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Abstract: This paper presents a multi-session monocular Simultaneous Localization and Mapping
(SLAM) approach focused on underwater environments. The system is composed of three main
blocks: a visual odometer, a loop detector, and an optimizer. Single session loop closings are
found by means of feature matching and Random Sample Consensus (RANSAC) within a search
region. Multi-session loop closings are found by comparing hash-based global image signatures.
The optimizer refines the trajectories and joins the different maps. Map joining preserves the trajectory
structure by adding a single link between the joined sessions, making it possible to aggregate or
disaggregate sessions whenever is necessary. All the optimization processes can be delayed until
a certain number of loops has been found in order to reduce the computational cost. Experiments
conducted in real subsea scenarios show the quality and robustness of this proposal.

Keywords: visual SLAM; multi-session robot; posidonia oceanica

1. Introduction

A crucial task for an Autonomous Underwater Vehicle (AUV) is to build a map of the environment
and to estimate its own pose within the map while it is navigating. This task is known as Simultaneous
Localization and Mapping (SLAM) [1] and is nowadays a de facto standard for autonomous vehicles,
not only in underwater environments.

Since well-established approaches to SLAM, such as Extended Kalman Filter SLAM (EKF-SLAM)
or Graph-SLAM [2], are widely used and new approaches mainly concentrate on alleviating their
intrinsic limitations [3], SLAM is often considered a solved problem. New research tends to focus on
practical- and application-related issues, which depend on or are strongly related to the sensors used
to build the map and to estimate the vehicle motion and pose.

Range sensors, such as laser range finders in terrestrial environments or sonar in underwater
scenarios, were the modality of choice at first. However, research turned to computer vision as soon
as the computational capabilities and price of on-board systems made it possible [4], since cameras
provide a much richer representation of the world.

Underwater computer vision poses several problems [5] that only exist up to a much lesser extent
in other environments. That is why underwater SLAM solely based on vision [6] is not frequent,
as it requires approaches far more robust than its terrestrial counterparts. Visual SLAM and the
associated visual loop closing detection processes are usually included in the navigation systems of
AUV equipped with other sensors to mitigate the localization drift obtained when navigating only
with inertial units (gyroscopes, magnetometers, and accelerometers), visual odometers, or Doppler
Velocity Log (DVL) sensors.
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However, large-scale or long time operations generate big maps with huge amounts of visual data
that can collapse the vehicle computer if they are not treated intelligently [7,8]. A common strategy
to overcome this problem is to explore the areas of interest in different, separated, missions called
sessions [9–11]. Any low capability of a robot to operate robustly during long periods of time can
be alleviated by repeating transits through previously visited areas and by joining all trajectories
in a single coordinate frame. When SLAM is performed in these conditions, it is referred to as
multi-session SLAM.

In the context of the Augmented Reality Subsea Exploration Assistant (ARSEA) and Twin
Robots (TWINBOT) national projects, one or several robots equipped with cameras have to operate
cooperatively in tasks such as (a) sea bottom exploration, mapping, and mosaicking for biologic
purposes and (b) multi-robot coordinated intervention. All these tasks are done in marine areas which
are densely colonized with seagrass and, in particular, with Posidonia oceanica (see further details in
Section 10.1). In both projects, multi-session SLAM will be indispensable to aggregate the mapping
data computed by all robots that participate in the missions.

Besides, several challenges come up when working in medium and large underwater areas
colonized with seagrass, complicating the calculus of visual odometry and loop closings, namely
(a) intricate textures; (b) slight dynamics due to the slow oscillation of the seagrass leaves with the
water currents; (c) nonexistence of structured scenarios; and (d) lighting and visual hindrances, such
as water turbidity, light scattering, flickering, and lack of natural light and visibility in deeper zones.

Furthermore, it is necessary to consider that (1) multi-session SLAM loops between different
sessions, known as global loops, are continuously searched during the AUV operation. Therefore,
reducing the computational cost of global image matching is crucial. (2) The advantages and drawbacks
of the existing approaches for map joining define a compromise between map consistency and
computation time; for example, building a full map mixing different sessions leads to more consistency
than anchor-node-based solutions [9] at the cost of significantly larger computation times.

This paper presents a novel trajectory-based multi-session visual SLAM and map joining approach
which pays special attention on a frontend that searches intersession and intra-session loop closings and
a backend to run the single and the global map optimizations. The relevant points and contributions
are summarized next:

1. The application of a multi-session loop detector that uses the Hash-Based Loop Closure
(HALOC) [12] image global signature (hash) for fast-matching solves the problem of lacking
geometry information between different sessions at a considerable speed; as a matter of fact,
Negre Carrasco et al. [12] has already shown that HALOC improves the loop closing detection
performance with respect to Fast Appearance-Based Mapping (FABMAP) [13] in terms of
perceptual aliasing, execution time, and recall and especially in underwater environments.

2. The use of a hash to represent images for multi-session loop closing implies a considerable
reduction of data to store and exchange between two different robots, when this application is
extended (in forthcoming work) to a multi-robot context. This data reduction will be crucial to
make feasible multi-session or multi-robot operations where one robot assumes the task to join all
the maps of all robots that participate in the mission.

3. A novel and simple algorithm to join multiple map sessions: This system does not use anchor
nodes but it joins two maps through a transformation between the end of one trajectory and
the beginning of the other, solving, at the same time, and automatically the-so called initial
state problem.

4. A strategy to perform delayed global map optimization (for map joining) to reduce
computational load

5. A complete set of software sources available for the scientific community in GitHub public
repositories [14–16]

6. A wide set of experiments conducted in Mediterranean marine scenarios, mostly colonized with
Posidonia oceanica, which show the validity and robustness of the localization system
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To the best of our knowledge, such a trajectory-based approach to multi-session SLAM focused
on marine bottoms colonized with seagrass has not been proposed before in the robotic literature.

The paper is structured as follows. Section 2 summarizes the existing research on the subject.
Section 3 overviews our proposal, its main components, and how they relate to each other. Section 4
summarizes the notation used throughout the paper. Section 5 describes the block in charge of
performing visual odometry. While performing visual odometry, both intra-session and intersession
loops are detected as described in Sections 6 and 7, respectively. These loops make it possible to
optimize the trajectories as described in Section 8 and to join them as stated in Section 9. Finally,
Section 10 presents an extensive set of experimental results using real data gathered in several areas of
Mallorca (Spain). The conclusions and some insight for further work are provided in Section 11.

2. Related Work

The so-called initial state problem or kidnapped robot problem [17] refers to the fact that, when a
robot starts a new session on the same or in a partially overlapping nearby environment, it does not
know its relative pose with respect to another map created previously. One possibility to solve this
issue is to localize itself in any map built beforehand. This solution has the advantage of maintaining a
single track and a single reference frame. However, this alternative has a strong restriction: the robot
must start in a point already mapped. The other possibility is to initiate another map corresponding to
this new session, with its own local reference, and then, when the robot detects a point already visited
during a previous session, it calculates the transformation between both maps and joins them. This last
strategy is known formally as the problem of multi-session simultaneous localization and mapping
(SLAM) [18] and consists in combining multiple SLAM trajectories obtained repeatedly over time in
the same area by a single or several robots.

In this context, the challenges are basically two: (1) join properly maps gathered in different
sessions based on their overlapping parts and (2) improve the current pose and map estimates using
previous sessions’ data. In general, the aforementioned two main goals are achieved thanks to three
building blocks: a visual odometer [19] that matches consecutive images and provides local motion
estimates, a loop detector [12,20] that asserts if the autonomous underwater vehicle (AUV) returns
to a previously visited place, and an optimizer [21,22] that fuses odometry and loops to consistently
improve and join maps as well as to properly estimate the AUV pose. Additional problems appear in
multi-session localization because images gathered in several sessions can be extremely different due
to changes in the illumination conditions [5] or even the use of different cameras or AUVs.

Existing vision-based multi-session SLAM approaches are mainly focused on terrestrial and aerial
environments. Some of them are based on the anchor-nodes method [23], which introduces two main
concepts: (a) robot trajectory anchor, as the offset of a complete trajectory with respect to a global
system of coordinates, and (b) an encounter, defined as a measurement or transformation that connects
two different poses of two different robots; in multi-session SLAM, the encounters are not direct
transforms between robots but indirect via observations of the same area performed at different times.
Encounters express additional constraints relating different graphs corresponding to different sessions.
For example, McDonald et al. [9] presents a multi-session stereo-vision SLAM approach based on
anchor-nodes for indoor and outdoor terrestrial environments.

