
http://www.ncbi.nlm.nih.gov/pubmed/28694819
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Area of Study 
	UAS Field Campaign 
	GNSS Survey 
	SfM-Based Photogrammetry 

	Results and Discussion 
	SfM Process Results 
	Validation of the DSM Using the GNSS Survey 
	Digital Surface Model and Profile Comparison 
	Final Remarks 

	Conclusions 
	References

