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Abstract: Renewable energies play a fundamental role within the current political and social
framework for minimizing the impacts of climate change. The ocean has a vast potential for
generating energy and therefore, the marine renewable energies are included in the Sustainable
Development Goals (SDGs). These energies include wave, tidal, marine currents, ocean thermal, and
osmotic. Moreover, it can also be included wind, solar, geothermal and biomass powers, which their
main use is onshore, but in the near future their use at sea may be considered. The manuscript starts
with a state-of-the-art review of the abovementioned marine renewable energy resources worldwide.
The paper continues with a case study focused on the Spanish coast, divided into six regions: (I)
Cantabrian, (II) Galician, (III) South Atlantic, (IV) Canary Islands, (V) Southern Mediterranean, and
(VI) Northern Mediterranean. The results show that: (1) areas I and II are suitable for offshore wind,
wave and biomass; (2) areas IIl and V are suitable for offshore wind, marine current and offshore
solar; area IV is suitable for offshore wind, ocean wave and offshore solar; (3) and area VI is suitable
for offshore wind, osmotic and offshore solar. This analysis can help politicians and technicians to
plan the use of these resources in Spain.

Keywords: renewable energies; ocean energy; offshore wind; wave; tidal; marine currents;
ocean thermal

1. Introduction

In recent years, there have been some social and political concerns about climate change and
the high dependence on fossil fuels. In order to prevent a big problem, different climate and energy
policies are being created to achieve environmental sustainability. Renewable energies are called to
play an essential role in this process. The ocean has been an integral part of human civilization and its
development for a long time. Although its potential use for power generation has been the object of
different patents, only some technologies able of taking advantage of ocean energy resources are in a
mature stage of development. This is a key point taking into account that oceans and seas have the
potential to play an important role in the supply of clean and endless energy. Oceans and seas contain
large quantities of energy potential. In fact, ocean energy resources are estimated with a potential of
around 120,000 TWh/year, enough to satisfy more that 400% of the current global demand for electricity.

The great potential shown by ocean energies is due in part to the huge ranges of possibilities:
wave, tidal, marine currents, ocean thermal, and osmotic (salinity gradient) energies. In addition to
these ones, it is essential to take into account those created in a first moment for onshore locations, and
later thought for sites in the sea: wind and solar (onshore on land and offshore on sea), geothermal and
biomass. Nowadays, there are some barriers to achieve an adequate development of that sector [1].
These barriers are mainly: the state of the technology with a lot of important challenges both in
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the short and medium term, the high capital cost in the first project of each technology, the lack of
experience and environmental aspects, etc. These barriers are smaller or larger depending on each of
the oceanic technologies and its current development stage.

In recent years, this industry has seen encouraging signs, with some of the technologies showing
significant progress. This is the case for offshore wind and tidal energy, which can be considered
mature enough to be ready for their commercial development. Regardless, other technologies follow
a slower learning curve. Based on this, the forecasts in the short, medium, and long term are not
ambitious at all [2]. With the objective of promoting the sector, various initiatives have emerged to take
advantage of its energetic potential. One of them is the Implementation Agreement of Oceanic Energy
Systems (IEA-OES), which aims to have installed 337 GW of capacity worldwide in 2050, objective
difficult to be achieved with current figures.

Another key aspect in the development of this type of project is the Levelized Cost of Electricity
(LCOE) [3]. LCOE value is very high in the case of prototype projects, having a lot of room for
improvement. It is important to take into account that the energy generated must have a competitive
cost [4]. On the other hand, the use of green energy has other benefits. In fact, governments must
support this type of project with some incentives to help the companies involved, above all in the
early stages of the development of those technologies. On the other hand, a better perception of the
citizens about marine renewable energy is essential, because nowadays there is a great ignorance of
the possibilities of the ocean to offer clean and endless energy. A high percentage of citizens only know
their disadvantages.

In Spain, the case is not different, and the commitments on renewable energy must be achieved.
Although the development of onshore facilities is not negligible at all, offshore ones have not yet been
developed except with R&D projects, patents and prototypes. So, the road ahead is huge in this area.
For that, it is essential to know the available resource. A lot of studies have been carried out to estimate
it, but mainly focused on one category, for instance, offshore wind or wave power. There are some
examples of these studies focused on different areas in the world: one of themis about the analysis of
methodologies for the assessment of wind resource in European Seas [5]; another one is only focused
in offshore wind around Korean peninsula [6]; another one is about wave energy along the Cornish
coast (UK) [7]; another one analyzes the renewable mix to satisfy the needs of energy of Pantelleria, a
real island in the Mediterranean Sea, focusing on starting to study minor island, including the study
of different renewable sources: wind, solar and wave [8]; another one studies the possible energy
independence in Malta based on the use of Wave Energy Converters [9]; another one is about wave
energy resource variation in the coast of Ireland [10]; and another one analyzes the influence of air
density changes in the offshore wind potential over Northeastern Scotland [11].

Furthermore, there are some resource analyses in Spain: one of them determines the wave energy
resource in the Estaca de Bares area (Spain) [12]; another one includes the evaluation of wave energy
potential in the Spanish coast [13]; another one is about a review of combined wave and offshore wind
energy [14]; another one is focused in wave energy in Menorca (Spain) [15]; another one is related to
wave energy trends and its variation, and is very important to be taken into account in the Bay of
Biscay [16]; and another one is about seasonal corrections due to the use of real values of air density for
the assessment of offshore wind energy potential in the Iberian Peninsula [17].

Regarding wave energy, it is can be stated that UK and Spain are pioneering countries. In Spain,
some Wave Energy Converters (WEC) were installed in Mutriku breakwater, and this facility is in
operation [18-20].

Some investigations used different algorithms that included an importance sampling-based
expectation-maximization algorithm for sequence detection in a single-photon avalanche diode
underwater optical wireless communication [21]. Other studies are focused on water desalination
applied to Sicilia with the objective of solving the problem in water supply for areas with a chronic
debt of water [22]. In other cases, the researchers analyze energy saving in public transport using
hydrogen produced by renewable sources instead of fossil fuels [23].
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The main objective of this review paper is to analyze the marine renewable energy resource in
the Spanish coast, based on a preliminary and prospective analysis of the possibilities of applying the
different types of energies that can be exploited at the sea in the different areas of the Spanish coast.
This review gives approximate numbers. If an accuracy number is looked in a specific area, it will be
necessary to carry out a detailed analysis in that area. Marine renewable energies are included in the
Sustainable Development Goals (SDGs), especially in the SDG-7 (Affordable and Clean Energy, with
the objective of ensuring access to affordable, reliable, sustainable and modern energy for all), and in
the SDG-14 (Life below Water, with the aim of conserving and sustainable using the oceans, seas and
marine resources for sustainable development).

