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Abstract: Foundations for offshore wind turbines (OWTs) are mainly open-ended piles that are
subjected to cyclic loadings caused by winds, waves and currents. This study aims to investigate the
dynamic responses of open-ended pipe pile under lateral cyclic loadings, as well as the characteristics
of the soil plug and surrounding soil. Both large-scale indoor model test and discrete element
simulation were adopted in this study. The test results show that the resistance of each part of the
pipe pile increases linearly with depth during the process of pile driving. The pile side resistance
degradation effect was also observed along with the friction fatigue. The soil plug formation rate
decreases gradually with an increase in the pile depth. The influence range in the surrounding soil is
about 5~6 times of the pile diameter. The cumulative displacement of the pile head increases with the
number of cycles. Lateral tangential stiffness and lateral ultimate bearing capacity decreases with an
increase in number of cycles. The severe disturbance range of soil around the pile is 2~3 times of the
pile diameter. The center of rotation of the pile body is about 0.8 times of the pile body depth. The
side frictional resistance and lateral pressure of the pile body is found to fluctuate along the pile body.
Additionally, the lateral pressure and side friction resistance decreases gradually with decreasing
tendency of the former more than the latter.

Keywords: open-ended pile; soil plug; offshore wind turbines; lateral cyclic loading; model test;
discrete element simulation

1. Introduction

The open-ended pile is a common option of foundations for offshore wind turbines (OWTs). In
the offshore environment, the piles are subjected to not only the vertical static load (e.g., its own
weight), but also the lateral cyclic loadings caused by winds, waves and currents. The deformation
characteristics of pile foundations under cyclic loadings are important for the safety of OWTs. There
has been a number of theoretical and experimental researches about the offshore structures [1–11].
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Matlock [1] proposed the p-y curve calculation method, which was adopted by the US American
Petroleum Institute (API). The p-y curve is the embodiment of the laterally loaded pile-soil interaction,
where the soil resistance of the pile is gradually exerted with the application of lateral load. Reese et
al. [2,3] developed and made some corrections on the calculation method of the p-y curve, which still
is the most widely used calculation method for pile foundations under lateral loading. Rosquoet et
al. [12] carried out a series of cyclic lateral loading tests of the pile foundation in sand, and proposed
the calculation formula of the cyclic deformation of the pile body related to the cyclic load size.
Leblanc et al. [13] carried out the centrifugal model test in sand to study the cumulative deformation
of pile foundations under lateral cyclic loading. A series of indoor model test of pile foundations
was performed to study the mechanical principle and deformation characteristics of rigid piles under
different cyclic loads [14–17]. Li et al. [18] investigated weakening characteristics of offshore platform
pile foundations under long-term cyclic loading, as well as used the pore-pressure development model
to establish the residual soil shear strength model.

In addition, large amounts of research concerning the large-scale pile group have been conducted.
These studies include not only the extensive experimental tests subjected to cyclic lateral loading [19–22],
which reveals the highly nonlinear nature of the pile-soil-pile interaction, but also the analysis method
for laterally loaded pile groups, that takes into account the non-linear behavior of the soil and
the non-linear response of reinforced concrete pile sections simultaneously by the newly proposed
Boundary Element Method (BEM) approach [23]. Recently, considering the limitations of test facilities
and high costs for prototype (large-scale) tests, a series of cyclic lateral load tests was conducted on a
stainless steel mono-pile in the centrifuge [24,25].

The aforementioned studies have significantly advanced the understanding of the response
of pile under lateral cyclic loads. But there are few studies regarding the distinctive behaviors of
open-ended piles due to the installation effect compared to that of the equivalent close-ended pile [26].
Thus, the dynamic response of the open-ended pile, particularly the soil plug inside the pile, still has
considerable uncertainty. Moreover, understanding the micro-mechanisms is essential to interpret
the macro-behavior in complex geotechnical issues [27]. In this paper, both the numerical simulation
and model test were used to the reveal the comprehensive responses of the soil-pile system during
the long-term lateral loading, including the micro-mechanisms and macro-behaviors both inside and
outside the pile. A double-walled pile system was applied in both the tests and numerical simulation
to separate the internal and external frictions.

