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Abstract: With the development of large-scale offshore projects, sea ice is a potential threat to the
safety of offshore structures. The main forms of damage to bottom-fixed offshore structures under
sea ice are crushing failure and bending failure. Referred to as the concept of seismic response
spectrums, the design response spectrum of offshore structures induced by the crushing and bending
ice failure is presented. Selecting the Bohai Sea in China as an example, the sea areas were divided
into different ice zones due to the different sea ice parameters. Based on the crushing and bending
failure power spectral densities of ice force, a large amount of ice force time-history samples are
firstly generated for each ice zone. The time-history of the maximum responses of a series of single
degree of freedom systems with different natural frequencies under the ice force are calculated and
subsequently, a response spectrum curve is obtained. Finally, by fitting all the response spectrum
curves from different samples, the design response spectrum is generated for each ice zone. The
ice force influence coefficients for crushing and bending failure are obtained, which can be used to
estimate the stochastic sea ice force acting on a structure conveniently in a static way. A comparison
of the proposed response spectrum method with the Monte Carlo method by a numerical example
shows good agreement.

Keywords: ice force; design response spectrum; crushing failure; bending failure

1. Introduction

Freezing is a common natural phenomenon in winter at high latitudes of the earth. The ice force
is a potential threat to bottom-fixed offshore structures due to its high magnitude and evident dynamic
effects [1,2]. For instance, in 1969, the JZ20-2MSW platform was destroyed because of serious ice
conditions in the Bohai Sea [3,4].

Many researchers have put their effort into the research of sea ice force and tried to present a more
reasonable sea ice force model.

Su et al. [5] investigated the typical statistical characteristics of local ice loads based on the
data from in-situ measurements. Neill [6] investigated the dynamic ice force on piers and piles.
Torodd [7] studied model-based force and state estimation in experimental ice-induced vibrations. The
feasibility and advantages of the ice-breaking cone were proven by the analytical results obtained
by Ralston et al. [8] in the 1980s. Ordinary and serious ice conditions in the Bohai Sea were briefly
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presented by Zhang [9] and formulas for calculating the forces applied on offshore structures by ice
were suggested.

From the above researches [5–9], the ice force is often regarded as a static load without considering
its dynamic effects. In engineering design specifications, Nord [10], Qu [11], Barker [12], and
Gravesen [13] conducted dynamic ice force experiments, respectively. Ice force acting on the
Nordströmsgrund lighthouse was identified [10]. Qu [11] analyzed a random ice force for narrow
conical structures through practical engineering experiments. Baker [12] and Gravesen [13] investigated
the dynamic ice force on the offshore wind turbine, the dynamic characteristics of the structure under
such loads were discovered.

Some dynamic ice force models have been recommended, while most of them are deterministic
ones, such as the simplified dynamic ice force model presented by Kärnä and Qu [14]. Based on sea ice
dynamics, Hunke et al. [15] established an elastic-viscous-plastic model. Li and Li [16] established a
modified discrete element model for sea ice dynamics. Considering the redistribution process and
the evolution of the ice thickness distribution, an idealized zero-dimensional model was presented
by Godlovitch and Monahan [17]. Qu [18] proposed an ice dynamics model for narrow conical
structures, which showed that ice-breaking cones were effective in reducing the ice force. On the
other hand, the specific dynamic ice models have been developed based on local environmental
conditions. Wang et al. [19] and Pedersen et al. [20] presented the proper sea ice dynamics models
for the Gulf of Riga and the Greenland Sea, respectively. Besides, the dynamic and thermodynamic
sea ice model for the subpolar regions was studied by Lu et al. [21]. However, sea ice breaking is a
stochastic process in essence and it is usually difficult to simulate the action of ice force on offshore
structures due to the low efficiency of the traditional random vibrations analysis method. Therefore,
Shi [22], Zhi [23], and Ou [24] proposed the concept of sea ice force spectrums. Shi [22] recommended
an ice force spectrum based on the displacement and strain responses of a single degree freedom
structure, and more complicated structures were considered in the study of Zhi [23]. Ou [24] analyzed
the characteristics of the random process of ice force and mechanism and established the relationship
between spectral parameters and ice thickness.