Contrarily to single session SLAM, multi-session loop detection (i.e., finding encounters) cannot
rely on the AUV pose to constrain the search since, at first, the relative pose between sessions
is unknown. Instead, global image descriptors [24] such as Bag of Words (BoW) are often used.
In McDonald et al. [9], the loop closings are detected using a BoW-based solution combined with
Incremental Smoothing and Mapping (iSAM) [25] for batch map optimization and Conditional
Random Fields (CRF) [26] for feature matching. In [10,27], a new memory management is presented
in order to optimize the treatment of the successive graph nodes in multi-session mapping and path
planning applications for large-scale indoor office-like environments, using a robot equipped with a
RGBD camera and a laser scanner. BoW is used to detect visual global loop closings, the Tree-Based
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Network Optimizer (TORO) [28] for graph optimization and the laser together with the RGBD point
clouds for map visualization. Latif et al. propose in Reference [29] a new algorithm for loop closure
verification in single and multi-session pose graph connectivity: odometry is obtained by means of
laser scan matching, with the loop closing candidates using BoW and the g2o [21] framework for
graph optimization.

All the aforementioned references have been tested only in terrestrial environments, some indoors
and outdoors and others only indoors. The literature is extremely scarce in multi-session SLAM
addressed, implemented, and tested in underwater scenarios with AUVs. References [18,30,31]
are some of the very few pieces of work with these characteristics. The work presented in
References [30,31] was designed for the very specific purpose of ship hull inspection and surveillance
using AUVs. In this case, the robot moves around the ship hull, at a fixed distance to it, with the
camera and the Doppler velocity log (DVL) pointing nadir to the hull. Planes fitting sparse 3-D point
clouds obtained by the DVL are used to map the surface, and, in cooperation with a camera, to do
single and multi-session SLAM. The Fast Appearance-Based Mapping (FABMAP) [13] framework,
which is based on BoW, is used for visual loop closing detection and anchor nodes for the map joining
task. However, that field application is far from the scope of the work presented in our study.

The work presented by Williams et al. in Reference [18] is closer to ours in the sense that the
surroundings of an ancient shipwreck are surveyed by an AUV that records video sequences for
visual mapping and 3-D reconstruction. The vehicle moves over the bottom, with a camera pointing
downwards. The different portions of the shipwreck grabbed in different sessions are joined together
in a single map using multi-session SLAM techniques.

3. Overview

This section summarizes our proposal. On the one hand, it introduces the main building blocks
and the relationships among them. On the other hand, it provides some details to ease further reading
and emphasizes the advantages and fields of application of the presented approach.

Our proposal, summarized in Figure 1, focuses on the three building blocks of multi-session
visual SLAM, paying special attention to robust and fast place recognition and facilitating the trade-off
between consistency and speed. Moreover, our proposal is solely based on vision sensors and an
altitude sensor for the pixel/meters scale computation. There is no need for dead reckoning devices.

Figure 1. System overview.
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A simple yet robust visual odometer based on Scale-Invariant Feature Transform (SIFT) [32] is
first described. Its output is used to build the so-called trajectory, which is a set of relative motion
estimates between consecutive images.

Two loop detectors are introduced afterwards: the local loop detector, which is in charge of
detecting loop candidates inside a region of interest around the AUV in one single session, and the
global loop detector, which uses image hashes to find loop candidates between different sessions
without any geometrical constraint. In both cases, candidates are confirmed by means of feature
matching and Random Sample Consensus (RANSAC) [33].

When used as global image descriptors, image hashes are functions providing fixed length outputs
that are similar only in front of similar images [34]. The multi-session loop closing detection task
compares image hashes of images of different sessions. Hashes are obtained with HALOC [12] because
this approach reduces the perceptual aliasing inherent to clustering algorithms such as BoW [12], it
outperforms previous approaches in terms of reliability and computation time, it is particularly well
suited in challenging underwater scenarios [35], and it allows a very fast image comparison. Moreover,
since the SIFT features used by HALOC have already been computed to perform visual odometry,
requiring them does not compromise the execution time.

Two methods based on Extended Kalman Filters (EKF) are used to optimize the trajectories.
The first one is the intra-map optimizer and is in charge of improving the existing trajectory by means of
the local loops. The second one is the map joiner, of which the goal is to join different sessions while
keeping the intrinsic trajectory structure. The computational complexity [1] of the intra-map optimizer
EKF is strongly reduced with respect to other approaches, since the trajectory based approach [6]
makes the state vector grow at a significantly lower rate. As for the map joiner EKF, it has a constant
execution time because its state has a fixed size. In both cases, linearization errors are alleviated by
iteratively re-linearising over subsequent EKF estimates, that is, using an Iterated EKF (IEKF).

The adopted optimization strategies have the following advantages: (a) They allow delayed loop
closings, making it possible to store loop data and to optimize the trajectory or join different sessions
only when enough computational resources are available; (b) as sessions are joined using a single link,
the overhead introduced to join the maps is almost negligible. Moreover, this single linkage approach
makes it possible to disaggregate the sessions easily to reduce the computation time when necessary,
and (c) contrarily to pose-based SLAM approaches [36], which play with global poses, this approach
composes the trajectory with relative motions; then, EKF linearization problems are less relevant since
motion covariances are disaggregated and only those involved in each loop take part in the process.

In order to increase the reproducibility of the presented results and to facilitate the use of our
algorithms, the whole source code related to the research in this paper has been made publicly available.
The links to each specific piece of code are provided throughout the paper.

4. General Notation

Even though specific notation will be introduced when needed, there are some common
conventions that are pervasively used throughout the paper. This section focuses on such general
notation and can be used as a reference to better understand further sections.

Let It denote the image grabbed by the camera at time step t, with its coordinate frame placed at
its center with the X and Y axes pointing forward and left, respectively. Also, let at denote the altitude
at which the image was grabbed. This study assumes that at is obtained by external means, such as a
stereo-vision altimeter or a DVL. Let us assume also that the underwater vehicle is programmed to
navigate at a constant altitude, in an approximated horizontal plane, simplifying the robot motion to a
2-D trajectory.

The normal distribution XA
B = N(X̂A

B , PA
B ) models the roto-translation from image IA to image

IB, with X̂A
B as its mean and PA

B as its covariance. Assuming a bottom-looking camera with negligible
pitch and roll, X̂A

B can be expressed as a motion in X (xA
B ) and Y (yA

B ) and a rotation over Z (θA
B ). That is,

X̂A
B = (xA

B , yA
B , θA

B )
T .
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The trajectory is defined as the set of motions between consecutively grabbed images that fully
define the path followed by the AUV. Our proposal is to model the trajectory at time t as Xt =

N(X̂t, Pt), so that X̂t, shown in Equation (1), denotes the mean of Xt and so that Pt is the associated
covariance matrix.

X̂t =
(

(X̂0
1)

T (X̂1
2)

T ... (X̂t−1
t )T

)T
(1)

Equation (2) shows how the relative motion Xi
j between two arbitrary time steps i and j can be

recovered as a normal distribution by means of the compounding ⊕ and inversion 	 operators as
described in Smith et al. [37].

Xi
j =


Xi

i+1 ⊕ Xi+1
i+2 ⊕ · · · ⊕ X j−1

j j > i

	X j−1
j ⊕	X j−2

j−1 ⊕ · · · ⊕ 	Xi
i+1 j < i

(0, 0, 0)T j = i

(2)

The absolute pose X0
t , which is the pose at time step t relative to the first image, can be easily

recovered from the trajectory using the previous equation. Figure 2 summarizes the notation.

Figure 2. Notation.

5. Visual Odometry

This section centers its attention on the visual odometer, which is in charge of providing local
motion estimates between pairs of consecutively gathered images. Our proposal makes use of SIFT
feature matching and RANSAC to provide local motions as accurate as possible.

Visual odometry consists of computing the motion Xt−1
t between images It−1 and It taken by the

robot camera at time instants t− 1 and t. To achieve this goal, the following process, summarized in
Figure 3a, is used.
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(a)

(b)

Figure 3. (a) Odometry calculation and (b) local loop detection.

First, a set of SIFT features and their corresponding descriptors is computed for It−1 and It. Let
ft−1 = { ft−1,0, · · · , ft−1,m−1} and ft = { ft,0, · · · , ft,n−1} denote the m and n features corresponding
to images It−1 and It, respectively. A feature simply represents an (x,y) coordinate within the image.
Analogously, let dt−1 = {dt−1,0, · · · , dt−1,m−1} and dt = {dt,0, · · · , dt,n−1} denote the SIFT descriptors
so that each di,j describes the feature fi,j.