To achieve the abovementioned objective, the first step of the work is based on the need of using
renewable energies, in this case marine energies, to achieve a reduction on the polluting gases in the
atmosphere. For this, it is essential to carry out an exhaustive search of information about the state of
the art of marine energies, the potential and the forecast at short, medium and long term, etc. This is
done for all the types of renewable energies to be harnessed in seas and oceans: offshore wind, wave,
tidal, marine currents, ocean thermal, osmotic (salinity gradient), solar, geothermal and biomass.

The state-of-the-art is necessary to address the next parts of the work, consisting of carrying out a
detailed study and analysis of the potential of marine energies firstly in the world based on a review
study, and later along the Spanish coast. For this, the Spanish coast is divided into six different areas: (I)
Cantabrian coast, (II) Galician coast, (III) South Atlantic coast, (IV) Canary Islands coast, (V) Southern
Mediterranean coast, and (VI) Northern Mediterranean coast. The energy potential associated to each
area is indicated. So, optimal areas for each type of marine energy are identified.

This paper gives the basis to achieve the established objectives for the installation of renewable
energies in Spain, in the sense of incorporating marine energies, which have been left aside until now
in the country. In Spain, it has mainly only been carried out theoretical studies, tests in laboratory and
some prototypes.

2. Marine Energy Resource in the World: State-Of-The-Art

A review of energy resource to be exploited in the sea around the world is summarized in this
section. The order followed related to the different type of marine energies is: (1) offshore wind, (2)
wave, (3) tidal, (4) marine currents, (5) ocean thermal, (6) osmotic, (7) biomass, (8) geothermal and (9)
solar. To end this section, LCOE figures are discussed.

There are some specific studies that focus on one or more types of marine renewable energies.
Regardless, there is no research that includes all the information of all the above-mentioned types
together. On the other hand, there are some specific studies for some countries and some of the types
of the abovementioned energies, but not including all the countries and all the types. This can be seen
with some examples: wave [24], tidal, ocean thermal, ocean current and salinity gradient in Iran, wave
energy in Asia [25], wave energy in the Mediterranean Sea [26], wave energy in Baltic Sea [27], offshore
wind energy in UK [28], among others.

2.1. Offshore Wind Energy

Offshore wind is similar to onshore wind with some important changes in the protection of all the
components against the aggressive marine environment, and with higher costs due to the difficulties
related to the construction and operation in the sea [29]. The main parameter to analyze the wind
resource is the average wind speed at the hub height [30]. This is the first value to be analyzed when
identifying potential sites for wind facilities. For more detailed studies of wind resource assessment,
other aspects must be considered, as the variability in the time and the horizontal and vertical space,
wind direction, turbulence intensity, etc. The wind turbine generator model selected influences clearly
when calculating the gross and net production of the facility.

World wind potential, including onshore and offshore, is estimated about 20,000-50,000 TWh/year,
representing offshore wind more than 70% of those figures [31]. Figure 1 shows the annual average
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wind speed of offshore wind at 90 m high, obtained using NOAA'’s Blended Sea Winds global offshore
wind dataset. That dataset included wind stresses and vector winds on the ocean surface, with a grid
of 0.25°, and with different time resolutions: monthly, daily and 6-h. It includes data from 1986 until
2006 [32]. Wind speeds represented in Figure 1 were generated from via satellite observations and
in-situ sensors. The direction was a combination of the products of National Centers for Environmental
Prediction (NCEP) and European Center for Medium-Range Weather Forecasts (ECMWF). The use of
both products together has gaps for obtaining wind speed values. Some complex algorithms were
created to fill those gaps, and there are some numerous research groups trying to continue improving
those results [33,34].

Annual Average Wind Speed at 90meters (m/s)
B —
Vv > o % N U\ N
L ’ e s z 2
Vv © ? o R 7

Figure 1. Annual average wind speed, in m/s, at 90 m high (Reproduced with permission from [34].
European Centre for Medium-Range Weather Forecasts, 2019).

2.2. Wave Energy

Wave energy is a great potential marine renewable energy. Different studies trying to determine
the wave energy potential have been carried out in the world. There are some of those studies focused
on specific countries, and even in specific areas within a country [35]. It is important to differentiate
between wave energy potential, expressed in kW/m or kWh/year units, and wave energy production,
only in kWh/year unit. The wave energy potential is the existing energy to be harnessed in a specific
location. The wave energy production is the produced energy in the site using a specific wave energy
converter [36].

For wave energy potential estimation, the only parameters to be taken into account are the average
wave climate, including the combination of significant wave heights and peak wave periods. Knowing
the wave spectrum type to be considered (JONSWAP, TMA, Pierson-Moskowitz, etc. [37]), it is easy to
obtain the wave potential in a location. Characteristics of wave energy converters must be considered:
minimum and maximum depth of the site, way of energy extraction, matrix power, etc. With all those
data, the wave energy production (kWh/year) can be calculated [38].

According to International Energy Agency (IEA) estimations, the wave energy potential can
oscillate between 8000 and 80,000 TWh/year [39]. Figure 2 shows the wave power distribution in the
world. It is not homogeneous, with some areas characterized by more than 100 kW/m, and some of
them below 10 kW/m [38].
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Figure 2 is based on Mork et al. [40]. The global wave power dataset used was the default
calibrated wave data set included in WorldWaves. WorldWaves included model data for the period
between 1997 and 2006, a 10-year period, with 6-h frequencies and 0.5° grid, calibrated and validated
with global TOPEX and JASON altimeter wind speed and wave height data. The calibration includes
the consideration of some wave buoy records.

wavepower (kw/m) [ T

0 25 50 75 100 125

Figure 2. Wave power distribution, in kW/m (Reproduced with permission from [41,42]. International
Energy Agency—Ocean Energy Systems, 2014, 2011).

2.3. Tidal Energy

Tidal energy is caused by the gravitational attraction generated by the Moon and the Sun. Those
gravitational forces are responsible for causing the ascent and descent movement of the seal level. Those
movements are described by a wave with a period between 12 and 24 h. It is known as astronomical
tides [43]. The tidal range associated with the astronomical tide is different throughout the planet, with
places where the tidal range can be neglected and with locations where it exceeds 10 m [44]. Although
astronomical tides are subject to general conditions, they may be affected by local conditions, such
as wave reflection, the depths of the seabed, the shape of the coast, the existence of river mouths,
resonance effects, etc.