The rupture forms of the sea ice can be mainly divided into several types, such as crushing failure,
bending failure, and so on. Lee [25] investigated local ice load signals in ice-covered waters. Kim [26]
discussed the assumptions behind rule-based ice loads of crushing failure. Through tests, the damage
mechanism of sea ice was studied by Huang [27] in detail. The frequency of ice force under different
ice failure modes and the occurrence probability of their magnitudes in full-scale had been studied
by Suominen [28]. Zhang [29] studied the mechanism of ductile-brittle transition of sea ice damage
and the influence of microcrack evolution on sea ice properties. Jones and Eylander [30] studied
the ice force which acted on a vertical structure or inclined structure. Hayo et al. [31] investigated
the ice-induced vibrations in the states of mixed crushing and buckling. Aksenov and Hibler [32]
found that the icebreaking was highly irregular, and small cracks appeared around the broken area.
Gagnon [33] established a numerical model for ice crushing failure. Sopper [34] performed a series
of ice crushing tests to investigate the effects of external boundary conditions and geometric contact
shapes under ice force.

In fact, ice force and the seismic effect have many similar characteristics, e.g., both of them are
dynamic and stochastic with a specific frequency spectrum. Referred to as seismic design theory,
the design response spectrums of sea ice force due to the crushing and bending failure are proposed.
The novel method is simple and easy to analyze the response of bottom-fixed offshore structures
subjected to ice.

Firstly, a single-degree of freedom (SDOF) model with different natural frequencies and damping
is established to simulate different offshore structures subjected to ice force. Secondly, the crushing
and bending failure power spectral densities (PSD) of the ice force, and the properties of ice are
recommended. Thirdly, ice conditions in the Bohai Sea are selected as a typical investigated zone.
A large amount of ice force time-history samples for crushing and bending failure are generated by
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applying the amplitude superposition method. Then, the maximum responses of SDOF structures with
different natural frequencies subjected to each ice force time-history are obtained. The design response
spectrums for both crushing and bending failure sea ice force are achieved. Finally, the numerical
results validate the proposed method.

2. Analysis Model

Assume that the offshore structure can be simplified as a SDOF system, as shown in Figure 1,
where m is the lumped mass; k is the shearing stiffness; and c is the damping coefficient; l1 and l2
indicate the heights above and under the sea level, respectively.
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Figure 1. Single-degree of freedom (SDOF) Model.

Since the system is excited by the ice force p(t) at the sea level (point A in Figure 1), rather than
directly on the lumped mass (point B in Figure 1), the ice force should be replaced with an equivalent
force p’(t) to establish the motion equation of the system. Neglecting the inertia force, the lateral
displacement x and rotation θ at point A subjected to p(t) is:

xA =
p(t)l32
3EI

; θA =
p(t)l22
2EI

(1)

where EI is the flexural stiffness of the cantilever beam. The displacement at point B is then:

x = xA + θAl1 =
p(t)l32
3EI

+
p(t)l1l22

2EI
(2)

Note that:
k =

3EI

(l1 + l2)
3 (3)
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where k is the shear stiffness.
Equation (2) can be re-written as:

x =
2l32 + 3l1l22

2k(l1 + l2)
3 p(t) (4)

According to Equation (4), the displacement at point B induced by the equivalent ice force p′(t)
has to be equal to that raised by p(t):

x =
p′(t)

k
=

2l32 + 3l1l22
2k(l1 + l2)

3 p(t) (5)

therefore,

p′(t) =
2l32 + 3l1l22
2(l1 + l2)

3 p(t) (6)

The motion equation of the SDOF system subjected to ice force is then:

M
..
x + C

.
x + Kx = p′(t) = λp(t) (7)

where x,
.
x, and

..
x are the displacement, velocity, and acceleration of the SDOF system, respectively; and

λ =
2l32 + 3l1l22
2(l1 + l2)

3 (8)

where λ is the equivalent coefficient of the sea ice force.