The descriptors dt−1 and dt are matched by means of standard SIFT matching. As a result, a set
of feature correspondences C is obtained containing the pairs (i,j) of the matching descriptors dt−1,i
and dt,j.

At this point, the relative motion between It−1 and It could be computed by means of Equation (3)
as the one that minimizes the sum of squared distances between the pairs of corresponding features.

X̂t−1
t = arg min

X
∑

(i,j)∈C
||X⊕ ft−1,i − ft,j|| (3)

A closed form solution to Equation (3) is available in Lu and Milios [38]. However, since some
of the existing correspondences may not be correct, our proposal is to embed Equation (3) into the
RANSAC approach shown in Algorithm 1, where apply_altitude() is a function that converts image
feature coordinates from pixel to meters.
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Algorithm 1: RANSAC approach to estimate the motion X̂A
B from image IA to image IB.

1 Input:
2 fA, fB: SIFT features in images IA and IB
3 aA, aB: Altitudes corresponding to IA and IB
4 C: Set of correspondences
5 K: Number of iterations to perform
6 Ncorr : Number of correspondences to be randomly selected
7 Nmin: Minimum number of correspondences to consider a roto-translation as candidate
8 εcorr : Maximum allowable error per correspondence

9 Output:
10 f ail: Boolean stating if failed to find X̂A

B
11 X̂A

B : The estimated roto-translation

12 begin
13 f ′A ← apply_altitude( fA, aA);
14 f ′B ← apply_altitude( ft, aB);
15 εA

B ← ∞; f ail ← true;
16 for i← 0 to K− 1 do
17 R← random selection of Ncorr items from C;
18 X ← arg min

T
∑

(i,j)∈R
||T ⊕ f ′A,i − f ′B,j||;

19 ε← ∑
(i,j)∈R

||T ⊕ f ′A,i − f ′B,j||;

20 foreach (i, j) ∈ (C− R) do
21 if ‖X⊕ f ′A,i − f ′B,j‖ < εcorr then
22 R← R ∪ {(i, j)};
23 end
24 end
25 if |R| > Nmin then
26 X ← arg min

T
∑

(i,j)∈R
||T ⊕ f ′A,i − f ′B,j||;

27 ε← ∑
(i,j)∈R

||T ⊕ f ′A,i − f ′B,j||;

28 if ε < εA
B then

29 εA
B ← ε; X̂A

B ← X; f ail ← f alse;
30 end
31 end
32 end
33 end

Roughly speaking, this algorithm is based on the idea that correct correspondences are consistent
among them, thus leading to the same roto-translation, whilst incorrect correspondences are
responsible for different roto-translations. Our proposal is to exploit this idea by checking if it is
possible to find a consistent subset of C that is large enough to be considered correct.

The algorithm selects a random subset R of C and then computes the roto-translation X as well as
the corresponding error ε using only this subset. These values are computed by means of Equation (3)
using R instead of C.

Afterwards, each of the nonselected matchings in C is checked. If the error it introduces is below
a threshold εcorr, then it is included within R. If at some point the number of items in R surpasses a
threshold Nmin, the roto-translation and the error are computed again using this expanded R, and if
the error is below the smallest error until now, the roto-translation is stored as a good model.

This process is iterated a fixed number of times. A description of how to compute the number of
iterations depending on the expected number of inliers in the input data is provided in Fischler and
Bolles [33]. When the algorithm finishes, it is possible to recover the best roto-translation, which is
a robust version of the X̂t−1

t shown in Equation (3). This roto-translation will not be found if partial
roto-translations are inconsistent and so R never has enough items. In this case, which is unlikely to
happen since consecutive images have sufficient overlap, our proposal is to use X̂t−2

t−1 instead.
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Even though it is out of the scope of this paper, our approach to RANSAC makes it possible
to properly guess Pt−1

t (covariance of the motion estimated between t− 1 and t) since it internally
computes an error estimate εt−1

t .

6. Local Loop Detection

A local loop is a loop involving images belonging to one single session. These loops not only
provide valuable information to improve each session separately but also are used to improve all the
sessions together after joining them. This section is devoted to explaining how the local loops are
searched.

The Local Loop Detection (LLD) is in charge of finding loop closings within one single SLAM
session. First, the set of loop candidates at time step t is built as shown in Equation (4), where Xi

t is
computed by Equation (2), by searching within a predefined radius δ [6].

LCt = {i : ||X̂i
t||2 ≤ δ, i < t− 1} (4)

Afterwards, the same process to compute visual odometry described in Section 5 is applied to
image pairs Ii and It for all Ii ∈ LCt in order to build the set of local loops LLt as shown in Equation (5).

LLt = {Zi
t : i ∈ LCt ∩ ¬ f ail(i, t)} (5)

In this Equation, ¬ f ail(i, t) denotes that RANSAC did not fail to find a roto-translation between
Ii and It. Zi

t represents the normal Zi
t = N(Ẑi

t, Ri
t) so that its mean Ẑi

t is the roto-translation provided
by RANSAC and Ri

t is the associated covariance. This covariance can either be obtained heuristically
from the error computed by Algorithm 1 or using the methods described in References [39,40].

In general, the pose according to the trajectory X0
1 ⊕ ...⊕ Xt−1

t will not coincide with the pose
provided by the loop closings X0

1 ⊕ ...⊕ Xi−1
i ⊕ Zi

t because of the measurement errors. The trajectory
optimization described in Section 8 is in charge of fusing both sources of information into a consistent
trajectory. Figure 3b illustrates these concepts.

7. Global Loop Detection

Global loops are those involving images belonging to different sessions, thus making it possible
to establish a relation between them and to join the corresponding trajectories. Since no geometric
information between two separated sessions exist, global loops have to rely on robust image matching
methods. This section describes our approach to robustly detect global loops.

The goal of Global Loop Detection (GLD) is to find loop closings involving different SLAM
sessions. Since in this case it is not possible to geometrically constrain the search region because
there is no geometrical relation between both sessions, our proposal is to use a high performance
hash-matching approach [12] to select loop candidates and to use RANSAC to validate them.

Let the descriptor matrix Dt of size n×m contain all the n SIFT descriptors of size m in image It.
The number of SIFT features is fixed to n for all images. The HALOC [12] hash (sources available in
Reference [14]) Ht, which is a vector of which the size is 3m independently of the number nt of features
found, is built according to Equations (6) and (7) by projecting each column of Dt onto three different
random orthogonal directions each defined by a unit vector ul of n dimensions.

Ht =
(

(ht,0)
T (ht,1)

T (ht,2)
T
)T

(6)

ht,l(i) =
n−1

∑
j=0

Dt(j, i)ul(j), 0 ≤ i < m (7)

The set of vectors ul is defined off-line, previous to the SLAM process. The use of random
and orthogonal projections avoids providing repetitive information that would reduce the hashing
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efficiency [41]. Using three directions has shown to lead to an acceptable trade-off between low hash
size and high performance, although other values could be used.

Let Vp denote a previously gathered video sequence and Vc be a video sequence that is currently
being gathered and that will eventually capture regions overlapping with Vp. Our proposal is to
compute Ht for every image in each sequence. This is extremely fast not only because of the simplicity
of HALOC but also because the required SIFT descriptors have previously been computed to achieve
odometry. Afterwards, the hash of the current image in Vc is compared to the hash of each image in Vp

in order to build the set of candidate global loops GCt shown in Equation (8). This is also a fast process
as a comparison is performed by means of the L1 norm.

GCt = {i : ||Hi − Ht||1 ≤ δ′, ∀Ii ∈ Vp} (8)

The value of δ′ can be selected depending on the computational resources available. This process
is summarized in Figure 4. Finally, the set of global loops GLt is built as shown in Equation (9).

GLt = {Zi
t : i ∈ GCt ∩ ¬ f ail(i, t)} (9)

Figure 4. Summary of the Hash-Based Loop Closure (HALOC) operation.

Similarly to LLt, ¬ f ail(i, t) denotes that RANSAC did not fail to find a roto-translation between
Ii and It and Zi

t is a normal of which the mean Ẑi
t is the transformation found by RANSAC.

The corresponding covariance can be computed using the same methods proposed for the local
loops in Section 6.

8. Trajectory Optimization

This section describes how a single trajectory is optimized to meet the constraints imposed by
the visual odometry and the detected local loops. As a result of this optimization, the trajectory that
best explains both constraints is found. It is important to emphasize that this trajectory can also be the
trajectory resulting from joining two sessions.