The energy generated by the tides has been estimated around 26,000 TWh/year [39]. Ocean tidal
ranges can be determined based on harmonic analysis using the formula included in Figure 3, where
O1 and K1 are diurnal tidal constituents, M2 and S2 are semidiurnal tidal constituents, MHWS is mean
high-water springs and MLWS is mean low water springs. The tidal range is expressed in meters.
Tides can be exploited in two different ways. The first of these ways consists of the construction of
dams, which serve as a barrier to maintain water at different levels on both sides of the dam, so that
through turbines they can take advantage of the kinetic energy derived from the abovementioned
difference in levels. The second way takes advantage of the speed of currents due to differences in
sea level without the need of building dams. This process is similar to the use of the energy of ocean
currents, and in fact some ocean currents harnessed are tidal currents.

To be able to produce electricity based on tidal dams, the location has to provide a tidal range
greater than 5 m [43,45,46]. This strict condition reduces the number of viable sites for the use of tidal
energy, as it can be observed in Figure 3.
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Figure 3. Tidal range, in m, around the world (Reproduced with permission from [47]. University of
Graz Wegener Center for Climate and Global Change, 2019).

2.4. Marine Current Energy

Ocean currents are due to a mix of periodic and aperiodic water movements. There are seasonal
and short duration changes, and a lot of oscillatory and sporadic movements superimposed to the
general oceanic circulation. Current observation is a very complex challenge [48]. The origin cause of
marine currents is mainly the difference of temperature, salinity, etc. adding to them the influence of
the wind, tides, Earth rotation, etc. [49-51].

Generally, the most intense marine currents are caused by the effect of the wind and the tides.
In case of being due to tides, it is usual to name it a tidal stream. Tidal stream is the most harnessed
marine current energy type at the moment. Therefore, this paper is going to be focused on tidal stream
when marine current energy is mentioned.

Focusing on tidal stream, the bathymetry can also help to produce a remarkable increase in its
characteristics, mainly in narrowing areas with a consequent velocity increase [52,53]. The energy
capacity of this renewable energy source is high, estimated around 800 TWh/year [39]. This potential
can be increased if it could be taken advantage of not only tidal currents. The speed of currents has to
be greater than 2 m/s for the harnessing of this type of energy [54].

2.5. Ocean Thermal Energy

Ocean thermal energy is generated as a consequence of a process that begins with the incidence of
solar rays on the sea, increasing its temperature [55]. Sea water allows the rays to penetrate through
its surface, being able to increase the temperature of lower layers of sea water. The penetration will
depend, among others, on the water turbidity state. In lower layers the radiation decreases and,
therefore, the temperature decreases. This has as a consequence a vertical distribution of temperatures.
In fact, this can also be explained as solar energy which is stored as heat in the surface layer of the
ocean, and that heat is distributed to water depths around 100 m due to the waves and surface currents.
Cold water is found deeper due to its higher density, and this different mass of water is moved by
ocean currents. In the world, the temperature difference is between 10 and 25 °C, with the maximum
values close to the Equator [56].
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The vertical distribution is marked by two areas with a big change in the temperature between
them. The temperature difference between the marine surface and one thousand meters depth in a
specific location can allow energy production. This is known as ocean thermal energy. The harvesting
of this type of energy is based on the difference between deep cold water and warm surface water;
this allows running a heat engine to produce electricity. The mechanism consists of the shallow ocean
water heat a liquid in the engine characterized by having a low boiling point. The liquid turns into
vapor and it moves a turbine. This vapor cools with the deep water, restarting the generation cycle.

To have a profitable project, the difference in temperature must be at least 20 °C. This condition
limits the possibilities of finding a suitable location for ocean thermal energy facilities. The most
interesting ones are those located in equatorial and subtropical areas, where the minimum temperature
on the surface is around 24 °C and temperatures at depths around one thousand meters are usually
around 5 °C. The estimate for ocean thermal energy resource around the world is between 30,000
and 90,000 TWh/year, being usable around 10,000 TWh/year [39]. Figure 4 shows the temperature
difference in degrees along the Earth.

www.metocean.co.nz

TEMPERATURE DIFFERENCE AREAS <1.000M WATER DEPTH
e —
15.0 175 200 225 25.0

Figure 4. Ocean thermal energy: difference of temperatures, in degrees (Reproduced with permission
from [42]. Ocean Energy Systems, 2011).

2.6. Osmotic Energy

Osmotic energy is based on the difference that occurs in the osmotic pressure due to the difference
in salinity between fresh water versus saltwater [57]. This process occurs when the two fluids come
into contact causing a balance in the concentration of salt between them. It is essential that the facilities
are located in river mouths looking for the salinity difference [58]. However, the mouths of rivers can
present limitations for the installation of this type of facility due to possible conflicts with other uses or
activities usually developed in the rivers’ mouth.

The energy potential is estimated about 2000 TWh/year [31]. Figure 5 shows salinity concentration
in seas and oceans around the world, with greater salinity concentration in places like the Mediterranean
Sea, and less salinity concentration in the Arctic Ocean.
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Figure 5. Salinity concentration in the world (Reproduced with permission from [42]. Ocean Energy
Systems, 2011).

2.7. Biomass Energy

Biomass can be defined as the entire living mass of both animal and vegetal origin existing on the
Earth. Most of the biomass can be burned for energy production, in the form of heat, electricity or fuel
through different types of treatments [59]. With regard to the biomass in the sea, algae are used to
obtain biofuels, based on their function of using the sun energy to transform carbon dioxide, water
and organic nutrients into oxygen and vegetable biomass [60]. These have microbes constituting 90%
of the biomass, which gives them a lot of energy. It favors its conversion into various biofuels thanks
to its low energy density.

Two types of algae can be differentiated: the microalgae from the aquatic systems and the larger
algae known as macro algae that grow attached to stable substrates coming mainly from the seabed.
Although microalgae have been studied in recent years for biodiesel production, marine macroalgae
have awakened recently a great interest for obtaining different biofuels due to its chemical composition
and ability to produce large biomass. Macroalgae have important advantages as a source of biofuels [61],
if it is compared to other raw materials. They have a higher growth than other plants used until
now, and its large-scale cultivation is feasible, profitable and it does not occupy land or require fresh
water [62].