3. PSDs of the Ice Force

3.1. Crushing Failure PSD

Based on a large amount of ice force practical measurement data of JZ9-3MDP in the Bohai Sea
and the Norstromsgrund lighthouse, Kärnä and Qu [14,35] developed a crushing failure sea ice force
power spectral density expression as follows:

Sc( f ) =
aσ2

1 + ka1.5 f 2
; a = bV−0.6

ice (9)

where f (Hz) is the frequency of sea ice force; a and b are experimental parameters; Vice is the ice
velocity; and σ is the ice force standard deviation that is defined as:

σ =
IF

1 + 3IF
Fp; Fp = ασcDh (10)

where IF is the interaction strength of the dynamic ice with a mean value of 0.4 MPa; Fp is the ice force
amplitude when crushing failure happens; α is the comprehensive effect coefficient which lies between
0.4 and 0.7; σc is the ice compression strength; D is the loaded pile diameter of the structure; and h is
the ice thickness.
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3.2. Bending Failure PSD

In accordance with the ice load data collected on conical structures by a full-scale test in the Bohai
Sea, Yue et al. [13,36] presented a bending failure sea ice force power spectral density as follows:

Sb( f ) =
10.88F2

0T−2.5
b

f 3.5 exp
(
−5.47( f Tb)

−0.64
)

(11)

where F0 is the ice force amplitude when bending failure occurs; Tb is the ice force period. Their
expressions are as follows:

F0 = 3.2σ f h2(
D
Lb

)
0.34

; Tb =
Lb
vice

=
τh
vice

(12)

where σ f is ice bending strength; Lb is the breaking length of the ice sheet; and τ is the ratio between
breaking length and ice thickness with a value around 7.3.

3.3. Compression Strength and Bending Strength

Through the experiment, Vaudrey and Li [37,38] proposed formulas of the compression and
bending strength for sea ice as follows:

σc = 1.474 + 0.106|θi| (13)

σ f = 0.998− 0.063
√

Vb (14)

where Vb is the brine volume ratio of the sea ice,

Vb = Si(0.532 + 49.185/|θi|) (15)

where θi is the sea ice temperature; Si is the sea ice salinity.

4. Ice Force Parameters

As shown in Equations (9)–(15), there are four important parameters, including the temperature
θi, salinity Si, thickness h, and velocity Vice, which is related to the environment and affect the PSDs
of the sea ice force. Essentially, they are all random variables and the way they are evaluated are
explained in this section.

4.1. Ice Temperature and Salinity

Based on the different sea ice parameters, the Bohai Sea and the northern part of the Yellow Sea
are divided into 21 zones by the China National Offshore Oil Production Research Centre and the
National Marine Environmental Forecasting Center [39] as shown in Figure 2. Due to the scarcity of
measured sea ice data in Zones 15–21, the ice parameters measured at a location within a certain zone
is used to represent those of the zone. For instance, the data at Bayuquan Area represents that of Zone
21. The parameters of sea ice temperature and salinity corresponding to each ice zone in the Bohai Sea
are listed in Table 1, which can be directly applied to Equations (12)–(15).
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Figure 2. The divided ice zones of the Bohai Sea.

Table 1. Design values of sea ice temperature and salinity.