2. Model Test Design

2.1. Model Box and Soil Sample Preparations

Figure 1 shows the model box utilized for testing of the open-ended pile. The inner dimensions
of the model box are 3 m × 3 m × 2 m (length × width × height). The model box is provided with
an unloading port system as well as visual windows. Figure 2 shows the mold particle gradation
curve. The sand sample median grain size, non-uniformity coefficient and coefficient of curvature are
0.72 mm, 4.25 and 1.47, respectively. The soil sample is controlled by the sub-lamination compaction.
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2.2. Model Pile and Sensor Layout

The double-layer pipe wall pile model consists of two concentric pipes of 6063 aluminum alloy
material. The outer diameter, inner diameter, wall thickness and the pile length are 140 mm, 120 mm,
10 mm and 1000 mm, respectively. Both the inner and outer tubes are instrumented with a fiber optic
sensor. The outer tube in addition is also instrumented with a soil pressure sensor (Figure 3). Six
installed soil pressure sensors are arranged in order from the pile bottom to the pile-top to measure the
soil pressure in the pile-soil interface.
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2.3. Test Programme

Figure 4 shows that pile driving is proceeded using the step loading method by the lateral
servo loading equipped and cyclic loading (refer to Figure 4 for illustration). According to the
proposed damage standard of laterally loaded pile [28], the ultimate bearing capacity (PR) of a single
pile foundation under the lateral static load conditions is the corresponding load when the pile top
displacement reaches 0.1 times the pile diameter. Based on static the loading test, the lateral ultimate
bearing capacity of the pipe pile is 1587 N. Leblanc et al. [13] defines two coefficients ζb and ζc to
represent the characteristics of cyclic loading (Refer to Equations (1) and (2). ζb is cyclic load ratio, ζc is
the ratio of minimum load Pmin to maximum load Pmax.

ζb =
Pmax

PR
(1)

ζc =
Pmin

Pmax
(2)
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Figure 4. Cyclic loading control (Note: 1–6 is the displacement meter number; and the displacement
from the pile is 0.1 m, 0.25 m and 0.6 m).

Loads in ocean environment are usually complicated and irregular. For simplifications, the cyclic
loading form in model tests is shown in Figure 5. In this study, two types of cyclic loadings, i.e.,
Rc = 0.0 and Rb = 0.5 are simulated (according to Figure 5). Table 1 summarizes the testing program
for this study. Among them, three tests on the open-ended pipe pile were subjected to biaxial loading
while the other one was subjected to uniaxial loading. The load amplitudes adopted in this study are
200 N, 500 N, and 800 N, respectively, and the cyclic load ratios (ζb, refer to Equation (1) and PR = 1587
N) are 0.126, 0.315, and 0.504, respectively. The uniaxial cyclic load ratio is 0.113.
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Table 1. Test programme.

Test Number Pile Diameter/mm Pile End Loading Method Amplitude/N

M1 140 open two-way 200
M2 140 open two-way 500
M3 140 open two-way 800
M4 140 open one-way 200

* Buried depth = 0.74 m; Frequency = 4 Hz; Cycles = 1000.

3. Discrete Element Simulations

The experimental program was established to quantify deformation characteristics, that will help
in evaluating the performance of open-ended pipe pile under various loading conditions (refer to
Table 1). In addition to the experimental program, the numerical simulation plan was also designed
so as to understand the mechanism, which will help in the interpretation of measured deformation
characteristics from the experimental program. Below is the description of the adopted numerical
program and procedures in this study.

3.1. Soil Sample Preparation

The size of the model is 2.4 m × 2.4 m (width × height) (refer to Figure 6). The a modified particle
generation method, referred to as the Grid-Method (GM), was used to generate soil samples [29]. The
model was divided into 24 small squares. The soil layers were defined by simulating one-side particles
from left to right and from bottom to top. This method effectively avoids the pressure realization in the
process of soil formation. The maximum particle size, minimum particle size, median diameter (D50)
and uneven coefficient (Cu) are 3.52 mm, 2.25 mm, 2.92 mm and 1.26, respectively.
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3.2. Numerical Simulation Model

The model pile has a diameter of 45 mm, a length of 0.5 m and a wall thickness of 2.475 mm. The
model pile consists of particles with a radius of 1.125 mm. The particles overlap with each other. The
distance between the centers of two adjacent particles is dpp (0.2 R) [30], as shown in Figure 7. In this
simulation, the diameter of the particles forming the pile is much smaller than the diameter of the pile.
Further, the distance between the particles is short. The roughness is close to the initial set value. The
direction of the contact force between the particles and the pile is the same as the axial direction of the
pile. With this, the axis resistance calculations are easier and more accurate. Since the proposed GM
uses the explosive method for particle generation. Particles are created at their final radii in specify
numbers to achieve the desired porosity and the number of every type size are calculated in advance.
The following Equations (3)–(6) will be used for the calculation of the initial porosity einitial and particle
number in every grid. Am is the area of the model, Api and N(i) is the total particles area of the same
specific diameter r(i) and the quantity of the corresponding diameter particles. The final selection of
soil samples is shown in Table 2.