The exploitation of this type of cultivation areas is currently very limited. There are around
300,000 hectares of cultivation in the world, which represent more than 90% of global production,
estimated at 24.9 million tons. The International Federation of Aquaculture (FAO) indicated that the
production of macroalgae increases by 6% every year [63]. Figure 6 shows the natural distribution of
macroalgae in shallow waters, and the capacity of coastal areas for biogas and the percentage of local
Net Primary Productivity (NPP).
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Figure 6. Natural distribution of macroalgae in shallow waters and the capacity of coastal areas for
biogas and the percentage of local Net Primary Productivity (NPP). HANPP is Human Appropriation
of Net Primary Production (Reproduced with permission from [64]. BioMed Central Ltd., 2012).

2.8. Geothermal Energy

Underwater geothermal energy is based on the existence of deep cracks in the seabed generated
by divergent movements of the plates. These movements produce cracks, allowing vertical transfer
of the magmatic heat from the mantle to the floor of the ocean. The sea cold water, when coming
into contact with these cracks, warms up and chemically changes, producing hot water enriched with
hydrogen sulfide expelled through the cracks produced by the movements of the plates, and known
as hydrothermal vents. The hot water can be expelled up to 400 °C, getting a high heat flow for its
transformation into electrical energy.

Different studies were carried out to analyze the scope of hydrothermal ventilations along the
Earth’s crust. There are around 65,000 km of oceanic ridges, representing 30% of all the heat released
in the Earth, of which a significant number of ventilations have been obtained hydrothermal vents
located at depths greater than 2000 m (Figure 7). They are usually found in the Pacific and Atlantic
Oceans, although there are some cases in the Mediterranean Sea and in the Indian Ocean. Only 13,000
km of the existing ocean ridges have been explored up to the moment, and only around 3900 km (about
30% of the surface explored) have good skills to be exploited.

Marine geothermal energy has a very high potential, but hardly quantifiable, since at present there
is no defined system that allows knowing the real and usable potential of this source. This is because
the state of technological development is not very mature. There are some estimates, considering only
the explored areas, indicating that more than 1000 GW can be extracted [65,66].

2.9. Solar Energy

Solar energy can be used for electricity production by direct conversion of solar radiation into
electric current passing through solar or photovoltaic cells. Its implementation to date has been done
mainly onshore, but some companies in the sector have developed some designs with the objective of
being able to take advantage of this energy in the surface of seas and oceans [67]. Maritime surface
represents more than 70% of the global surface of the earth. Figure 8 shows the solar radiation marine
great potential, with around 18 TWe only in the black points.
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Figure 7. Submarine ventilation around the Earth [65].
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Figure 8. Distribution of solar radiation in the world (Reproduced with permission from [68]. Matthias
Loster, 2010).

As an outline of the state of this technology, Figure 9 shows a summary of the power installed in
2015 and the forecasts for 2020 and 2030, focused on Europe considering: (a) waves, currents and tides,
(b) offshore wind, (c) onshore solar, and (d) offshore wind.
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Figure 9. Global view of onshore and offshore renewable facilities in Europe: installed power, in GW,
in 2015, and forecasts for 2020 and 2030.

2.10. Levelized Cost of Energy (LCOE) Data

For investments decision-making, energy industry uses economical models to determine and
compare the energy cost of different technologies. The most known one is the levelized cost of power
(LCOE). It depends on capital, operating and fuel costs. The value of LCOE is obtained by dividing the
sum of costs over lifetime by the sum of electrical energy produced over lifetime. It is important to take
into account that most of renewable technologies are capital intensive but have low operational costs,
while fossil fuel-based technologies may be cheaper to construct but much more expensive to operate.

Anyway, it is important to clarify that LCOE values are more reliable when there are a lot of
installed facilities in a specific technology. So, the existing and reliable current LCOE data (median
values) are given for offshore wind: 0.1434 $/kWh, for wave: 0.3263 $/kWh, for tidal and marine
currents together: 0.3263 $/kWh. The rest of technologies included in the paper have not a reliable
LCOE value. On the other hand, it is recommended to know LCOE values of other onshore renewable
technologies: 0.0777 $/kWh in onshore wind, 0.1320 $/kWh in solar photovoltaic, 0.2466 $/kWh in solar
thermal, 0.0479 $/kWh in hydropower, 0.0951 $/kWh in biomass, 0.0635 $/kWh in geothermal [69].
Although there are many uncertainties regarding the LCOE values in the medium term, it is expected
that they will stabilize and even decrease as the learning curve progresses.

3. Practical Application: Marine Energy Resource in the Spanish Coast

Spain has a larger potential of marine energies as has been indicated by Montoya et al. [70], mainly
focusing that work on onshore renewable energies, including a brief section about marine energies.
The Spanish coast has more than 7800 km; the culture and the economy are very linked to the ocean in
coastal areas. The study and exploitation of marine renewable energies are destined to play an essential
role in the medium term. Many investigations have been carried out in the field of marine renewable
energies in last years; specialized technology centers and demonstration plants have been installed
focused on advancing in this field, which will be essential to achieve progress and development. Based
on the investigation and different tests and errors, it will be possible to reach the sufficient maturity of
the installations of the use of marine renewable energies so that its commercial development is feasible.

Spain has a very heterogeneous coastline in terms of energy potential. It belongs to a peninsula
(the Iberian Peninsula), connected in the Northeast with France. In addition, the Spanish territory
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also has two archipelagos of islands: The Canary and Balearic Islands. Canary Islands are located
in the Atlantic Ocean, southwest of the Iberian Peninsula and close to the African coast. Balearic
Islands are located in the Mediterranean Sea, east of the Iberian Peninsula. For this reason, the Spanish
coast cannot be studied as a single area since a great mistake would be made. The best alternative to
this situation is to zone this coast in areas with homogeneous energy characteristics. Therefore, this
paper divides the Spanish coast into six different areas: (I) Cantabrian coast, (II) Galician coast, (III)
South Atlantic coast, (IV) Canary Islands coast, (V) Southern Mediterranean coast, and (VI) Northern
Mediterranean coast (Figure 10). Areas I, II, III, V and VI correspond to the Iberian Peninsula, with the
Balearic Islands included in Area VI. Area IV refers to the Canary Islands.

Figure 10. Zoning created for the study of marine renewable resource in the Spanish coast.