Zone Number Temperature (◦C) Salinity (%�)

1 −5.4 5.50
2 −6.8 6.58
3 −5.3 7.24
4 −4.9 6.70
5 −4.5 6.70
6 −4.7 5.67
7 −4.5 4.57
8 −3.4 9.01
9 −4.5 4.29

10 −2.8 4.05
11 −3.5 4.57
12 −3.9 8.24
13 −4.2 7.50
14 −4.4 6.80

15 at Haihong Port 1 −11.1 6.3
16 at Haihong Port 2 −4.5 4.7
17 at Guanhai Trestle −6.5 5.6

18 at Hongguang Wharf1 −2 5.6
19 at Hongguang Wharf2 −3.3 5.3

20 at Xing Cheng −5 4.4
21 at Bayuquan Area −9 4.8

4.2. Probability Distributions of Ice Parameters

4.2.1. Probability Distributions of Ice Thickness and Ice Velocity

Based on a large amount of data recorded from the Bohai Sea and the northern Yellow Sea during
the years of 1968–1998, researchers [35,36] indicated that the annual maximum thickness and velocity
of the sea ice follow the Gumbel-logistic distribution, i.e., the joint distribution function of ice thickness
and velocity can be expressed as:
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F(h, vice) = exp
{
−

[
(− ln Fh(h))

m + (− ln Fv(vice))
m
] 1

m

}
(16)

where Fh(h) and Fv(vice) are the marginal distribution of the random variable h and vice, respectively,
which can be expressed as:

Fh(h) = exp[− exp(−
h− ah

bh
)]; Fv(vice) = exp[− exp(−

vice − av

bv
)] (17)

where ah and bh are the estimated values of the location of Gumbel distribution for ice thickness; aV

and bV are the estimated values of scale parameters of Gumbel distribution for ice velocity:

ah = 4.51; bh = 4.56; aV = 2.90; bV = 3.41 (18)

In Equation (16), m (m ≥ 1) is the correlation parameter that can be estimated as:

m =
1√

(1− ρhv)
; ρhv =

E[(h− µh)(vice − µv)]

σhσv
(19)

where µ and σ denote the mean value and the standard deviation, respectively. It is obvious that when
m = 1, h and vice are uncorrelated; while m→∞ indicates that h and vice are perfectly correlated.

An exceedance probability would be considered in the practical structural design to define the ice
load-carrying capacity of the offshore structures. In this case, the ice thickness and velocity can be
determined as:

(h, vice) = F−1
(
1−

1
T

)
(20)

where T is the recurrence period of the sea ice; F−1 is the inverse function of Equation (16), which
represents a spatial curved surface for specified T. The possible sea ice thickness and velocity with
exceedance probabilities of 63.2% and 2% for Zone 6 in the Bohai Sea are given in Figure 3, which
corresponds to frequently met sea ice force and rarely met sea ice force, respectively.
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Figure 3. The possible sea ice thickness and velocity.

Since the parameters mentioned previously are given, the PSDs of sea ice force given in Equations
(9) and (11) can then be calculated as well. Typical PSDs for frequent met sea ice force are given in
Figure 4, whereas other parameters are listed in Table 2.
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Table 2. Parameters for sea ice force PSDs.

k b IF β α h D Vice

10.04 18.85 0.4 7.3 0.4 0.5 m 1 m 1 m/s

4.2.2. Joint Probability Density Function of Ice Thickness and Ice Velocity

The joint probability density function is usually used to describe the correlation between two
variables, which is equal to the derivative of ice thickness h and ice velocity Vice in Equation (16). Then,
the joint probability density function of such random variables can be expressed as:

fXY(x, y) = ∂2FXY(x,y)
∂x∂y =

FXY(x,y)
bxby

{exp[−m(x−ax)
bx

] + exp[−
m(y−ay)

by
]}

1−2m
m

.{[exp(−m(x−ax)
bx

) + exp(−
m(y−ay)

by
)]

1
m + m− 1}. exp[−m( x−ax

bx
+

y−ay
by

)]
(21)

The ice zones in the Bohai Sea can be grouped into five groups through joint probability density,
as listed in Table 3. The joint probability density of each zone in a group is close to each other.
The independent variables x and y in the Equation (21) represent the thickness and velocity of ice,
respectively. According to Equation (21), it can be discovered that the joint probability density increases
with the increasing of ice thickness and ice velocity.