Let us first describe the process to iteratively build an initial guess of the trajectory by means of
the odometric estimates in the current session. This is the so-called trajectory building. Afterwards, a
method to optimize the trajectory using an IEKF (sources available in Reference [15]) and the detected
local loops is devised. This method, which is referred to as intra-map optimization, constitutes by
itself a trajectory-based single-session SLAM approach.
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8.1. Trajectory Building

The trajectory itself constitutes the state vector of the abovementioned IEKF. With each new
odometric estimate Xt−1

t , an initial guess X−t = N(X̂−t , P−t ) of the trajectory is constructed according
to Equations (10) and (11) by augmenting the state vector in the previous time step.

As for the initial values, following the recommendations in Castellanos et al. [42], X̂0 and P0

are both set to zero so that the initial AUV pose is assumed to be a global reference frame known
without uncertainty.

X̂−t =
(

(X̂t−1)
T (X̂t−1

t )T
)T

(10)

P−t = blkdiag{Pt−1, Pt−1
t } (11)

The covariance Pt−1
t of the last odometric estimate can be determined in several ways.

For example, it could be heuristically estimated using the εA
B computed by Algorithm 1. Also, the two

methods presented in References [39,40], which rely on a solid theoretical background, can be used.
If at time t no local loops are detected, this initial guess is consolidated and becomes the trajectory

itself (Xt ← X−t ). If LLt is not empty, the trajectory is optimized. This optimization is achieved by
performing the IEKF update using the detected local loops as measurements. Since only loop closings
can lead to changes in the stored trajectory, the state vector will not change during the IEKF prediction
and, thus, it is not necessary to perform that step.

It is important to emphasize that Equation (11) alone leads to a block diagonal covariance matrix.
However, the intra-map optimization will properly introduce the cross-correlation information by
means of the detected local loops.

8.2. Intra-Map Optimization

Since the presence of local loops impose constraints between nonconsecutive items in the
trajectory, considering the loop closings as measurements of the state vector makes it possible to
optimize the trajectory. Let us model the measurement vector Zt = N(Ẑt, Rt) using the detected
local loops Zij

t = N(Ẑij
t , Rij

t ) ∈ LLt as a normal of which the mean and covariance are shown in
Equations (12) and (13), respectively.

Ẑt =
(

(Ẑi0
t )

T (Ẑi1
t )

T ... (Ẑin
t )T

)T
(12)

Rt = blkdiag{Ri0
t , Ri1

t , ..., Rin
t } (13)

The IEKF observation function gt is in charge of predicting each item in Ẑt according to the state
vector prior estimate X−t . To build that function, let us first define in Equation (14) an observation
function gi

t associated to each measurement in Zt.

gi
t(X−t ) = X̂i

i+1 ⊕ X̂i+1
i+2 ⊕ · · · ⊕ X̂t−2

t−1 ⊕ X̂t−1
t (14)

The overall observation function gt can now be constructed by means of Equation (15).

gt =
(

(gi0
t )

T (gi1
t )

T ... (gin
t )T

)T
(15)
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Thus, each item in gt is the guess, according to X−t , of the corresponding item in Ẑt. The IEKF
observation matrix Gt is the Jacobian matrix of gt as shown in Equations (16) and (17).

Gt =
∂gt

Xt
=

(
(

∂gi0
t

∂Xt
)T (

∂gi1
t

∂Xt
)T ... (

∂gin
t

∂Xt
)T
)T

(16)

∂gi
t

∂Xt
=

(
∂gi

t
∂X0

1
,

∂gi
t

∂X1
2

, ...,
∂gi

t

∂Xt−1
t

)
(17)

According to Equation (14), only the items from Xi
i+1 onward appear in gi

t. Thus, the partial

derivatives with respect to X j
j+1 will be zero for all j < i, making it possible to change Equation (17)

into Equation (18).
∂gi

t
∂Xt

=

(
03×3i,

∂gi
t

∂Xi
i+1

, ..., ∂gi
t

∂Xt−1
t

)
(18)

Each of these partial derivatives could be directly computed. If necessary, some approaches to
express them in terms of the Jacobian matrices of the composition transformation have been proposed
in Burguera et al. [6].

At this point, an EKF update could be performed by means of Zt, gt, and Gt evaluated at X−t .
However, since Gt is used by the EKF to linearise gt, the results would be highly influenced by such
linearisation, especially when closing large loops. That is why an IEKF is used instead, since it alleviates
the linearisation problems [43]. The IEKF update iterates an EKF update relinearising the system at
each iteration. The process stops after a fixed number of iterations or when convergence is achieved.

At the jth iteration, the mean X̂t,j and the covariance Pt,j can be obtained by simply iterating the
EKF. However, the computational cost can be reduced by using Equations (19) and (20). They have
been obtained by operating the standard EKF formulation while taking into account the particularities
of our proposal.

X̂t,j = X̂t,j−1 + Pt,j−1GT
t,j−1R−1

t (Ẑt − gt(X̂−t ))−

− Pt,j−1P−1
t (X̂t,j−1 − X̂−t ) (19)

Pt,j = P−t − P−t GT
t,j−1(Gt,j−1P−t GT

t,j−1 + Rt)
−1 ·

· Gt,j−1P−t (20)

In these Equations, Gt,j denotes Gt evaluated at X̂t,j, X̂t,0 = X−t and Pt,0 = P−t . The process iterates
until ||X̂t,j − X̂t,j−1|| is below a certain threshold or after a maximum number of iterations is reached.
The computed mean and covariance in the last iteration constitute the optimized trajectory.

9. Map Joining

Global loops relate two different sessions and can be used to identify the geometric relationship
between two sepparated trajectories. In this section, our proposal to identify such a relationship and to
use it to join two trajectories into a single one is described.

In order to preserve the trajectory structure, the goal of map joining (sources available in
Reference [16]) is to find the proper transformation between the end of the first trajectory and the start
of the second one. Both trajectories, known as sessions, are separated in time, and the map joining task
is aligning the current survey to a previously completed map.

Let Xp denote the trajectory of a previous session. Let the first and last images that took part in
this trajectory be referred to as Ips and Ipe, respectively. Similarly, let Xc denote the current session’s
trajectory and let its first and last images be denoted by Ics and Ice, respectively. Since the map joining
is performed while Xc is being built, Ice will be exactly It.

At time step t, one or more global loops may have been found. Each of these loops relate one
image in a previous session with It in the current session. Our proposal is to store global loops until a
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fixed number K of them has been found and to then use them all to join the maps. Let ZG = N(ẐG, RG),
as defined in Equations (21) and (22), denote this set of K accumulated global loops.

ẐG =
(

(Ẑp0
c0 )

T (Ẑp1
c1 )

T ... (ẐpK−1
cK−1 )

T
)T

(21)

RG = blkdiag{Rp0
c0 , Rp1

c1 , ..., RpK
cK } (22)

The normals Zpi
ci = N(Ẑpi

ci , Rpi
ci ) represent links between image Ipi in the previous session and

image Ici in the current one. Each Zpi
ci belongs to GLci (Equation (9)).

Our goal is to find the relative motion between the last image of the previous session Ipe and
the first image of the current one Ics. Let this relative motion be referred to as Xpe

cs = N(X̂pe
cs , Ppe

cs ).
Figure 5a summarizes these concepts.

(a)

(b)

Figure 5. (a) Summary of the map joining and (b) an example of a joined trajectory.

This paper proposes the use of an IEKF to perform the optimization, with Xpe
cs as the state vector

and ZG as the measurement. That is, the IEKF will find the Xpe
cs that better explains all the loop closures.

Since Xpe
cs only depends on the loop closings, which constitute the measurements during the IEKF

update, there is no need to perform the IEKF prediction.
Let us begin by building the observation function gG (Equation (23)) which provides an estimate

of each loop in ZG from the state vector.

gG =
(

(g0
G)

T (g1
G)

T ... (gK−1
G )T

)T
(23)

Each gi
G = X̂pi

pe ⊕ X̂pe
cs ⊕ X̂cs

ci estimates the loop Zpi
ci , with Xpi

pe = N(X̂pi
pe, Ppi

pe) as the transformation
from the loop closing image Ipi to the last image of the previous session Ipe and Xcs

ci = N(X̂cs
ci , Pcs

ci ) as
the transformation from the first image in the second session Ics and the loop closing image Ici. Both
can be computed by means of Equation (2).
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The Jacobian matrix GG of the observation function, which is needed by the IEKF optimization,
can be computed as shown in Equations (24)–(28). The terms s and c denote sin and cos, respectively.