As it is done in the previous section, the order followed for the analysis in this section is: (1)
offshore wind, (2) wave, (3) tidal, (4) marine currents, (5) ocean thermal, (6) osmotic, (7) biomass, (8)
geothermal and (9) solar. So, the different types of energy are evaluated in the six areas in which the
Spanish coast is divided.

3.1. Offshore Wind Energy

Wind resource study is based on wind speed map from Spanish IDAE (“Instituto para la
Diversificacion y Ahorro de la Energia”, in Spanish language) covering a coastal strip of 24 nautical miles,
and with the data of the annual average wind speed at 80 m high (Figure 11) [71].

This analysis considers next classification depending on the annual average wind speed:

e Low: annual average wind speed lower than 6 m/s, in white.

e  Medium: Low: annual average wind speed between 6 and 7 m/s, in greenish.

e  Medium: High: annual average wind speed between 7 and 8 m/s, in yellow and orange.
e  High: annual average wind speed higher than 8 m/s, in pink and reddish tones.

The values of the annual average wind speed (m/s) are shown in Table 1 for all the areas previously
defined, at different water depths (20, 50 and 100 m). The values were obtained after making the
average of the annual speeds in different points of each specific zone that make up the different areas.
In Cantabrian coast (Area I), specific zones defined are Pais Vasco, Asturias and Cantabria. In Galician
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coast (Area II), there is only one specific zone, Galicia. In South Atlantic coast (Area III), the specific
zones are Huelva, Cadiz and Estrecho-Ceuta. In the Canary Islands coast (Area IV), there is only
one specific zone, Canary Islands. In Southern Mediterranean coast (Area V), the specific zones are
Malaga, Almeria, Melilla and Murcia. In Northern Mediterranean coast (Area VI), the specific zones
are Valencia, Catalufia and Islas Baleares (Balearic Islands).

Wind speed
s
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Figure 11. Map with the annual average wind speed, in m/s, at 80 m high (Reproduced with permission
from [71]. IDEA, 2019).

Table 1. Annual average wind speed, in m/s, in all the areas in the Spanish coast.

Area Specific Zone 20 m Depth 50 m Depth 100 m Depth
Pais Vasco 6.0-6.5 6.5-7.0 6.5-7.0
(I Cantabrian Coast Asturias 6.0-6.5 7.0-7.5 7.5-8.0
Cantabria 6.0-6.5 6.5-7.0 7.0-7.5
(I) Galician Coast Galicia 6.5-7.0 7.0-7.5 8.0-8.5
Huelva 6.5-7.0 7.0-7.5 7.5-8.0
(IIT) South Atlantic Coast Cédiz 8.0-8.5 8.5-9.0 >10.0
Estrecho-Ceuta 8.5-9.0 >10.0 >10.0
(IV) Canary Islands Coast Canary Island 6.0-6.5 6.5-7.0 7.0-7.5
Malaga 6.5-7.0 7.0-7.5 7.0-7.5
. Almeria 7.5-8.0 8.0-8.5 8.5-9.0
(V) Southern Mediterranean Coast Melilla 6.5-7.0 70-75 7580
Murcia 6.5-7.0 7.0-7.5 7.0-7.5
Valencia 5.5-6.0 5.5-6.0 5.5-6.0
(VI) Northern Mediterranean Coast Catalunia 5.5-6.0 6.0-6.5 6.5-7.0
Islas Baleares 6.0-6.5 6.5-7.0 6.5-7.0

As it is observed in Table 1, the most interesting zones for offshore wind facilities are Cadiz at 100
m depth and Estrecho-Ceuta at 50 and 100 m depth, both in Area III (South Atlantic coast) with more
than 10 m/s of average wind speed at 80 m high.

Zones and areas with an average wind speed above 7 m/s are: Asturias at 50 and 100 m depth and
Cantabria at 100 m depth, both in Area I (Cantabrian coast), Galicia at 50 and 100 m depth in Area II
(Galician coast), Huelva at 50 and 100 m depth, Cadiz at 20, 50 and 100 m depth, and Estrecho-Ceuta at
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50 and 100 m depth, the three ones in Area III (South Atlantic coast), Canary Island at 100 m depth in
Area IV (Canary Island coast), and Malaga at 50 and 100 m depth, Almeria at 20, 50 and 100 m depth,
Melilla at 50 and 100 m depth and Murcia at 50 and 100 m depth the four ones in Area V (Southern
Mediterranean coast). Area VI (Northern Mediterranean coast) has values below 7 m/s.

3.2. Wave Energy

To analyze the potential of wave energy on the Spanish coast, IHCantabria wave atlas is used [72,73].
It allows knowing the average wave potential in different locations of the Spanish coast (Figure 12). For
the study of each area, IDAE annual mesh maps are used, allowing obtaining the detailed characteristics
of the resource, both considering the power and direction of waves (Figure 13). Wave energy resource
is studied for depths of 20, 50 and 100 m, and also for deep waters.

Pw (KW/m)

. -
5 8 10 13 16 20 25 30 35 4045 50-60 75 90 100

(b)

Figure 12. Annual average wave power, in kW/m: (a) in the Iberian Peninsula and (b) Canary Island
coast (Reproduced with permission from [72]. IHCantabria, 2019).
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Pw Total [kW/m]

Figure 13. Annual average wave power, in kW/m, in the west part of the Area I (Cantabrian coast)
(Reproduced with permission from [73]. IDEA, 2019).

Based on Atlas data, Table 2 is prepared. It includes the values of the annual average wave power
for different depths in kW/m for each area and specific zone inside each area. Input data are from
IDAE through the GOW (Global Ocean Waves) database. The specific zones defined for each area are
the same defined for the offshore wind energy in Section 3.1.

Table 2. Annual average wave power, in kW/m, in all the areas in the Spanish coast.

Area Specific Zone 20 m Depth 50 m Depth 100 m Depth  Deep Waters

Pais Vasco 12.20 12.18 19.89 26.68
(I) Cantabrian coast Cantabria 14.94 18.98 22.94 30.97
Asturias 13.55 17.48 21.51 35.14
(II) Galician coast Galicia 17.08 25.21 30.26 37.97

Huelva 2.53 3.06 342 4.50

(III) South Atlantic coast Cadiz 2.21 2.87 3.02 3.85
Estrecho-Ceuta 2.37 2.94 3.24 4.31

(IV) Canary Islands coast Canary Island 7.53 8.94 9.70 13.59
Malaga 1.63 2.04 2.52 3.11

. Almeria 1.34 1.82 224 2.96

(V) Southern Mediterranean coast Melilla 320 350 165 5.40
Murcia 1.07 1.43 2.25 3.08

Valencia 1.70 2.30 2.86 2.96

(VI) Northern Mediterranean coast Cataluna 1.62 2.26 3.13 4.17
Islas Baleares 2.01 3.63 4.56 5.11

Analyzing previous results, the most interesting areas for harnessing the wave resource power, are:

e  Galician coast, the area with the greatest potential in Spain, with values maximum above 35 kW/m.

e Cantabrian coast, with an average of maximum values around 30 kW/m.

e Canary Island coast, with a potential higher than 10 kW/m, specifically on the northern facades if
the islands.