Table 3. Joint probability density of ice thickness and ice velocity for each ice zone.

Group Number Ice Zone Joint Probability Density

Group 1 Zone 1, Zone 2, Zone 6, Zone 19, Bayuquan 0.2146e−4 to 3.4147e−4

Group 2 Zone 3, Zone 4, Zone 7, Zone 9, Haihong Port 1,
Hongguang Wharf 2 5.4056e−4 to 8.2285e−4

Group 3 Zone 5, Zone 10, Zone 18, Haihong Port 2, Guanhai
Trestle, Xingcheng 1.0181−3 to 2.1499e−3

Group 4 Zone 8, Zone 11, Zone 14, Zone 17, Hongguang Wharf 1 3.2114e−3 to 4.878e−3

Group 5 Zone 12, Zone 13, Zone 20 5.1124e−3 to 5.27e−3
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5. Proposed Sea Ice Response Spectrum

5.1. Generation of Ice Force Time-History Samples

For a zero-mean Gaussian Process p(t) with PSD, the amplitude superposition method is used to
synthesize ice force time-history samples [40]:

p(t) =
∑

k

√
2S( fk)∆ f cos(2π fkt + φk) (22)

where fk (k = 1, 2, 3, · · · , M) denotes the k-th frequency point; ∆ f is the increment; and φk is the random
phase that varies between [0, 2π). Two generated samples are given in Figure 5.
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It is noted that in Equations (10) and (12), the parameter D is a structural geometrical parameter.
In order to make the proposed method generally applicable, the related item should be extracted.
Substituting Equation (10) into Equation (9), the ice force crushing failure PSD can be rewritten as:

Sc( f ) = D2
bV−0.6

ice I2
Fα

2σ2
c h2(

1 + kb1.5V−0.9
ice f 2

)
(1 + 3IF)

2
= D2Sc( f ) (23)

According to Equation (21), the time-history due to ice force crushing failure can be generated as:

pc(t) = D
∑

k

√
2Sc( fk)∆ f cos(2π fkt + φk) = Dpc(t) (24)

Similarly, the ice force bending failure PSD and time-history generated can be expressed as:

Sb( f ) = D0.68
111.4σ2

f h4T−2.5
b

(βh)0.68 f 3.5
exp

(
−5.47( f Tb)

−0.64
)
= D0.68Sb( f ) (25)

pb(t) = D0.34
∑

k

√
2Sb( fk)∆ f cos(2π fkt + φk) = D0.34pb(t) (26)
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5.2. Response Spectrums for Each Ice Zone

The spectral characteristics of sea ice crushing damage and bending damage are similar to those
of structure under earthquakes, which have abundant frequencies. Referred to as the earthquake
response spectrum theory [41–46], a similar sea ice response spectrum theory is established in this
section. According to Equations (7), (24), and (26), the motion equation of a SDOF system subjected to
the ice forces can be expressed as:

M
..
x + C

.
x + Kx = λ jp j(t); ( j = c, b) (27)

where λc and λb are the feature coefficients of the offshore structure.

λc = λD; λb = λD0.34 (28)

Equation (27) can also be rewritten as:

..
x + 2ξω

.
x +ω2x =

λ j

M
p j(t); ( j = c, b) (29)

where ω is the natural frequency of the SDOF system; ξ is the damping ratio. By means of Duhamel
integral, its solution is:

x(t) =
λ j

Mω′

∫ t

0
e−ξω(t−τ) sinω′(t− τ)p j(τ)dτ (30)

where
ω′ = ω

√
1− ξ2 (31)

For the sake of simplifying the dynamic problem expressed by Equation (7) to a static problem,
the equivalent sea ice force acting on the SDOF system would be expressed as:

F(t) = Kx(t) = ω2Mx(t) (32)

Ignore the tiny differences between ω′ and ω, and substitute Equation (30) into Equation (32),
then:

F(t) = ωλ j

∫ t

0
e−ξω(t−τ) sinω(t− τ)p j(τ)dτ (33)

The maximum absolute value of F(t) is:

Fmax
j = λ j

∣∣∣∣∣∣ω
∫ t

0
e−ξω(t−τ) sinω(t− τ)p j(τ)dτ

∣∣∣∣∣∣
max

= λ jSaj (34)

where Saj ( j = c, b) is the response spectrum of corresponding sea ice force time-history.
Normally speaking, a large amount of ice force time-history data based on in-situ measurements

should be used as the excitation of the SDOF system to achieve the design response spectrum. Due to
the scarity of the measured data, synthesized ice force time-histories have to be used. Considering
the randomness of ice force due to the existence of phase ϕ in Equation (22), a large amount of ice
force time-histories are synthesized for each zone. Based on Equation (34), a response spectrum
corresponding to an ice force time-history can be calculated. Then, an envelope line covering the
maximum response from the statistical data of each ice zone is fitted and normalized as the acceleration
coefficient βmax. Acceleration response spectrums of crushing and bending failure are shown in
Figures 6 and 7 based on joint probability density of ice thickness and ice velocity in Section 4.
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5.3. Design Response Spectrum for the Bohai Sea in China

Based on Equation (34), it is to be noted that the value of Saj changes with the ice force time-history
p j(t), the natural frequencyω, and the damping ratio ξ of the SDOF system. By taking the maximum
data of all response spectrum curves obtained from different sea ice time-history samples of each ice
zone, and using the piecewise fitting method, the design response spectrum of the sea ice force is
achieved, which is shown in Figure 8 and denoted by α j ( j = c, b), where η0, η, γ, p1 and p2 are the
parameters related to structural damping.
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Selecting Zone 6 as an example and taking numerical fitting, the design spectrum parameters for
crushing failure sea ice force can be obtained:

η = 1 +
0.05− ξ

0.07 + 2.1ξ
; η0 = 0.3η (35)

γ =
2.7ξ+ 0.03
ξ+ 7.8× 10−3 (36)

p1 = 0.45ξ− 0.16; p2 = 4.9ξ+ 0.77 (37)

Additionally for bending failure sea ice force:

η = 1 +
0.05− ξ

0.05 + 3.3ξ
; η0 = 0.2η (38)

γ =
2.9ξ+ 0.02
ξ+ 3.5× 10−3 (39)

p1 = 0.46ξ− 0.13; p2 = 5.3ξ+ 0.80 (40)

Other fitting parameters combined ice velocity and thickness of exceedance probabilities for Zone
6 in the Bohai Sea are given in Tables 4 and 5.

Table 4. Fitting parameters for Zone 6.

Parameter Crushing Bending

T1(s) 0.1 0.2
Tg (s) 0.84 0.84

n 2 2
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Table 5. The value of αmax for Zone 6.

Condition Crushing Bending

Frequent met 9.5× 104 7.2× 104

Rarely met 1.3× 105 1.6× 105

By replacing Fmax
j and Saj by Fice and α j in Equation (34), respectively, the stochastic sea ice force

acting on a structure can then be estimated easily in a static way as:

Fice
j = λ jα j; ( j = c, b) (41)

Hence, the proposed response spectrum method can be applied as follows [47]:
Step 1, Calculate η0, η, γ, p1 and p2 based on Equations (35)–(40).
Step 2, Determine the value of other fitting parameters from Tables 4 and 5.
Step 3, Obtain the static sea ice force using Equation (41).
Step 4, Compute the concerned structural response.

6. Numerical Example

In this section, selecting Zone 6 as an example, the proposed method is verified by comparing the
results derived from the Monte-Carlo simulation. Taking the SDOF offshore structure as the research
object, whose lumped mass is 106 kg and damping ratio is 0.02, and which natural period varies with
the changing stiffness. Assume that the loaded pile diameter of the structure is 2.7 m and the heights
above and under the sea level are 20 m and 80 m, respectively. The displacements excited by crushing
and bending failure sea ice force are studied, respectively.