N(i) = NP(i) (3)
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2 = N(i)r(i)

2π (4)

AP = AP
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2 + . . .+ AP
i (5)

einitial =
AP
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Table 2. Numerical simulation of the physical parameters of soil samples.

Physical Parameter Value

Sand particle density (kg/m3) 2650
Pile density (kg/m3) 66.65

Acceleration of gravity (m/s2) 9.8
Median grain size of particle, d50 (mm) 5.85

Model pile diameter dpile (mm) 45
Model pile length (mm) 500

Model pile wall thickness dpw (mm) 2.475
Model box width (mm) 2400

Model box depth D (mm) 2400
Friction coefficient between particles, µ 0.5
Young’s modulus of particles, Ep (Pa) 4 × 107

Contact normal stiffness of particles, kn(N/m) 8 × 107

contact shear stiffness of particles, ks (N/m) 2 × 107

particle stiffness ratio (ks/kn) 0.25
Wall normal contact stiffness, kn (N/m) 6 × 1012

Initial average porosity 0.25
Final average porosity (Ultimate balance) 0.185

3.3. Numerical Simulation Programme

An open-ended rigid pipe pile has an outer diameter of 45 mm and a length of 0.5 m and a wall
thickness of 2.475 mm. In order to better observe the soil sample deformation, the soil samples are
set to different colors. The depth of the pile model test is 0.4 m, and the model pile is placed on the
centerline of the model box. The minimum distance between the model pile and the model box wall is
more than 7D (D is the pile diameter), and the distance between the pile end and the bottom of the
box is more than 4D. This configuration avoids any boundary effects [31]. The horizontal load test is
carried out and results show that the horizontal ultimate bearing capacity of the pipe pile is 8118 N.
The specific parameters adopted in the numerical simulation program are summarized in Table 3.



J. Mar. Sci. Eng. 2019, 7, 128 7 of 19

Table 3. Numerical simulation program emphasizing input parameters.

Test
Number

Pile Diameter
/mm

Buried
Depth/m

Loading
Method

Amplitude
/N

Frequency
/Hz Cycle

P2 45 0.4 two-way 1000 40 100
P4 45 0.4 two-way 3000 40 100
P5 45 0.4 two-way 5000 40 100
P6 45 0.4 one-way 1000 40 100

4. Test Results and Discussions

4.1. Measured Pile Top Cumulative Displacement under Lateral Cyclic Loadings

Figure 8 shows the variation in the horizontal displacement with time for all different loading
conditions (refer to open-ended pipe pile cases, M1-M4 in Table 1). It can be observed that trends of
the displacement curves of the pile top are consistent under different cyclic loading modes. With the
application of the sinusoidal load, the displacement of the pile also changes sinusoidally over time.
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The total displacement for tests M1, M2, M3 and M4 are 0.65 mm, 0.9 mm and 1.35 mm, 0.8 mm,
respectively. As observed from Figure 8, the maximum cumulative displacement of the pile top
gradually increases with an increase in the number of cycles and then gradually stabilizes beyond
100 cycles. The increase in the horizontal displacement is much faster in the first 100 cycles as compared
to beyond. The displacement in the first 100 cycles for M1, M2, M3 and M4 are about 76.9%, 74.4%,
81.4%, 78.9% of the total displacement, respectively. The cumulative displacement for M2 and M3
increases higher than M1 by 27.7% and 51.8%, respectively. This is obviously due to an increase in
load. It can be also observed that the cumulative displacement in the case of uniaxial loading is 18.75%
higher than biaxial loads.

