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Abstract: Life extension is an attractive option for subsea flexible risers nearing the end of their
design lives. However, techniques for assessing accumulated fatigue damage in flexible risers are
often associated with large uncertainties due to the simplified calculation approaches typically used.
One approach to reducing uncertainties is the inclusion of nonlinearities in riser structural response
and consistent linking between global and local models. In this article, we present the elements of
a numerical multiscale procedure capable of predicting the stresses that lead to fatigue damage in
flexible pipes, namely: a nonlinear beam element, a nonlinear section response model and a detailed
finite element model; the consistent integration of models developed for different length scales; and
finally a validation of the flexible riser large-scale model.

Keywords: Finite Element Methods; Multiscale; Structures; Constitutive Equations

1. Introduction

Since their introduction in the 1970s, unbonded flexible risers have proved an effective and reliable
solution for the transfer of fluids in the offshore environment. In contrast to steel risers, flexible risers
are able to deform and reposition in response to external loading without incurring damage [1,2].
This flexibility is a consequence of the structure of flexible pipes, which includes multiple layers
consisting of wound steel profiles and extruded polymers (Figure 1). However, the current trend
towards production in deeper waters have led to new failure modes arising, such as buckling of
helical wires, threatening long-term integrity. These failure modes are often progressive in nature and
challenging to predict [1]. In addition, accurate determination of the fatigue damage is necessary to
ensure that life prediction of ageing flexible risers can be made with confidence.

In distinction to bonded risers using composite materials, for which finite-element based structural
analysis has been demonstrated by Sun et al. [3], Amaechi et al. [4], among others, the analysis of
unbonded flexible risers presents unique challenges as their performance relies on the ability of
internal components to slide relative to each other (constrained by geometry and friction) to relieve
load. Nevertheless, the multiscale methods presented in this article are also applicable to the analysis
of bonded composite risers.

In the following, we describe models and processes used in a numerical multiscale procedure for
the analysis of flexible pipes/risers. In this procedure, local and global models are integrated in order
to obtain greater accuracy. Two versions of this integration have been developed, a fully-integrated
procedure and a sequentially-integrated procedure. Firstly, we present a local finite element (FE) model
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and show results for various elementary loadings. Secondly, we describe a section response model that
aims to capture the nonlinear relationship between stress resultants and section deformation measures
noted in flexible pipes. This model is then calibrated using simulation results from the FE model.
Thirdly, procedures for combining these models in multiscale analysis are described. A simplified
demonstration of the integrated multiscale procedure and validation of the global analysis model
are shown.

A beam element formulation for the global dynamical analysis of flexible risers was earlier
presented by McNamara et al. [5], who introduced the mixed formulation adopted in the current
work. Yazdchi and Crisfield [6] describe a 2D corotational beam element for representing flexible risers
including shear deformations and the derivation of load stiffness matrices. Higher order effects such
as the influence of curvature on buoyancy are included. Related work by the same authors [7] extends
this approach for 3D elements and loading. A detailed formulation for flexible polymer hoses used
as used in the drilling industry is presented by Monprapussorn et al. [8]. This treatment includes
large deformations, coupled radial-axial deformations and, in addition, interactions between both of
these effects with the internal flow. This work, despite providing a thorough treatment of internal
flow effects, is less relevant for unbonded flexible risers used in production, as pipe walls cannot be
represented as thin-walled pipes with linear elastic behaviour.

Several software packages have been developed for global dynamic analysis of flexible risers.
The underlying numerical approaches used in these packages include both classical finite element
methods and lumped-mass and -stiffness approaches. Packages available commercially include
Orcaflex, Flexcom, Riflex and Deepflex. Local analysis tools for flexible pipes include purely analytical
formulations, finite element models and analytical formulations solved by numerical means. One
significant challenge in local analysis is the accurate calculation of the displacement of the initially
helical armours as the pipe bends. Additionally, the use of unrealistic boundary conditions at the
end sections of the model can lead to inaccuracies in the solution. Earlier local models focussed on
analytical approaches, including the derivation of linear stiffness matrices (for example, by McNamara
and Harte [9]) and analyses of pipe bending and associated wire slippage [10,11]. Tan et al. [12] have
shown using finite element investigations that the kinematics of tensile armour wires is complex and
depends of a number of geometric parameters. An example of a detailed finite element model for
flexible pipe is given by Leroy and Estrier [13], in which contact is computed between all layers. In
this model periodic boundary conditions are used to constrain relative motions at the ends of tensile
wires, allowing a shorter model to predict tensile wire stresses accurately. Finite element models have
also been developed by Sousa et al. [14], who provide an analytical derivation for the properties of
an orthotropic stiffness layer used as a simplification of the carcass layer and a physical basis for
the penalty stiffness used to compute layer interactions. This model is employed to investigate the
load redisctibution effects that occur after tensile wire failure. An alternative finite-element based
approach has been developed by Sævik and co-workers [15], in which novel finite elements are used
to discretise tensile wires and their interactions. This model has subsequently been commercialised in
the package BFLEX. An analytical-numerical approach is described by Østergaard et al. [16], based on
a formulation of wire kinematics and dynamics resulting in six coupled differential equations, which
are solved numerically.