In the Monte-Carlo simulation, 200 time-history samples are generated for both crushing and
bending failure sea ice force. Based on the Monte-Carlo method and the ice force response method,
Figures 9 and 10 show the displacements of the offshore structure with different structural natural
periods subjected to crushing and bending failure sea ice force. It can be seen that the results obtained
from the two methods display a manifested same trend.

From Figures 9 and 10, the displacement induced by ice bending failure is less than that by ice
crushing failure. Meanwhile, it can be seen that the displacement under rarely met sea ice force is
greater than that under frequent met sea ice force. Generally speaking, the proposed method provides
an upper limit.
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As shown in Figures 9 and 10, for the offshore structures with natural periods in the interval of
[0,T1], which have either large rigidity or light-weight, the response such as displacement will increase
with the increasing structural natural periods. For the offshore structure with natural period in the
interval of (T1, nTg], the response will increase remarkably. It is clear that resonance will occur if the
structure natural period is close to Tg. When T is larger than nTg, the structural displacement will
increase with the increase of structural natural periods due to the decreasing structural stiffness.

The computing time of the example required for the proposed method is only 0.04 s while, that
for the Monte-Carlo simulation is 7537.6 s. It is obvious that the proposed method is not only easy to
calculate but also matches the needs in engineering and has common applicability.

7. Conclusions

Referred to as the earthquake response spectrum theory, a new design idea to determine the
maximum response of offshore structures subjected to ice forces is suggested.

(1) Considering the randomness of ice force and the complexity of structures, the theory of
response spectrum suitable for offshore structures subjected to crushing and bending failure sea ice
forces is established.

(2) Selecting Zone 6 in the Bohai Sea, dynamic analysis of SDOF structures subjected to synthesized
ice force time-histories is performed. Then, the design response spectrums for fixed offshore structures
subjected to ice forces induced by crushing and bending failure are proposed, respectively.

(3) Compared with results from the Monte-Carlo simulation and the proposed method, the
proposed method is validated. Additionally, the proposed method provides an upper limit of offshore
structural response subjected to ice force.

(4) For the offshore structure with a natural period in the range of (T1, nTg], the response under ice
force will increase remarkably. The maximum response will occur when the structure natural period is
close to Tg.
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Nomenclature:

Parameter Nomenclature Parameter Nomenclature
m lumped mass of a single-degree of freedom

system (SDOFS)
p’(t) an equivalent force of SDOFS

k shearing stiffness of SDOFS Fp ice force amplitude when crushing
failure happens

c damping coefficient of SDOFS F0 ice force amplitude when bending
failure happens

h sea ice thickness Fh(h)
Fv(vice)

the marginal distribution

l1l2 heights above and under the sea level Fice ice force
x lateral displacement of point A Tb the ice force period
θ rotation of point A T recurrence period of the sea ice
λ the equivalent coefficient of the sea ice force θi sea ice temperature
f sea ice force frequency Si sea ice salinity
fk the k-th frequency point φk random phase that varies between [0,

2π)
∆ f the increment frequency ω natural frequency of the SDOFS
σ ice force standard deviation ξ damping ratio of offshore structure
σc ice compression strength Lb the breaking length of ice sheet
σ f ice flexural strength η0 a parameter that related to structural

damping
Vice sea ice velocity η a parameter that related to structural

damping
D loaded pile diameter of the structure γ a parameter that related to structural

damping
τ the ratio between breaking length and ice

thickness
p1 a parameter that related to structural

damping
S( f ) power spectral densities p2 a parameter that related to structural

damping
Saj the response spectrum of corresponding sea

ice force time history
IF the interaction strength of the

dynamic ice with a mean value of 0.4
α ice force of design response spectrum for

Bohai Sea
a b experimental parameters
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