GG =

(
(

∂g0
G

Xpe
cs
)T (

∂g1
G

Xpe
cs
)T ... (

∂gK−1
G

Xpe
cs

)T
)T

(24)

∂gi
G

Xpe
cs

=

 cθ
pi
pe, −sθ

pi
pe, −ycs

ci c(θpi
pe + θ

pe
cs )− xcs

ci s(θpi
pe + θ

pe
cs )

sθ
pi
pe, cθ

pi
pe, xcs

ci c(θpi
pe + θ

pe
cs )− ype

cs s(θpi
pe + θ

pe
cs )

0, 0, 1

 (25)

X̂pi
pe = (xpi

pe, ypi
pe, θ

pi
pe)

T (26)

X̂pe
cs = (xpe

cs , ype
cs , θ

pe
cs )

T (27)

X̂cs
ci = (xcs

ci , ycs
ci , θcs

ci )
T (28)

Now, the IEKF in Equations (19) and (20) can be applied to find the transformation between both
maps. The standard formulation is provided next only for clarity purposes. At the jth iteration of
the IEKF, the mean X̂pe

cs,j and the covariance Ppe
cs,j of the state vector can be computed by means of

Equations (29)–(31). The term CG,j−1 denotes GG evaluated at X̂pe
cs,j−1.

X̂pe
cs,j = X̂pe

cs,j−1 + Kj(ZG − gG(X̂pe
cs,j−1)) (29)

Ppe
cs,j = (I − KjGG,j−1)Ppe

cs,j−1 (30)

Kj = Ppe
cs,j−1GT

G,j−1(GG,j−1Ppe
cs,j−1GT

G,j−1 + RG)
−1 (31)

The process is iterated until ||X̂pe
cs,j − X̂pe

cs,j−1|| is below a certain threshold or a maximum number

of iterations is reached. When that happens, the final X̂pe
cs,j and Ppe

cs,j constitute the outputs X̂pe
cs and Ppe

cs
of the IEKF.

X̂pe
cs,0 being the initial guess of the state vector, our proposal is to compute it from one of the loops

in ZG, since there is a single solution in the presence of a single loop and, thus, a closed form expression
exists. Equation (32) shows such a closed form expression if the first loop Zp0

c0 is used.

X̂pe
cs,0 = 	Xp0

pe ⊕ Zp0
c0 ⊕ (	Xcs

c0) (32)

Since Xpe
cs expresses a transformation between the end of the previous session and the

beginning of the current one, it is extremely simple to use it to join both sessions into a single one.
Equations (33) and (34) show the mean and the covariance of the joined trajectory XJ = N(X̂J , PJ),
where Pp and Pc denote the covariances of Xp and Xc, respectively.

X̂J =
(

(X̂p)T (X̂pe
cs )

T (X̂c)T
)T

(33)

PJ = blkdiag{Pp, Ppe
cs , Pc} (34)

In this way, the resulting trajectory is consistent with both sessions and can be used, from this
moment onward, to perform the single-session SLAM described in Section 8.

Additionally, with our proposal being able to simultaneously take into account several global
loop closures, different sessions may be kept separated until necessary, reducing the computational
cost. Also, the adopted trajectory-based structure with links between different sessions allows to easily
separate joined maps whenever is necessary for the sake of computation time.

Figure 5b shows the resulting trajectory after applying the described process to the example in
Figure 5a.

The whole process is summarized in Algorithm 2. The function compute_tails is in charge of
computing the motion from one of the loop closing images to the end of the previous session and
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from the beginning of the current session to the other loop closing image. As stated previously, this
is achieved using Equation (2). The function compute_observation computes each of the gi

G (see
Equation (23)) and the corresponding Jacobian matrices (Equations (24)–(28)). Finally, IEKF_update
refers to Equations (29)–(31).

Algorithm 2: Map joining.
1 Input:
2 ZG : Set of K global loops
3 Xp: Previous session trajectory
4 Xc: Current session trajectory

5 Output:
6 XJ : Joined trajectory

7 begin
8 Xp0

ce , Xcs
c0 ← compute_tails(p0, c0, Xp, Xc);

9 Xpe
cs = N

(
X̂pe

cs , Ppe
cs
)
← 	Xp0

pe ⊕ Zp0
c0 ⊕ (	Xcs

c0);
10 while not IEKF convergence do
11 gG , GG ← ∅;
12 for i← 0 to K− 1 do
13 Xpi

ce , Xcs
ci ← compute_tails(pi, ci, Xp, Xc);

14 gi
G , Gi

G ←compute_observation(Xpi
ce , Xcs

ci , ZG , Xp, Xc, Xpe
cs );

15 gG ←
[

gT
G ,
(

gi
G
)T
]T

;

16 GG ←
[

GT
G ,
(
Gi

G
)T
]T

;

17 end
18 Xpe

cs ←IEKF_update(gG , GG , Xpe
cs );

19 end

20 X̂J ←
((

X̂p
)T ,

(
X̂pe

cs
)T

,
(
X̂c
)T
)T

;

21 PJ ← blkdiag{Pp, Ppe
cs , Pc};

22 XJ ← N
(
X̂J , PJ

)
;

23 end

As can be observed, the algorithm begins by computing an initial estimate using the first existing
loop in ZG according to Equation (32). Afterwards, in each IEKF loop, the observation function as well
as its Jacobian matrix are iteratively computed by appending a new term for every measurement in ZG.
Finally, when the algorithm converges, the joined trajectory XJ is built by linking XP and XC using the
obtained Xpe

cs .

10. Experimental Results

This section presents an extensive set of experiments evaluating the main building blocks of our
proposal. These experiments, which have been conducted using real data gathered in coastal areas of
Mallorca (Spain) colonized with Posidonia oceanica, assess both qualitatively and quantitatively the
ability of our proposal to properly perform multi-session SLAM.

10.1. Experimental Setup

For a first evaluation, two different, partially overlapping video sequences V1 and V2 were
recorded in Port de Valldemossa (Spain) with a bottom-looking camera in a marine environment with
sand, rocks, seagrass, and moss. The camera was attached to a diver with the lens axis approximately
perpendicular to the bottom. The diver moved on the water surface in an area with an approximate
constant depth of 3 m. The lack of any other sensorial data which could be supplied by an AUV makes
the localization system a pure vision-based approach.

Some images of these sequences are shown in Figure 6, where it can be observed that the region
is populated with Posidonia oceanica, a seagrass that forms dense colonies characterized by its long
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and thin leafs. Posidonia is crucial in the maintenance of the Mediterranean marine ecosystems
and declared by the European Community a species with special protection. One of the tasks in
the ARSEA project includes mapping Posidonia meadows and quantifying their bottom coverage
using an AUV and several algorithms to discriminate the Posidonia from the background based on
deep learning [44]. Due to the particular texture of the Posidonia and the slight motion of its leafs
caused by the water current, tracking stable visual features in consecutive overlapping frames is a
challenging task. A high number of outliers and/or a slow feature detection process, matching, or
tracking might compromise the accuracy in the calculation of the visual odometry and the registration
of images that close loops. However, previous references [45,46] already showed that SIFT is one of
the best features to be used in this type of underwater environments in terms of matching and tracking
performance. SIFT is also the key feature type in HALOC. Although processing SIFT is slower than
other descriptors, the C++ version of HALOC is highly efficient in areas with Posidonia [12,35]. In our
opinion and according to our experience and obtained results, given the robustness and traceability of
SIFT, spending an additional slight portion of time in the process of RANSAC-based feature detection
and matching to obtain more reliable trajectories is more preferable than using other simpler features
that present less computational cost than SIFT (thus faster) but can cause larger inaccuracies in the
image transformations because they also give a higher number of outliers when tracked/matched.

(a) (b)

(c) (d)

Figure 6. Examples of the images used in the experiments: (a,b) session 1 and (c,d) session 2.

The camera altitude was computed at the beginning of each video sequence by means of a static
visual marker of known size, placed at the sea bottom. This marker served as the origin and end point
of both trajectories. From the V1 sequence, 226 key images were extracted, and 199 were extracted
from V2.

A second pair of trajectories, V3 and V4, were recorded also by a diver in Port de Valldemossa far
from V1 and V2 but using the same infrastructure as described above and navigating on the water
surface at an approximate constant altitude of 4 m. In this case, the initial altitude was computed
thanks to a static structure of known dimensions formed by markers and plastic tubes placed at the
sea floor. A total of 209 key frames were selected, the first 152 corresponding to V3 and the next 57
corresponding to V4.
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V3 and V4 also started and finished over one of the static markers forming the structure.
Once this structure was deployed, it was not touched until V3 and V4 were grabbed. For all
sequences, the altitude was assumed to be constant during each session and the video resolution was
1920×1080 pixels, grabbed at 30 frames per second, and prior to their use, all images were scaled
down to 320×180 pixels.