In this study, the cumulative displacement under the lateral cyclic loading is predicted mainly
by establishing the relationship (refer to Equation (7)) between the displacement of the pile and the
number of cycles. Hettler [32] carried out the cyclic triaxial test and model pile test in dry sand. It is
considered that the relationship between the ratio of the lateral displacement (yN) of the pile under
the cyclic load and the displacement y1 of the pile after the first cycle and the number of cycles N are
as follows:

yN = y1(1 + CN + ln N) (7)
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where yN is the horizontal displacement after N cycles, CN is the weakening coefficient. For cohesion-less
soil, CN is usually 0.2. The weakening coefficients for M1, M2, M3 and M4 are found to be 0.159, 0.173,
0.181, and 0.186, respectively. The weakening coefficient is similar to that obtained by Zhu et al. [33].

4.2. Measured Load-displacement Curve under Lateral Cycling Load

Figure 9a–d shows the pile top load-displacement curves for cases M1-M4 under the lateral cyclic
loading. The ratio of the maximum load and the change in the lateral displacement of the pile top is
the lateral secant stiffness of the pile foundation. The stiffness of the soil around the pile changes under
the cyclic load.
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Figure 9. Load-displacement curve of pile top of Pile M1-M4. Figure 9. Load-displacement curve of pile top of Pile M1-M4.

As shown in the figures, there exists a hysteresis loop in load displacement curves of the pile
top with each of its cycle overlapping partially. Generally for all the cases, the hysteresis loop is
relatively small during the first ten cycles of loading. The hysteresis loop gradually tilts toward the
displacement axis. The area within the hysteresis loop curve is gradually reduced with an increase in
cycles. Ultimately, the load displacement curve seems stabilized. The lateral stiffness for M1, M2, M3
and M4 decreases by 11.6%, 14.0%, 17.2%, and 12.8% at the end of 1000 cycles. However, it should be
noted that the major decrease in lateral stiffness for M1, M2, M3 and M4 are 6.97%, 9.9%, 13.5% and
8.01%, respectively in the first 100 cycles. These account for more than 60% of the overall decrease. It
shows that cyclic loading can reduce the lateral secant stiffness of the pile foundation. To a certain
extent, cyclic loading can reduce the lateral deformation modulus of the soil. This is similar to the law
obtained by Zhang et al. [34]. As per their law, the soil around the pile will “plastically” deform and
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gradually deflect with an increase in loading cycles. The gradual deformation of the soil will cause the
weakening of the pile-soil system.

4.3. Measured Surface Displacement under Lateral Cyclic Loading

Figure 10 shows the variation in surface displacements (at points 1–6; refer to the experimental
set up in Figure 4) for case M1 (refer to Table 1). It can be observed that there was a rapid increase in
the displacement in the initial stage of application of the cyclic load. However, the rate of increase
reduces after around 5 s. The displacement for point 2 (gauge no. 2; refer to Figure 4) on the right side
of the pile is the largest, while on the left side, the displacement for gauge no. 5 is the largest. It can
be observed that under the cyclic load, the soil will settle down in the range of 0.1 m near the pile.
Between the range of 0.1 m~0.25 m, the soil uplift will occur on both sides of the pile.
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Figure 10. Variation of surface displacement with time under lateral cyclic loading for case M1.

The displacement on the left side of the pile is larger than that on the right side, where the active
pressure area is larger than the passive pressure area. The comparison shows that the maximum
surface displacement of the pile under different loading conditions such as M1, M2, M3 and M4 are
0.25 mm, 0.35 mm, 0.4 mm, 0.28 mm, respectively. With an increase in the cyclic load, the surface
displacement increases gradually. Also, the displacement under the uniaxial cyclic load is larger than
the biaxial cyclic load. This law is similar to the cumulative displacement of the pile top (refer to
Figure 9). The disturbance range of the soil around the pile is 2~3 times the diameter of the pile.