The worst locations for wave energy facilities in the Spanish coast are: Murcia, Almeria, Catalufia,
Madlaga, Valencia, Islas Baleares, Cadiz, Estrecho-Ceuta, Huelva and Melilla.

3.3. Tidal Energy

The resource of tidal energy is studied based on the data recorded in “Puertos del Estado” tidal
gauges network [74], located in different coastal areas, mainly ports location.

Table 3 includes different aspects to be considered in the analysis: HAT (High astronomical tide),
MHWS (Mean high water springs), MHWN (Mean high water neaps), MSL (Mean sea level), MLWN
(Mean low water neaps), MLWS (Mean low water springs) and LAT (Lowest astronomical tide). LAT
in all the cases is taken as the zero level of the harbor where the tidal gauge is located.
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Table 3. Tidal data, in cm, in all the areas in the Spanish coast.

Area Zone HAT MHWS MHWN MSL MLWN MLWS LAT
Bilbao 476 432 314 237 156 40 0
(I) Cantabrian coast Cantabria 526 480 362 286 205 90 0
Gijon 509 468 350 274 195 84 0
Ferrol 439 499 285 217 147 40 0
(IT) Galician coast Corufna 493 453 342 273 202 98 0
Vilagarcia 431 394 284 220 153 50 0
Vigo 416 379 272 207 141 41 0
. Huelva 404 363 264 203 145 47 0
(I South Atlantic coast Bonanza 359 323 227 173 114 46 0
Lanzarote 347 311 226 179 132 54 0
Fuerteventura 314 278 196 152 109 33 0
Las Palmas 311 278 199 158 116 43 0
(IV) Canary Islands coast Tenerife 295 262 188 150 111 44 0
Gomera 248 221 157 127 98 37 0
La Palma 278 245 175 142 107 45 0
El Hierro 285 253 186 158 129 67 0
Malaga 105 - - 61 - - 0
. Motril 95 - - 57 - - 0
\% h M
(V) Southern Mediterranean coast Melilla 64 ] ] 0 ] ]
Almeria 66 - - 40 - - 0
Gandia 19 - - 2 - - 0
. Valencia 30 - - 12 - - 0
(VI) Northern Mediterranean coast Barcelona 50 ] ] 29 ] ] 0
Ibiza 52 - - 36 - - 0

In Cantabrian coast (Area I), the zones defined are Bilbao, Cantabria and Gijon. In Galician coast
(Area II), the zones are Ferrol, Corufia, Vilagarcia and Vigo. In South Atlantic coast (Area III), the zones
are Huelva and Bonanza. In Canary Islands coast (Area IV), the zones are Lanzarote, Fuerteventura,
Las Palmas, Tenerife, Gomera, La Palma and Hierro. In Southern Mediterranean coast (Area V), the
zones are Malaga, Motril, Melilla and Almeria. In Northern Mediterranean coast (Area VI), the zones
are Gandia, Valencia, Barcelona and Ibiza.

Based on buoys data and current technical minimum criteria before mentioned, tidal range greater
than 5 m, the construction of tidal range facilities is not viable in the Spanish coast.

3.4. Marine Currents Energy

To analyze the resource of the energy of marine currents along the Spanish coasts, a study is made
with the values obtained in different buoys of “Puertos del Estado” [74], installed along the Spanish
coast. Table 4 shows marine current speeds in each buoy, including maximum and average speeds
between 2007 and 2016. This is the only information available about marine currents in Spain, so
the analysis is based on it. Regardless, it will be interested to develop a measurement campaign to
determine marine current speed along the water column.
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Table 4. Marine current speed, in cm/s, in all the areas in the Spanish coast between 2007 and 2016.

Area Buoy 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Max 61 54 53 83 55 81 83 89 63 81
Min 22 15 24 25 21 23 31 27 28 25
Max 70 61 53 76 93 75 70 60 64 83
Min 22 13 19 24 26 27 20 21 23 31

Max 53 56 55 57 58 55 50 62 77 128
Min 20 18 17 22 19 16 18 19 19 47
Max 60 63 69 68 81 63 95 83 101 82
Min 22 20 23 27 28 22 27 30 29 32
Max 62 42 56 68 64 56 96 62 69 99
Min 19 16 19 25 17 24 35 25 21 44

Max 79 53 64 60 48 74 97 61 73 70
Min 30 21 26 27 22 26 37 30 24 29

Max 69 56 66 54 49 74 96 84 84 66
Min 27 20 24 21 21 26 40 31 24 20
Max 71 59 64 61 63 87 80 110 73 60
Min 23 18 21 15 18 23 25 26 14 16

Max 89 93 83 86 8 101 79 80 127 116
Min 33 35 29 42 40 51 35 28 28 35

Max 55 67 64 74 59 120 96 81 125 81

Bilbao-Vizcaya
(I) Cantabrian coast
Cabo de Penias

Estaca de Bares

(II) Galician coast Villano-Sisargas

Cabo Villano

(IIT) South Atlantic coast Golfo de Cadiz

Gran Canaria
(IV) Canary Islands coast

Tenerife

(V) Southern Mediterranean coast Cabo de Gata

CabodePalos  \p 51 25 20 27 2 50 46 45 26 44

Valencia Max 41 56 47 108 63 59 47 62 57 63

(VI) Northern Mediterranean coast Min 15 18 15 1 15 17 13 17 25 24
Tamagona M3 70 56 77 71 6 73 @ e 9o 7

Min 27 21 28 34 40 32 30 26 39 42

Dragonera  MaX - - 76 @ 79 o2 70 s 8 7

Min - - 24 2 35 33 27 25 34 32

In Cantabrian coast (Area I) the buoys are Bilbao-Vizcaya and Cabo de Pefias. In Galician coast
(Area II), the buoys are Estaca de Bares, Villano-Sisargas and Cabo Villano. In South Atlantic coast
(Area III), the buoy is Golfo de Cadiz. In Canary Islands coast (Area IV), the buoys are Gran Canaria
and Tenerife. In Southern Mediterranean coast (Area V), the buoy is Cabo de Gata. In Northern
Mediterranean coast (Area VI), the buoys are Cabo de Palos, Valencia, Tarragona and Dragonera.