Finally, a third pair of video sequences, namely V5 and V6, were recorded by the SPARUS II
AUV [47] property of the University of the Balearic Islands, moving at a programmed constant altitude
of 3 m in an area of 16 m depth. The altitude of the robot is well known and obtained from its
navigation filter which integrates the DVL, an Inertial Measurement Unit (IMU), a pressure sensor, an
Ultra Short Baseline (USBL) localizer, and a stereo 3-D odometer [48]. The aim of these video sequences
is to test our proposal in larger environments with complex imagery due to the massive presence of
Posidonia on the sea bottom. In particular, V5 was obtained along a trajectory of 93 m and V6 involved
a 114-m mission. While gathering V5, the AUV was programmed to perform a rectangular loop of
20×15 m. As for V6, the AUV mission was to perform two smaller loops on one side of V5.

Figure 7 shows some images extracted from V5 and V6. As it can be observed, illumination was
deficient, resulting in dark images with low contrast. In these types of environments, the altitude
parameter is extremely important. Cameras at larger altitudes will provide wider fields of view and,
thus, the possibility to find more loop closings, but conversely, if the illumination conditions are
not optimal, especially at larger depths, the feature matching process can decrease its performance
and affect directly the accuracy of the visual odometry calculation and the loop closing detection.
In our environments and with our robot and its equipment, altitudes between 3 and 5 m give a good
trade-off between image overlap and illumination conditions. A total of 400 key images were extracted,
200 belonging to V5 and 200 bwlonging to V6. In all these image sets, the Posidonia appears as the
darker and/or greener areas, being the clearer areas such as stones, pebbles, or sand in the background.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Examples of images in V5 (a,c,e) and V6 (b,d,f): Each row shows images with partial overlap.

Given the extreme difficulty to obtain a ground truth trajectory in underwater environments
without a Long Baseline (LBL) positioning infrastructure and specifically in medium or large areas
colonized with seagrass, the assessment of the map-joining system has been done not from a vehicle
factual ascertainable motion data but by obtaining, (a) on the one side, a qualified mosaic to provide
visual evidences of correctness and, (b) on the other side and for the sake of a quantitative evaluation,
the difference between a set of 2-D transformations (Xt -(x, y and yaw)) between image pairs
that close local and inter-session loops obtained according to the estimated trajectories and the
same 2-D transformations Xt obtained manually with Matlab (transformation ground truth) (see
Sections 10.3 and 10.4).

10.2. Loop Closure Detection

Similarly to Ozog and Eustice [30], the consistency of a SLAM approach is now partially measured
quantitatively by counting the number of visual loop closures and then through the derived parameters
of precision, recall, and accuracy.

A total of 13 image pairs (11 in V1 and 2 in V2) were retrieved as single-session loop closings, using
feature matching and RANSAC as described in Section 6 around a region surrounding the current
image, resulting all true positives (TP). In order to assess the global loop detection using the signature
method, all images of both video sequences V1 and V2 were hashed using HALOC. Equation (8)
was applied by means of relating every key image (query image) of V2 with the 5 images (so-called
candidates) of V1 that presented the lowest difference in terms of L1-norm between the hash of the
query and the candidate. After this, all these preselected image pairs that presented a number of inliers
(SIFT feature matching with RANSAC) higher than 25 were confirmed as loop closings. This threshold
was set experimentally, since all the real (single and multi-session) loop closings presented more that
25 inliers and the overwhelmingly majority of image pairs that did not close loops had less than 10.
However, this threshold needs to be set as a function of the observed environment. Thirty-five image
pair candidates to close global loops (between V1 and V2) were found, from which 34 were TP and 1
false positive (FP), resulting in a precision, defined as TP/(TP + FP), of 0.97.

Four hundred and twenty-five image pairs were labeled as non-loop closings, including local and
global, and verified by visual inspection. Four hundred and two were true negatives (TN) (images
that really did not close loops), and 23 turned out to be false negatives (FN) (loop closings classified
as non-loop closings). The recall defined as TP/(TP + FN) was 0.7927, and the accuracy defined as
(TP + TN)/(TP + TN + FP + FN) was 0.9533.

In summary, although some real loop closings are missed in the detection process (implicit in a
recall slightly lower than a 80%), the percentage of true loop closings detected (single and multi-session)
with respect to the total of loop closings finally proposed is close to 100%. Figure 8 shows a sample
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of 3 pairs of single-session loop closings located in both image sequences V1 and V2. Dark areas
correspond to Posidonia while clear areas correspond to stones and pebbles.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Local loops of sequences V1 and V2: Each image in the left column closes a loop with the
corresponding image in the right column. (a,b) Sequence V1, Image 10 with Image 155. (c,d) Sequence
V1, Image 143 with Image 27. (e,f) Sequence V2, Image 119 with Image 63.

Figure 9 shows a sample of 3 pairs of multi-session loop closings between the two image sequences.
Again, dark areas show the Posidonia and clearer areas correspond to stones and pebbles.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Multi-session loops between sequences V1 and V2: Each image in the left column closes a
loop with the corresponding image in the right column. (a,b) Image 155 of Sequence V1 with Image 2
of Sequence V2. (c,d) Image 152 of Sequence V1 with Image 195 of Sequence V2. (e,f) Image 138 of
Sequence V1 with Image 28 of Sequence V2.

An evaluation on V3 and V4 was done following exactly the same procedure used with V1 and
V2 to retrieve all local and global loop closings. The feature matching threshold was also set to 25. Four
hundred image pairs were labeled as negatives (no loop closings), and 130 were labeled as TP loop
closings, 21 were labeled as multi-session, and 109 were labeled as single session, giving a precision of
1. The evaluation of these results was also done by visual inspection. From the 400 negatives, 349 were
TN and 51 turned out to be FN. The recall result was 0.72, and the accuracy was 0.9. With a threshold
of 25, some real loop closings are missed. However, a 100% in precision means that all loop closings
that will be used in the SLAM process are true.

Figure 10 shows a sample of 3 pairs of single-session loop closings located in both image sequences
V3 and V4. Dark areas again correspond to Posidonia.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Local loops of sequences V3 and V4: Each image in the left column closes a loop with the
corresponding image in the right column. (a,b) Sequence V3, Image 67 with Image 79. (c,d) Sequence
V4, Image 155 with Image 208. (e,f) Sequence V4, Image 162 with Image 171.

Figure 11 shows a sample of 3 pairs of multi-session loop closings between the two image
sequences V3 and V4.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. Multi-session loops between sequences V3 and V4: Each image in the left column closes a
loop with the corresponding image in the right column. (a,b) Image 91 of Sequence V3 with Image
155 of Sequence V4. (c,d) Image 145 of Sequence V3 with Image 174 of Sequence V4. (e,f) Image 36 of
Sequence V3 with Image 183 of Sequence V4 .

A similar evaluation was performed with V5 and V6. In this case, a total of 59 loops between
both sessions was found. Figure 7 shows some examples. The images in the left and right columns
belong to V5 and V6, respectively. As it can be observed due to the kind of imagery that loops are hard
to detect by simple visual inspection. Thus, these video sequences clearly show the loop detection
capabilities of HALOC in these type of environments.

10.3. Multi-Session SLAM

In order to quantitatively evaluate our proposal, we have selected five image pairs of each video
sequence that close a large local loop. By large local loop, we mean that the first and the second image
in each pair overlap but that, between the times at which these images were gathered, the camera field
of view did not overlap any of them for at least 40 s. Actually, this time surpasses two minutes in five
of the ten image pairs and three minutes in two of them.

For each of these image pairs, we have computed manually the exact pose of one image with
respect to the other, building two sets of local ground truth, G1 and G2, defined as G1 = {G1i

j =

(x1i
j, y1i

j, θ1i
j), (i, j) ∈ loops(V1, V1)} and G2 = {G2i

j = (x2i
j, y2i

j, θ2i
j), (i, j) ∈ loops(V2, V2)}, which

include the relative poses between images. Similarly, we have selected five image pairs that close
global loops, computing the exact pose of the second image in each pair with respect to the first one,
building a global ground truth G3 = {G3i

j = (x3i
j, y3i

j, θ3i
j), (i, j) ∈ loops(V1, V2)}.