4.4. Measured Pile Friction under Lateral Cyclic Loading

Inclination occurs to the pile under the application of the lateral cyclic load to the soil around the
pile. The lateral cyclic load makes changes to the direction of the pile, where the friction and lateral
pressure of the pile differs from the traditional vertical loaded pile. The friction law of the pile body is
similar under different loading conditions. This study provides mainly the curve of the frictional force
of the pile body (for case M1 only) with the cycle period (as shown in Figure 11). As observed from
Figure 11, the unit friction force near the pile bottom decreases with an increase in the number of cycles.
The frictional force near the pile top tends to increase during the first 100 cycles. However, the change
in the frictional force is minimal in the middle of the pile body during the first 100 cycles. The friction
at the pile bottom is generally weakened by about 3.8%, and the friction at the pile top is increased by
about 3.4%. The friction of the pile body is generally found to reduce with the application of the lateral
cyclic load; nevertheless, the decay rate is about 3.8%, where the degradation degree mainly accounts
for more than 70% of the total degradation degree in the first 100 cycles.
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The comparative analysis shows that the friction of the pile body is generally reduced with an
application of the lateral cyclic load. The reduction tendency of the friction is found to slow down with
an increase in the number of cycles. The overall reduction ranges of frictional forces for M1, M2, M3
and M4 are 3.6%, 3.8%, 4.2%, and 3.7%, respectively. As the magnitude of the cyclic load increases,
the frictional decay amplitude increases, and the frictional force in the case of the axial cycle becomes
weaker than the biaxial cycle. The friction inside the pile is mainly concentrated in the range of two
times the pile diameter above the pile end, which can be called the “developing height” of the soil
plug. In the range of the “developing height” of the soil plug, the frictional force in the pile changes
more obviously. The disturbance of the soil plug at the end of the pile is directly proportional to the
load amplitude. Moreover, the attenuation of the friction on the inner wall surface increases with the
load amplitude.

4.5. Measured Lateral Pressure of Pile under Lateral Cycling Load

Figure 12a–d variation of the soil pressure with depth for different loading conditions (M1-M4,
refer to Table 1). From Figure 12a, it is clear that the change in the lateral pressure at a depth of 0.58 m
is zero. In general for all cases, the lateral soil pressure above the depth of 0.58 m increases under the
cyclic load, while it decreases below the depth of 0.58 m. Hence, the depth of around 0.58 m is the
center of the pile rotation. The center of the pile rotation is located approximately at about 0.8 times of
the pile depth. During the cyclic loading process, the soil pressure sensor of the pile body is positioned
in the “active zone”, and a part of the sensor is located in the “passive zone”. The definition of “active
zone” and “passive zone” are established during the first cycle loading process. More specifically,
when applying the horizontal loading in the first half cycle, the piles incline to the right around a
rotation center, which brings about an “active zone” on the left of the pile while a “passive zone” on
the right side. Herein, three soil press sensors (4#, 5# and 6#), above the rotation center, are located in
the “passive zone”; on the contrary, 1# and 2# sensors are placed in the “active zone”.

The lateral pressure of the active zone increases with the cyclic loading, while the lateral pressure
of the passive zone decreases. The pressure in the passive zone increases with an increase in the
number of cycles. The major increase occurs during the first 100 cycles, accounting for more than 70%
of the total. The lateral pressure of the active zone shows a decreasing trend. The analysis shows
that the overall lateral pressure for M1, M2, M3 and M4 are attenuated by 6.9%, 7.5%, 8.8% and
7.3%, respectively.
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4.6. Measured Static p-y Curve under Lateral Cyclic Loadings

In this study, the American Petroleum Institute API [35] and Reese [3] sand p-y curve models are
used to calculate the horizontal load and displacement of single piles. Figure 13 shows the variation
of the calculated load-displacement in the horizontal direction. As observed from Figure 13, the
results obtained by the two above-mentioned methods are relatively more close to those of the static
calculation (i.e., before the test cycle loading). With the application of the cyclic load, the soil around
the pile is disturbed and the ultimate bearing capacity of the soil after the cyclic loading is reduced. The
ultimate bearing capacity of the soil for cases M1, M2, M3 and M4 are reduced by about 11%, 14%, 17%
and 13%, respectively. After 100 cycles, the results calculated by the two methods are quite different
from the test results, indicating that the two static calculation methods cannot reflect accurately the
influence of cyclic loading on the displacement of piles.   

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jmse 

 

Figure 13. Static p-y curve based on p-y models proposed by API [26] and Reese [3] compared with 
physical model test results. 

5. Numerical Simulation Results 

5.1. Computed Cumulative Displacement of Pile Top 

Figure 14 illustrates the maximum computed cumulative displacement curve of the pile top. 
Clearly, the cumulative displacement of the pile top under different loading conditions are similar. 
In all the cases (P2–P6), the displacement first increases rapidly during the initial 10 cycles and then 
gradually stabilizes. After 10 cycles, the displacements of P2, P4, P5 and P6 (Refer to Table 3 for 
numerical plan) were 0.35 mm, 0.6 mm, 0.98 mm and 0.45 mm, respectively. After the end of the 
cycle, the maximum cumulative displacement of the pile top for P2, P4, P5 and P6 are 0.41 mm, 0.71 
mm, 1.13 mm and 0.55 mm, respectively. 