Approaches for combining local and global models include methodologies developed by Caleyron
et al. [17], who combine instances of a short finite element model with a virtual spine formed with
kinematic constraints to represent a section of flexible riser under a bend stiffener. The application
of global loads (tension, constant curvature and torsion) to the spine governs the loading on the
component local models. An alternative approach is shown by Majed et al. [18], in which modal
superposition-type approaches are used to reduce the computational effort required for a detailed
finite element model. This approach requires bending-moment curvature data to be provided so that
nonlinearity in pipe response can be incorporated. Earlier development on the multiscale methodology
presented in the current work was detailed by Edmans et al. [19–22].
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Analysis problems where features of geometry, physical phenomena and mechanisms and/or
behaviour of interest are described or defined at different scales arise frequently in solid and structural
mechanics. In the field of composite materials, computational homogenisation has been proposed as a
numerical method for handling such situations [23,24]. In this approach, a detailed characterisation of
the small-scale structure is created that is large enough to be representative of the structure’s geometry
and capture all relevant phenomena. The solution procedure then uses a homogenised large-scale
representation within which the detailed representation acts as the constitutive model (for an example,
see Geers et al. [25]). The procedure allows for different modelling approaches (e.g., element choice),
numerical schemes and incrementation to be used for the component models, increasing computational
efficiency. The work of Sacco [26] serves as an example of the broad scope of this technique, where the
application of a variant of this technique to investigate crack growth in masonry walls is described.

Figure 1. Typical flexible pipe internal structure (Source: GE Oil and Gas).

2. Global Riser Representation

In this section, a two-noded co-rotational Hybrid Beam Element (HBE) is developed to enable
implicit dynamic analysis of flexible risers, based on the co-rotational formulations presented by
Battini, Crisfield and Le [27–29]. The HBE employed in this present research is used to overcome the
difficulty resulting from the relative inextensibility of the flexible riser, which leads to an ill-conditioned
global tangent stiffness matrix causing convergence issues [5]. The proposed HBE is formulated such
that it can incorporate the plastic constitutive model described in Section 3. It is implemented as a
“User Element Subroutine” in the commercial FEA software package Abaqus, enabling the static and
dynamic analysis of a flexible riser to be solved using the implicit formulation in Abaqus/Standard.

2.1. Kinematics

In the global Cartesian coordinate system, the degrees of freedom (DOFs) of a material point of the
proposed HBE element include three translational and three rotational DOFs. Following corotational
frameworks described in the literature [27–29] (Figure 2), a co-rotational local coordinate system is
defined in order to remove the rigid body rotations.
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Figure 2. Beam kinematics and co-rotational coordinate systems.

In Figure 2, the local coordinate system follows the orientation of the element in the current
configuration, represented by the orthogonal orientation matrix O =

[
r1 r2 r3

]
. The basis vectors

ri define the current beam orientation, where r1 is the beam axial vector, with direction from the first
to the second node. O defines the orientation of the global basis vectors with respect to the current
beam local basis vectors. Similarly, the initial local reference system is defined by an orthogonal matrix
0O =

[
0r1

0r2
0r3

]
. The initial nodal triads of two end nodes that define the nodal orientations

are denoted by 0T1 =
[

0t1
1

0t1
2

0t1
3

]
and 0T2 =

[
0t2

1
0t2

2
0t2

3

]
A left superscript 0 is used for

symbols representing quantities in the initial configuration, otherwise the current configuration is
implied, whereas right superscripts for matrices indicates the local node number. A right superscript g
is used to indicate global quantities, otherwise a local quantity is implied. If the initial configuration of
the beam is straight, the nodal basis vectors coincide with the element basis vectors. The orthogonal
rotation matrices Ri represent a rotation of the initial nodal triads 0T1 and 0T2 to the nodal triads
T1 =

[
t1

1 t1
2 t1

3

]
and T2 =

[
t2

1 t2
2 t2

3

]
in the current configuration. In the absence of nodal

rotations in the current configuration, t1
1 , t2

1 and r1 are collinear. The orthogonal rotation matrices
R1 and R2 define the local rotations at nodes relative to the element basis vectors in the current
configuration. The degrees of freedom of the element in global coordinates at time n can be collected as

dg =
(
ugT

1 , θ
gT
1 , ugT

2 , θ
gT
2 , N

)T

=
(
ug

11, ug
12, ug

13, θ
g
11, θ

g
12, θ

g
13 ug

21, ug
22, ug

23, θ
g
21, θ

g
22, θ

g
23, N

)T (1)

Here, ug
1 and ug

2 denote the global translational DOFs at the two nodes with components ug
ij, where i

and j represent the node and component indices, respectively. Similarly, θ
g
1 and θ

g
2 denote the global

rotational DOFs with components θ
g
ij. The inclusion of the beam axial force N in the element DOF

vector results from the use of the mixed formulation developed by McNamara et al. [5] to handle the
high axial stiffness of flexible pipes effectively, in which the element axial force appears as a Lagrange
multiplier enforcing an inextensibility constraint. Local displacements and rotations for the HBE are
defined with reference to the directions defined by the element triad O, and denoted with
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d =
(

u, θT
1 , θT

2 , N
)T

=
(
u, θ11, θ12, θ13, θ21, θ22, θ23, N

)T (2)

where u denotes the axial displacement, and θ1 and θ2 denote the local rotations at the two nodes with
components θij. The axial force term N is identical to the global term in Equation (1). Full definitions
of the local quantities u, θ1 and θ2 are given by Battini [27] and Crisfield [28]; here, it suffices to note
that the calculation of these local quantities is such that the local translational displacement at the first
node is always zero. Local nodal rotations are calculated by effectively subtracting the nodal rotations
associated with the element reference frame. The finite rotation is described by additive rotational
vectors based on the parameterization of finite rotations [27,28].