Thereafter, let us define the error ek as the average distance between the relative positions
according to the ground truth Gk and the corresponding relative positions according to the estimated
trajectory as shown in Equation (35). In this Equation, (xi

j, yi
j) denotes the relative position of image j

with respect to image i according to the trajectory being evaluated.

ek = ( ∑
Gki

j∈Gk

√
(xki

j − xi
j)

2 + (yki
j − yi

j)
2)/|Gk| (35)
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Overall, the quality of the vehicle pose estimated by the odometry, the single-session SLAM
within the first (e1) and second video sequences (e2) and between both video sequences (multi-session
SLAM) can be computed.

Figures 12 and 13 depict the trajectories for V1 and V2. In these figures, SLAM refers to
each single-session separately and MSLAM denotes the multi-session SLAM. The number after
MSLAM states the number of global loops used to join the maps. That is, the number refers to K in
Equations (21) and (22). Therefore, MSLAM1 corresponds to joining the maps after the first global
loop was detected. MSLAM10, MSLAM20, and MSLAM30 delay the map joining until 10, 20, and 30
global loops were found, respectively.
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Figure 12. Obtained trajectories for V1 and V2: (a) Session 1 odometry, (b) session 2 odometry,
(c) session 1 SLAM, and (d) session 2 SLAM.
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Figure 13. Obtained trajectories for V1 and V2: (a) MSLAM1, (b) MSLAM10, (c) MSLAM20, and
(d) MSLAM30. In SLAM, thick lines are the trajectories, thin lines are the detected loops, and the
triangles show the estimated AUV orientation.

Table 1 summarizes the obtained quantitative results. The time consumption has been measured
in seconds on a Matlab implementation executed in a standard laptop (i7 CPU at 3.1GHz using a single
core) running Ubuntu 16.04LTS. The odometry error is expressed in meters, and it is reasonably low
during the first session but increases considerably in the second one. Thus, SLAM (either single-session
and multi-session) provided a slight improvement to the first session but a very large improvement
during the second one. It can also be observed that the results corresponding to each session are similar
if we compare the single-session approach to the multi-session one.

Table 1. Summary of the results.

SESSION 1 SESSION 2 MSLAM

Method e1 (m) Time (seg.) e2 (m) Time (seg.) e3 (m) Time (seg.)

Odometry 0.473 54.6 3.002 49.0 - -

SLAM 0.303 148.7 0.352 117.1 - -

MSLAM1 0.300 - 0.336 - 0.310 488.6

MSLAM10 0.302 - 0.347 - 0.323 465.6

MSLAM20 0.301 - 0.351 - 0.319 432.6

MSLAM30 0.300 - 0.351 - 0.322 385.6

The different delays to join the maps (10, 20, and 30) barely affect the quality of the final estimates
since errors are almost constant. To the contrary, the execution time is reduced to 78% if the maps are
joined when 30 loops are detected instead of joining them with the first loop. Thus, delaying loop
closure is responsible for a large reduction in time consumption.

In the Matlab implementation, the CPU usage was, on average, 24.3% for the odometry, 62.4%
for the single-session SLAM, and 90.5% for the MSLAM30 map joining procedure. A CPU usage far
below these percentages can be expected with an optimized C++ code instead of Matlab. Although
out of the scope of this paper, it is worth mentioning that a C++ implementation is currently being
developed by the signing authors under the ROS middleware [49] to be installed in our AUV and to be
run online during the missions. Additionally, given the high speed at which the C++ implementation
of HALOC is able to propose loop closing candidates [12], the use of the whole system on-line, in our
view, is perfectly feasible. Nonetheless, a further complete assessment will be necessary.

Figure 14a,b shows the odometric trajectories of V3 and V4, respectively. Figure 14c,d depicts
the local SLAM trajectories of V3 and V4, respectively. Finally, Figure 15a–d shows the connected
maps, delaying the joining step until 1, 5, 10, and 15 loop closings were detected. Since both sequences



J. Mar. Sci. Eng. 2019, 7, 278 25 of 36

started and finished over the structure, it is easy to see that the odometry drifts at the end of V3 and,
to a lesser extend, in V4.
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Figure 14. Obtained trajectories for V3 and V4: (a) Session V3 odometry, (b) session V4 odometry,
(c) session V3 SLAM, and (d) Session V4 SLAM.
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Figure 15. Obtained trajectories for V3 and V4: (a) MSLAM1, (b) MSLAM5, (c) MSLAM10, and
(d) MSLAM15. In SLAM, thick lines are the trajectories, thin lines are the detected loops, and the
triangles show the estimated AUV orientation.
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Figures 16 and 17 show four photo-mosaics corresponding to sequences V1, V2, V3, and V4,
included for the sake of an easy and fast visual qualitative evaluation of the joined trajectories. Both
mosaics were built with the same key frames used in the SLAM processes and Binary descriptor-based
Image Mosaicing (BIMOS)[50]. BIMOS-related references [50–52] already showed the good performance
of this mosaic approach in terms of accuracy and execution time and of application in underwater
environments with seagrass (see Bonin-Font et al. [51]). Consequently, its assessment is out of the
scope of this paper.

(a) (b)

Figure 16. (a) Photo-mosaic of V1 and (b) photo-mosaic of V2.

(a) (b)

Figure 17. (a) Photo-mosaic of V3 and (b) photo-mosaic of V4.
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An illustrative video of the whole process can be seen at https://youtu.be/NW7H5vbYQvU.
The marker visible on mosaics corresponding to V1 and V2 indicate the start and end of both

trajectories. The relative position of the mosaics correspond to V1-V2 and V3-V4 with respect the
single marker in the formers, and the structure in the later coincide very closely with the form of the
resulting joined maps.

A final experiment has been performed, aimed at showing the quality of our proposal in front of
larger trajectories and bad illumination conditions. To this end, V5 and V6 have been used.

Figure 18 shows the obtained trajectories. In particular, Figure 18a,b shows the trajectories
according to pure visual odometry. In both cases, significant odometric errors lead to trajectories that
barely resemble the actual mission performed by the AUV.
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Figure 18. Obtained trajectories for V5 and V6: (a) Session V5 odometry, (b) session V6 odometry,
(c) session V5 SLAM, and (d) session V6 SLAM.

Figure 18c,d shows the trajectories obtained by single session SLAM. In this case, V6 was
substantially corrected. However, V5 remains almost unchanged with respect to pure odometry.
In this case, the odometric error was so large that the geometric constrains prevented the detection of
relevant loops.

Figure 19a,d shows the trajectories according to multi-session SLAM if maps are joined after
detecting 1, 10, 20, or 30 global loops. As can be observed, in all cases, the overall structure of V6 is
recovered, thus leading to a large improvement with respect to single session SLAM.

https://youtu.be/NW7H5vbYQvU
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Figure 19. Obtained trajectories for V5 and V6: (a) MSLAM1, (b) MSLAM10, (c) MSLAM20, and
(d) MSLAM30. In SLAM, thick lines are the trajectories, thin lines are the detected loops, and the
triangles show the estimated AUV orientation.

It can also be observed that the larger the delay to join the trajectories, the worse is the result. For
example, for MSLAM20 and MSLAM30, the loops involving the start and the end of V5 have not been
detected. This decrease of the quality with the delay is reasonable and consistent with previous results:
as the delay increases, less local loops are available to improve the joined trajectory.

Table 2 shows the execution times. As can be observed, the multi-session execution time is
significantly larger that of single session SLAM. This is mainly due to the fact that few local loops are
detected in single session SLAM, especially in V5. These results also show that the larger the delay
to join the trajectories, the lower the execution time. For example, switching from a delay of one to a
delay of 30 leads to a reduction of 38.57% of the execution time.

Table 2. Execution times for V5 and V6.

V5 V6 MULTISESSION

Odometry 49.804 s 47.649 s -

SLAM 66.267 s 82.569 s -

MSLAM1 - - 379.228 s

MSLAM10 - - 262.387 s

MSLAM20 - - 246.199 s

MSLAM30 - - 232.960 s
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10.4. Robustness

In order to test the robustness of our proposal, we have corrupted the odometric estimates of V1
and V2 with five different levels of additive zero mean Gaussian noise. The two sigma bounds of these
noises ranged from 5 cm in x and y and 5◦ in orientation for noise level 1 to 25 cm in x and y and 25◦

in orientation for noise level 5.
Each corrupted odometry has been used to perform single and multi-session SLAM with different

loop-closing delays.
MSLAM1, MSLAM10, MSLAM20, and MSLAM30 denote that the maps were joined after

detecting 1, 10, 20, and 30 global loops, respectively. The local and the global errors have been
recorded in each case. This experiment has been repeated 60 times for each noise level. Table 3
summarizes the obtained results by showing the mean (X̄) and the standard deviations (σ) of the
obtained errors for each noise level (N.). MSSession denotes the multi-session SLAM. All values are
expressed in meters.