The most interesting area for harnessing of marine current power in Spain is Gibraltar Straight,
with average values above 1.5 m/s and maximum figures higher than 2.5 m/s. Table 4 show that there
are only 9 maximum values above 100 cm/s: 128 cm/s (Estaca de Bares, year 2016), 127 cm/s (Cabo
de Gata, year 2015), 125 cm/s (Cabo de Palos, 2015), 120 cm/s (Cabo de Palos, year 2012), 116 cm/s
(Cabo de Gata, year 2016), 110 cm/s (Tenerife, year 2014), 108 cm/s (Valencia, year 2010), 101 cm/s
(Villano-Sisargas, year 2015), 101 cm/s (Cabo de Gata, year 2012).

3.5. Ocean Thermal Energy

To analyze the resource of ocean thermal energy along the Spanish coast, a study of the values
in “Puertos del Estado” buoys was performed [74]. The values of maximum, minimum and average
temperatures are established for each buoy, considering data in the last 10 years. Table 5 includes this
data for all the areas in the Spanish coast.

In Cantabrian coast (Area I), the buoys are Costera Bilbao, Pasajes, Gijon, Bilbao-Vizcaya and Cabo
de Pefias. In Galician coast (Area II), the buoys are Estaca de Bares, Villano-Sisargas and Cabo Silleiro.
In South Atlantic coast (Area III), the buoys are Golfo de Cadiz, Cadiz and Tarifa. In Canary Islands
coast (Area IV), the buoys are Gran Canaria, Tenerife Sur and Tenerife. In Southern Mediterranean
coast (Area V), the buoys are Malaga, Cabo de Gata and Melilla. In Northern Mediterranean coast
(Area VI), the buoys are Cabo de Palos, Alicante, Valencia, Costera Valencia, Tarragona, Barcelona,
Palamos, Dragonera and Capdevera.

Knowing that the minimum value of temperature in the surface it around 24 degrees, it can
be stated that there are not sites in the Spanish coast suitable for taking advantage of this type of
energy. This is also indicated in Figure 4, with temperature differences in deep and surface water
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below 20 degrees. Therefore, it is not viable to install a device for capturing ocean thermal energy in
the Spanish coast.

Table 5. Temperature data, in degrees, in “Puertos del Estado” buoys, in all the areas in the Spanish coast.

Area Buoy Maximum Temperature =~ Minimum Temperature Average Temperature
Costera Bilbao 15.81 13.91 14.86
Pasajes 16.35 14.42 15.38
(I) Cantabrian coast Gijon 16.21 14.03 15.12
Bilbao-Vizcaya 16.67 14,37 15.52
Cabo de Pefias 15.89 13.87 14.88
Estaca de Bares 16.52 14.79 15.65
(IT) Galician coast Villano-Sisargas 16.94 14.09 15.51
Cabo Silleiro 15.50 14.43 14.96
Golfo de Cadiz 19.76 16.55 18.15
(1) South Atlantic coast Cadiz 18.92 15.71 17.31
Tarifa 18.41 15.25 16.83
Gran Canaria 21.95 20.22 21.08
(IV) Canary Islands coast Tenerife Sur 22.67 20.59 21.63
Tenerife 22.78 20.87 21.82
Malaga 19.60 15.31 17.45
(V) Southern Mediterranean coast Cabo de Gata 19.02 16.01 17.51
Melilla 20.03 16.94 18.48
Cabo de Palos 19.16 16.35 17.75
Alicante 18.86 16.47 17.67
Valencia 17.75 15.45 16.60
Costera Valencia 17.34 14.90 16.03
(VI) Northern Mediterranean coast Tarragona 17.25 14.67 15.96
Barcelona 17.61 15.23 16.42
Palamos 17.04 14.63 15.83
Dragonera 18.97 16.31 17.64
Capdepera 18.63 16.56 17.59

3.6. Osmotic Energy

For osmotic energy study, the input data were several “Puertos del Estado” buoys [74], establishing
maximum and average salinity concentration in the last 10 years (Table 6). In order for the use of
this energy, it is necessary that the facilities are located close to river mouths so that this difference in
salinity occurs.

In Cantabrian coast (Area I) the buoys are Bilbao-Vizcaya and Cabo de Pefias. In Galician coast
(Area II), the buoys are Estaca de Bares, Villano-Sisargas and Cabo Silleiro. In South Atlantic coast
(Area III), the buoy is Cadiz. In Canary Islands coast (Area IV), the buoys are Gran Canaria and Tenerife.
In Southern Mediterranean coast (Area V), the buoy is Cabo de Gata. In Northern Mediterranean coast
(Area VI), the buoys are Cabo de Palos, Valencia and Tarragona.

The most interesting areas for this type of energy are Catalonian and Valencia coast, with salinity
concentration about 27 parts per thousand. Rivers with mouth in these areas are: Almanzora, Segura,
Jucar, Turia or Guadalaviar, Mijares, Ebro, Llobregat, Ter and Fluvia.

3.7. Biomass Enerqy

In Spain the natural resources of the luminaria, a specific type of algae, are very limited. They are
mainly on the Atlantic coast, specifically the northern area corresponding to Cantabrian and Galician
coast. In the case of the Cantabrian coast, this resource has diminished its abundance in the last decade,
and in some places it has disappeared. At present, it is abundant in some locations in Galicia.
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Table 6. Salinity concentration, in parts per thousand, in “Puertos del Estado” buoys, in all the areas in

the Spanish coast.

Area Buoy Maximum Salinity Concentration  Average Salinity Concentration

. Bilbao-Vizcaya 35.53 35.32

(I) Cantabrian coast Cabo de Pefias 35.56 35.38

Estaca de Bares 35.71 35.55

(IT) Galician coast Villano-Sisargas 35.61 35.43

Cabo Silleiro 35.87 35.71

(IIT) South Atlantic coast Cadiz 36.60 36.45

Gran Canaria 36.87 36.68

(IV) Canary Islands coast Tenerife 3746 3703

(V) Southern Mediterranean coast Cabo de Gata 37.51 37.13

Cabo de Palos 37.50 37.18

(VI) Northern Mediterranean coast Valencia 37.99 37.70

Tarragona 38.25 38.02

3.8. Geothermal Energy

It can be concluded that Spain does not have hydrothermal vents along its coasts based on the
analysis of the world map of submarine ventilation locations (Figure 7). Therefore, it is not possible to
exploit this marine energy resource in the country.