Obviously, the maximum cumulative displacement of the pile top gradually increases with the 
increase in the cycle period. The rate of change in the first 10 cycles is faster, and the velocity 
gradually becomes slower after 20 cycles. The cumulative displacement mainly occurs in the first 10 
cycles. The displacement is about 74.5%, 84.5%, 88.2%, and 81.8% of the total displacement. The 
cumulative displacement of the pile top increases with the increase of the cyclic load ratio, which 
increases by 33.8% and 57.7%, respectively. After the axial cyclic loading, the cumulative 
displacement around the pile is increased by 14.6% over the biaxial. 

 

Figure 13. Static p-y curve based on p-y models proposed by API [26] and Reese [3] compared with
physical model test results.



J. Mar. Sci. Eng. 2019, 7, 128 12 of 19

5. Numerical Simulation Results

5.1. Computed Cumulative Displacement of Pile Top

Figure 14 illustrates the maximum computed cumulative displacement curve of the pile top.
Clearly, the cumulative displacement of the pile top under different loading conditions are similar.
In all the cases (P2–P6), the displacement first increases rapidly during the initial 10 cycles and then
gradually stabilizes. After 10 cycles, the displacements of P2, P4, P5 and P6 (Refer to Table 3 for
numerical plan) were 0.35 mm, 0.6 mm, 0.98 mm and 0.45 mm, respectively. After the end of the cycle,
the maximum cumulative displacement of the pile top for P2, P4, P5 and P6 are 0.41 mm, 0.71 mm,
1.13 mm and 0.55 mm, respectively.
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Figure 14. Displacement of the pile top According to Equation (7), the weakening coefficients of P2, P4,
P5, and P6 after fitting are 0.22, 0.24, 0.26, and 0.27, respectively. It can be seen that as the cyclic load
ratio increases, the weakening coefficient also increases gradually. The axial cyclic load-weakening
coefficient reaches its peak value at a much faster rate with an increase in the cyclic load ratio.

Obviously, the maximum cumulative displacement of the pile top gradually increases with the
increase in the cycle period. The rate of change in the first 10 cycles is faster, and the velocity gradually
becomes slower after 20 cycles. The cumulative displacement mainly occurs in the first 10 cycles.
The displacement is about 74.5%, 84.5%, 88.2%, and 81.8% of the total displacement. The cumulative
displacement of the pile top increases with the increase of the cyclic load ratio, which increases by
33.8% and 57.7%, respectively. After the axial cyclic loading, the cumulative displacement around the
pile is increased by 14.6% over the biaxial.

The computed and measured cumulative displacement of the pile top seems to be similar. The
cumulative displacement gradually increases with the increase of the period, and the increasing rate of
increase gradually becomes slower. The computed weakening coefficient is slightly larger than the
experimental weakening coefficient.

5.2. Computed Load-displacement Curves

Under the lateral cyclic loading, the interaction between the pile and soil is weakening. Carrying
the normalization analysis through the test and simulation results, the corresponding load amplitude
divides the lateral load, and the lateral displacement is divided by the maximum cumulative
displacement. Figure 15 illustrates the load-displacement curves under normalized cyclic loading
conditions. The curves basically resemble the hysteresis loop. As the cycle period increases, the area of
the loop gradually increases, indicating the increase in the displacement of the pile top as well as the
reduction in the lateral stiffness.
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Figure 15. Load vs. displacement curves for various loading conditions of Pile P2, P4, P5 and P6.

The lateral secant stiffness k1 of the first cycle for P2, P4, P5 and P6 are 6.67 kN/mm, 8.57 kN/mm,
9.09 kN/mm, 5.88 kN/mm, respectively. The lateral secant stiffness k10 in the 10th cycle for P2, P4, P5
and P6 are 6.18 kN/mm, 7.65 kN/mm, 7.32 kN/mm, 5.21 kN/mm, respectively. The lateral tangential
stiffness k100 in the 100th cycle for P2, P4, P5 and P6 are 5.88 kN/mm, 7.32 kN/mm, 6.94 kN/mm,
4.84 kN/mm, respectively. The overall reduction is 11.8%. 14.6%, 23.6%, and 17.7%, mainly occurred in
the first 10 cycles, accounting for 62.0%, 73.6%, 82.3%, and 64.4% of the total.