Table 3. Error X̄ and σ of synthetically corrupted odometry.

N. Method Session 1 Session 2 MSSession

X̄(e1) σ(e1) X̄(e2) σ(e2) X̄(e3) σ(e3)

LEVEL 1

Odometry 1.424 0.832 3.441 1.759 - -

SLAM 0.304 0.003 0.347 0.002 - -

MSLAM1 0.299 0.004 0.352 0.022 0.320 0.004

MSLAM10 0.300 0.001 0.351 0.002 0.318 0.001

MSLAM20 0.302 0.001 0.350 0.002 0.318 0.002

MSLAM30 0.300 0.001 0.350 0.003 0.316 0.001

LEVEL 2

Odometry 2.747 1.539 4.565 2.191 - -

SLAM 0.304 0.006 0.346 0.005 - -

MSLAM1 0.300 0.004 0.346 0.021 0.319 0.004

MSLAM10 0.300 0.001 0.350 0.005 0.319 0.002

MSLAM20 0.302 0.001 0.350 0.005 0.318 0.003

MSLAM30 0.300 0.001 0.352 0.004 0.317 0.003

LEVEL 3

Odometry 3.686 1.660 6.081 2.802 - -

SLAM 0.302 0.008 0.374 0.111 - -

MSLAM1 0.299 0.004 0.361 0.051 0.321 0.015

MSLAM10 0.300 0.001 0.355 0.019 0.320 0.008

MSLAM20 0.302 0.001 0.351 0.008 0.318 0.003

MSLAM30 0.301 0.001 0.352 0.012 0.318 0.007

LEVEL 4

Odometry 4.912 2.304 6.520 3.321 - -

SLAM 0.302 0.010 0.418 0.298 - -

MSLAM1 0.299 0.003 0.368 0.072 0.323 0.025

MSLAM10 0.300 0.001 0.355 0.017 0.319 0.006

MSLAM20 0.302 0.002 0.360 0.064 0.321 0.027

MSLAM30 0.301 0.001 0.351 0.009 0.315 0.007

LEVEL 5

Odometry 4.796 2.019 6.363 3.258 - -

SLAM 0.301 0.014 0.453 0.406 - -

MSLAM1 0.300 0.004 0.368 0.080 0.324 0.026

MSLAM10 0.300 0.002 0.362 0.043 0.320 0.009

MSLAM20 0.303 0.001 0.348 0.022 0.316 0.009

MSLAM30 0.301 0.002 0.355 0.044 0.319 0.021
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Figure 20 compares the errors of each tested SLAM approach to those of odometry as a function
of the noise level. Firstly, both SLAM errors, single and multi-session, are always below the odometric
error. SLAM is able to reduce odometric errors larger than 6 m to approximately 30 cm. Secondly,
the resulting SLAM errors are barely influenced by the odometric error. Therefore, within the tested
ranges of noise, our proposal is almost independent of the initial conditions.
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Figure 20. Mean and standard deviations of the errors in distance using synthetically corrupted
odometry: (a) SLAM session 1 and odometry, (b) SLAM session 2 and odometry, (c) MSLAM1
session 1 and odometry, (d) MSLAM1 session 2 and odometry, (e) MSLAM10 session 1 and odometry,
(f) MSLAM10 session 2 and odometry, (g) MSLAM20 session 1 and odometry, (h) MSLAM20 session 2
and odometry, (i) MSLAM30 session 1 and odometry, and (j) MSLAM30 session 2 and odometry.

Additionally, even though the standard deviations of all the SLAM approaches are very small,
those corresponding to single session SLAM tend to increase with the noise level. This can be clearly
appreciated in Figure 20b. However, the covariances of the error corresponding to multi-session SLAM
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are barely influenced by the noise level. This suggests that joining the maps reinforces the stability of
the pose estimates.

Finally, these results also show that delaying the map joining has negligible effects on the resulting
quality as the errors for MSLAM1, MSLAM10, MSLAM20, and MSLAM30 are almost identical.
However, delaying the map joining is responsible for a significant reduction in computation time, so it
is advisable to delay them as much as possible.

Figure 21 depicts the means and standard deviations of the MSLAM approach. The initial error
barely influences the results except for error level 5, which leads to larger error variability. Nonetheless,
even in the worst case, the standard deviation is only 0.021 m. It can also be observed that the delay to
join the maps has almost no influence on the final results.
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Figure 21. Global error depending on the noise level and the number of loops for map joining.

Figure 22a,b depicts the odometry corresponding to both trajectories corrupted with noise level 5.
As can be observed, there is no visual resemblance between them and their non-corrupted counterparts
in Figure 12a,b. Figure 22c,d shows the output of our proposed single-session SLAM using the
corrupted trajectories, evidencing a huge improvement. Finally, Figure 22e shows the output of
MSLAM30. As can be observed, the results (therefore, the measured errors) are extremely similar to
the case in which non-corrupted odometry was used (Figure 12h).

Some additional experiments performed with larger noise levels show that the system leads to
similar results except for noise levels that are not possible in real operation, such as errors in x or y that
surpass the camera field of view. This is due to two main reasons. On the one hand, Algorithm 1 is
particularly robust. Because of that, increasing the search radius δ of Equation (4) to account for larger
odometric errors leads to larger execution times but not to an increase of false positives. Thus, large
values for δ can be used even in low noise situations. On the other hand, global loop detection does
not depend on the quality of the odometry. Accordingly, both map joining and the use of global loops
to correct the joined trajectory are not affected by the noise level.
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Figure 22. Example of multi-session SLAM using odometry corrupted with noise level 5: (a) Corrupted
odometry of session 1, (b) corrupted odometry of session 2, (c) single-session SLAM of session 1,
(d) single-session SLAM of session 2, and (e) multi-session SLAM.

11. Conclusions

In this paper, we have presented a trajectory-based multi-session monocular SLAM approach
aimed at underwater environments which has three main blocks: a visual odometer, two different loop
detectors, and an optimizer. The visual odometer gives a first estimate of the camera motion in each
single session. The single and multi-session loop closing detection add additional pose constraints to
each individual sequence and between both sessions. Finally, the optimizer is in charge of improving
the trajectories (intra-map optimization) and joining different sessions (map joining).

The main contributions of this paper are as follows: (a) Due to the lack of geometric information
relating two different sessions, the multi-session loops are found using an image global signature (hash)
fast matching based on HALOC which is already tested on underwater imagery. (b) The capacity of
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the map-joining algorithm to preserve the trajectory structure by adding a single link between the
joined sessions; (c) to perform a delayed global graph optimization, reducing computational effort
without loss of localization accuracy; and (d) to disaggregate sessions, reducing the computational
cost whenever is necessary and joining them again later are improved. (e) A complete set of source
codes that implement the whole process is available for the community.

Experimental results have been obtained from several video sequences taken with a single camera
at subsea environments located in Mallorca. The results of the assessment of each particular component
(odometry, loop detection, and optimization) in terms of quality and robustness evidence a high quality
in the resulting trajectories. Moreover, the results using extremely corrupted odometry suggest that
our proposal is barely influenced by odometric errors. On the other hand, the system has a couple
of limitations, which are being addressed in the current ongoing work, and are out of the scope of
this paper: (a) The approach is 2-D, and additional data concerning the constant altitude at which the
underwater robot is moving is needed but easily obtainable by means of other sensors, such as a stereo
altimeter or the DVL; this current approach is being evolved towards a 3-D one, taking into account
the 6 Degrees of Freedom (DoF) of the vehicle, starting with the application of a 3-D odometer such
as the well-known Viso2 Library [53]. (b) The sooner the map joining task is performed, the best to
increase the accuracy of the localization data; once both sessions are joined, the vehicle localization
gets into a pure single session SLAM procedure, in which finding local loop closings is easier and they
appear with more frequency than intersessions; and delaying the map joining delays inevitably the
fine correction of the map.

The forthcoming work includes (a) implementing the whole system in C++, (b) setting out a
strategy to get a trajectory ground truth of the underwater missions to be used in comparisons of our
method with any other anchor-node-based methods, and (c) adapting the proposal presented in this
paper to perform multi-robot visual SLAM.
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