3.9. Solar Energy

To analyze the resource of solar energy along the Spanish coast, the values of solar irradiation
annual averages are established in each area, considering for that values between 1985 and 2005
(Figure 14).

(@)
Figure 14. Cont.
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(b)

Figure 14. Radiation solar map: (a) Iberian Peninsula and (b) Canary Island. The values in the color

bars are the average annual radiation solar, in kWh/mzday (Reproduced with permission from [75].
Aemet, 2019).

Table 7 shows the average annual radiation in each area, and specific zones. In Cantabrian coast
(Area I), the Zones are Pais Vasco, Cantabria and Asturias. In Galician coast (Area II), the only zone is
Galicia. In South Atlantic coast (Area III), the zones are Huelva, Cadiz and Ceuta. In Canary Islands
coast (Area IV), the only zone is Canary Island. In Southern Mediterranean coast (Area V), the zones
are Malaga, Almeria, Murcia and Melilla. In Northern Mediterranean coast (Area VI), the zones are
Valencia, Catalufia and Baleares (Balearic Islands).

Table 7. Radiation solar values, in kWh/m?day in all the areas in the Spanish coast.

Area Zone Average Annual Radiation

Pais Vasco 3.53

(I) Cantabrian coast Cantabria 3.66
Asturias 3.57

(I) Galician coast Galicia 4.16
Huelva 5.21

(IIT) South Atlantic coast Cédiz 5.28
Ceuta 490

(IV) Canary Islands coast Canary Island 4.72
Maélaga 5.19

. Almeria 5.28

(V) Southern Mediterranean coast Murcia 513
Melilla 5.08

Valencia 4.89

(VI) Northern Mediterranean coast  Catalufia 451
Baleares 4.77

The most interesting areas for solar exploitation are:

1. Thesouthern Atlantic coast and the southern Mediterranean coast with values above 5 kWh/m?day,
representing the area with the highest radiation in the Spanish coast.
2. Canary Islands, specifically the southern facade with values above 4.50 kWh/m?2day.

3. The northern Mediterranean coast, specifically in Valencia, Tarragona and the Balearic Islands,
with values higher than 4.50 kWh/m?2day.
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4. Conclusions

The paper consists of a preliminary and prospective analysis of the possibilities of applying the
different types of energies that can be exploited at sea in the Spanish coast. In case of looking for
specifying the final numbers of a certain area of lesser extent a little better, it is clear that it will be
necessary to carry out specific studies in the study area.

This section, which shows the main conclusions of this work, has been divided into the general
ones and those related to the Spanish case of study.

Firstly, the general conclusions related to renewable energies to be exploited in the sea are
the following:

e  Ocean energy resource, including other types of energies to be exploited in the sea, is huge, and
there are different types of marine energies with an estimated theoretical potential, being able to
satisfy the current electrical demand of the whole world.

e However, given its state of evolution and its technological development, the use of this type of
energies is very scarce. Offshore wind and tidal facilities present a higher degree of development.
On the contrary, wave, marine current, ocean thermal, osmotic, biomass, geothermal and offshore
solar energies are in an early phase of development.

e  The current installed power of ocean energy represents a very small percentage, in comparison
with other sources of renewable energies. It will be necessary an important consolidation of the
sector that allows increasing the installed capacity competing with sources of energy. This is not
expected to happen in the short term, except in the case of offshore wind energy.

Finally, the main conclusions related to the specific case of study focused on the Spanish coast are
shown next:

e  Currently in Spain, the marine energy sector has a very poor role in the energy mix. This may
be due to the great economic crisis suffered by the country in recent years, with the consequent
reduction of investments in the renewable energy sector and especially in the marine sector.

e In order to ensure that energies to be exploited in the sea can play a fundamental role in Spain, a
great support will be needed from local and national administrations, with initiatives that allow
for the correct development and growth of these types of energies.

e  The Spanish coast has good characteristics for the use of marine renewable energies, but not all of
them. Feasible marine renewable energies on the Spanish coast are: offshore wind, ocean wave,
osmotic, ocean currents, biomass and offshore solar.

e  The Spanish coast is divided in six different areas: (I) Cantabrian coast, (II) Galician coast, (III)
South Atlantic coast, (IV) Canary Islands coast, (V) Southern Mediterranean coast, and (VI)
Northern Mediterranean coast (Figure 10).

e  Asaresult of the analysis conducted in the present study, Areas I and II are suitable for offshore
wind, wave and biomass. Areas III and V are suitable for offshore wind, marine current and
offshore solar. Area IV is suitable for offshore wind, ocean wave an offshore solar, and Area VI is
suitable for offshore wind, osmotic and offshore solar. This has been summarized in Figure 15.
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Figure 15. Summary of the feasibility study of the different types of marine renewable energies in the

Spanish coast.
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Abbreviations

ECMWEF European Center for Medium-Range Weather Forecasts.
FAO International Federation of Aquaculture.

GOW Global Ocean Waves.

HANPP Human Apropriation of Net Primary Production.

HAT High Astronomical Tide.

IDAE Instituto para la Diversificaciéon y Ahorro de la Energia.
IEA International Energy Agency.

IEA-OES Implementation Agreement of Oceanic Energy Systems.
IHCantabria Instituto de Hidraulica Ambiental de la Universidad de Cantabria.
JASON Joint Altimetry Satellite Oceanography Network.
JONSWAP  JOint North Sea WAve Project.

K1 diurnal tidal constituent.

LAT Lowest Astronomical Tide.

LCOE Levelized Cost of Electricity.

M2 semidiurnal tidal constituent.

MHWN Mean High Water Neaps.

MHWS Mean High Water Springs.

MLWN Mean Low Water Neaps.

MLWS Mean Low Water Springs.

MSL Mean Sea Level.

NCEP National Centers for Environmental Prediction.

NPP Net Primary Productivity.

NOAA National Oceanic and Atmospheric Administration.

o1

diurnal tidal constituent.
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S2 semidiurnal tidal constituent.

SDG Sustainable Development Goal.

TMA Texel-Mardsen-Arsloe.

TOPEX The Ocean Topography Experiment.

WEC Wave Energy Converter.
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