5.3. Computed Displacement Around Soil

Figure 16 illustrates a computed displacement vector diagram and a displacement cloud diagram
of soil around the P2 pile. As observed from the figure, with the application of the lateral load, the
particles around the pile are disturbed, and the pile body is tilted in the direction of the loading force.
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It can be seen from Figure 16a that the particle motion range of the soil in front of the pile and the
soil behind the pile appears to be opposite. The direction of the movement of the soil plug is generally
upward. It can be seen from Figure 16b that the influence range of the soil around the pile is the
“butterfly” type. The soils around the pile can be approximately divided into different disturbance
zones. The soil displacement in the pile top range is larger, whereas, the soil particle displacement in
the pile bottom range is smaller. The displacement of the active zone is greater than the passive zone.
Based on the figure, the displacement of soil particles is the largest in the range of four to five times of
the pile diameter. The farther the distance from the pile, the smaller the particle displacement. The
comparison test results show that the critical influence zone in the test lies at around 2~3 times of the
pile diameter. The computed zone is slightly smaller than that measured in experiments.

5.4. Computed Pile Side Friction

Figure 17a,b shows the variation of the pile frictional resistance with depth for outer and inner
tubes, respectively for case P2. The axial side frictional resistance appears to increase along the depth
with some fluctuations for both the outer and inner tubes of the pile. It can be seen from Figure 17a
that the side frictional resistance on the left side of the pile decreases at the vicinity of the pile top. The
decreasing rate gradually becomes slower with the number of cycles. The side frictional resistance
of the pile bottom tends to increase under the application of the load. The pile body rotates to the
right around the center of rotation, and the friction between the soil and the pile on the left side of the
pile top is reduced. The analysis of Figure 17a shows that the outer side frictional resistance above
the center of rotation decreases. However, there is an increasing trend observed below the center of
rotation. Variations in both these trends occur mainly during the first 10 cycles. The outer side frictional
resistance on the right side of the pile is opposite to the left side. As compared to Figure 17a, the side
frictional resistance (Figure 17b) on the left and right sides of the pile changes minimally during the
period. Compared with the inner and outer frictional resistance, the side frictional resistance of the
right side is greater than the side frictional resistance of the left side. The comparative analysis shows
that the variation in the lateral frictional resistance is the highest in pile P5, while it is lowest for pile
P2. For all the piles (P2, P4 and P5), the variations (i.e., gradually increase) of the lateral frictional
resistance occur mainly during the first 10 cycles of loading. Additionally, it can be stated that the
lateral frictional resistance of the pile (based on P2 and P6) is more under the axial cyclic load than the
biaxial cyclic load.
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Figure 18 shows the variation of the side frictional resistance of P2, P4, P5 and P6 with the number
of cycles. As the number of cycles increase, the total side frictional resistance of the pile body decreases.
The overall decrease for P2, P4, P5 and P6 are 3.4%, 3.8%, 5.1%, and 3.5%, respectively. Generally, for
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all the cases (P2, P4, P5 and P6), the main decline in the side frictional resistance in the first 10 cycles
accounted for more than 77% of the total.
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5.5. Computed Lateral Pressure of the Pile Body

Figure 19a,b shows the variation of the lateral pressure distribution along with the depth for the
outer and inner tube, respectively of the pile (P2). It can be observed that despite fluctuations, there is
an increase in the lateral pressure along with the depth. Further, it can be observed that the outer lateral
pressure on the left side of the pile is a positive value, while, the outer lateral pressure on the right side
of the pile is a negative value. The difference among them tends to increase along with the depth.
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Figure 19. Distribution of lateral outside and inside pressure of Pile P2 ((a) outer
pressure; (b) inside pressure).

The pressure on the left side of the pile near the pile top decreases due to cyclic loadings, while
the pressure on the left side near the pile end increases. The lateral pressure on the right side of the
pile changes inversely to the left side. The lateral pressure near the center of rotation varies minimally
during the loading period. It can be seen from Figure 19b that the sign of the lateral pressure on the
inside of the pile is opposite to the outside. Overall, there is an increase in the lateral pressure along
with the depth. The fluctuations are relatively smaller. The difference in pressures between the inside
and outside of the pile increases with the depth. The maximum pressures on surfaces of the inner tube
are approximately twice that of the outer tube. It indicates that the inner tube experiences larger lateral
pressures than the outer tube. Among P4, P5, P6 and P2, the lateral pressure change mainly occurs
in the first 10 cycles and then gradually stabilizes. However, the change extents are different for the
different piles due to different load ratios, loading methods and loading amplitude.
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Figure 20 compares the distribution of the total lateral pressure between piles P2, P4, P5, and P6
piles. It can be observed that the pressure of the pile-soil interface under axial and biaxial cyclic loading
shows a reducing trend. An overall decrease of 8.9%, 9.3%, 10.1%, and 9.7% was observed for piles
P2, P4, P5 and P6, respectively. The major change in soil pressure occurs mainly in the first 10 cycles,
accounting for more than 74% of the total. Similar to the experimental results, the lateral pressure
decreases with the number of cycles. The major change occurs in the first 100 cycles accounting for
more than 70% of the total. The lateral pressure of the active zone shows a decreasing trend. The
comparative analysis showed that the overall lateral pressure for piles P2, P4, P5 and P6 was attenuated
by 6.9%, 7.5%, 8.8%, and 7.3%. It can be seen that the magnitude of the decline increases with an
increase of the cyclic load ratio (i.e., lateral pressure higher in the case of axial loading than biaxial).
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Figure 20. Comparison of computed unit lateral pressure distribution with cycles between P2, P4, P5
and P6.

Figure 21 shows the comparison of static calculation curves before and after cyclic loading between
piles P2, P4, P5 and P6. It can be seen from Figure 21 that under the application of different cyclic
loading modes, the lateral ultimate bearing capacity of P2, P4, P5 and P6 is reduced by 11.7%, 14.5%,
23.5%, and 17.7%, respectively. The comparative analysis shows that the cyclic load can reduce the
lateral bearing capacity of the pile foundation. The magnitude of the reduction under different loading
conditions is different. The rate of decrease of the amplitude is enhanced with the cyclic load ratio. The
rate of decrease of the amplitude is higher in the case of uni-directional loading than biaxial loading.
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Both measured and computed static load curves for all types of loading conditions were normalized
by dividing the actual value (load or displacement) with the corresponding maximum value. Figure 22
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shows the comparison of measured as well as computed normalized static load curves. It can be seen
from the test results that with the application of the cyclic load, the soil around the pile is disturbed,
and the ultimate bearing capacity of the soil after circulation is reduced. The ultimate bearing capacity
for M1, M2, M3 and M4 cycle is reduced by about 11%, 14%, 17%, 13%, respectively. In the simulation
results, the lateral ultimate bearing capacity of the piles decreased by 11.7%, 14.5%, 23.5%, and 17.7%
after 100 cycles. The ultimate bearing capacity increases with the cyclic load ratio. The decreasing
amplitude is gradually increased, and the reduction of the bearing capacity in the case of axial cyclic
loading is more than the reduction of biaxial cyclic loading.
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6. Conclusions

In this study, the dynamic response of open-ended pipe piles under lateral cyclic loadings is
studied by large-scale indoor model tests and discrete element simulations. The main findings can be
summarized as follows:

(1) Both the increases of cumulative displacement on the pile top and the decrease of the lateral
secant stiffness occur mainly in the first 100 cycles, which is in the range of 10~25% but varies greatly
with the change of the loading mode. Uni-axial cyclic loading causes more lateral displacement than
biaxial loading. The ultimate bearing capacity of the pile decrease logarithmically with the increase
of the period, and the weakening coefficients are different for loading modes but all in the range of
0.15~0.2.

(2) The cumulative displacement on the pile top increases with the increasing cyclic load ratio, but
its increasing extent is less than that of the cyclic load ratio. The cumulative displacement reaches to
around 1% of the pile diameter when the cyclic load ratio increases to about 0.5.

(3) The influence range of the soil around the pile under lateral loadings is the “butterfly” type.
The surrounding clear disturbance range of the soil is 2~3 times of the pile diameter, and the rotation
center position of the pile body is about 0.8 times of the buried depth of the pile body.

(4) Both the soil plug and outer friction contributed significantly to the pile lateral resistance, the
“developing height” of the soil plug under lateral loading is in the range of two times the pile diameter
above the pile end. The lateral pressure and frictional resistance of the active zone increases with the
cyclic loading, while the lateral pressure and frictional resistance of the passive zone decreases with
lateral loadings.
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