The orientation of the local frame in the initial configuration can be determined from its
geometry as

0r1 =
(

0x2 − 0x1

)
/l0 (3)

0r3 =
0r1 × e2

‖0r1 × e2‖
(4)

0r2 = 0r3 × 0r1 (5)

where l0 is the element length in the initial configuration. If 0r1 = e2 or 0r1 = −e2, then the alternative
definition 0r3 = e3 and 0r2 = 0r3 × 0r1 are used.

Given the global DOF solutions dg =
(

ug
1 θ

gT
1 ug

2 θ
gT
2 N

)
the nodal triads can then be updated by

rotating the initial triads to the current triads using the rotation matrix Ri (following Crisfield [28]):

T1 = (R1)0T1, T2 = (R2)0T2 (6)

where Ri(θig) is computed from the global nodal rotations using the Rodrigues formula [28]. For a
consistent definition of beam local displacements and curvatures, the vector representing the beam
transverse axis p must be rotated consistently with the element rotation. To this end, the global basis
vector e2 is rotated first into the initial configuration and then to the current configuration for each
node, that is, pi = (Ri)(0O)e2. A sufficiently accurate approximation p can be obtained from the
arithmetic mean of the two vectors p1 and p2. This allows the three direction vectors of the current
element triads, r1, r2 and r3 to be obtained:

r1 =
(

xg
2 − xg

1

)
/l (7)

r3 =
r1 × p
‖r1 × p‖ (8)

r2 = r3 × r1 (9)

where l is the element length in the current configuration. These vectors are collected to define the
element rotation matrix R. The use of p rather than e2 avoids sign change problems for local quantities
if the the angle between the beam axis and e2 becomes small. Collecting these three vectors into a matrix
O forms the element rotation matrix in the current configuration, which is used in the computation of
local degrees of freedom.
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The nodal rotation vectors, defined relative to the current element frame, can then be found by
rotating the initial local element frame to the current nodal local frame and then rotating back to the
current local element frame [27].

θi = log(R̄i), R̄i = RT(Ri)O (10)

2.2. Variational Formulation

Equilibrium conditions for the HBE are developed using a variational formulation, which is
augmented to impose an inextensibility condition. The augmented virtual internal virtual work is thus

δWint =

∫ l

0

[
Nδε + M1δκ1 + M2δκ2 + M3δκ3 +

(
ε− N

EA

)
δN
]

dl (11)

The full derivation for Equation (11) is provided by McNamara et al. [5]. The stress resultants
N are M are calculated using the nonlinear constitutive model developed in Section 3 and local
deformation measures.

2.3. Discretization and Integration

Standard shape functions based on beam local coordinates are used to calculate generalised
strain.A three-point Gauss integration scheme is adopted in order to allow curvature variation to be
captured within a single element and allowing longer elements to be used. A linear shape function is
used to interpolate the axial deformation:

u (ξ) =
1
2
(1 + ξ) u (12)

Cubic Hermite shape functions are used to interpolate local transverse displacements. Local
displacements are computed such that the transverse local displacements at the two end nodes
are zero [28]. The shape functions are then given as

wi =
l
8

[
(ξ2 − 1)(ξ − 1)
(ξ2 − 1)(ξ + 1)

]T [
θ1i
θ2i

]
i = 1, 2, 3

The local section rotation along the beam is found from the derivatives of the transverse
displacements as

θi =
1
4

[
3ξ2 − 2ξ − 1
3ξ2 + 2ξ − 1

]T [
θ1i
θ2i

]
(13)

Further differentiation provides the curvature along the beam as

κi =
1
l

[
−1 + 3ξ

1 + 3ξ

]T [
θ1i
θ2i

]
=
[

B1 B2

] [ θ1i
θ2i

]

In the following development, the subscript l will be used to denote quantities and operators
defined in the corotational frame while the subscript g will be used for quantities transformed for
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assembly in system global matrices. The generalized strains εl can thus be computed along the beam
in the local coordinates

εl =
(

u/l κ1 κ2 κ3 N
)T

= Bld (14)

where, Bl is the displacement-strain matrix in the following form

Bl =


1
l 0 0 0 0 0 0 0
0 B1 0 0 B2 0 0 0
0 0 B1 0 0 B2 0 0
0 0 0 B1 0 0 B2 0
0 0 0 0 0 0 0 1

 (15)

Once the generalized strains are found, the internal force vector fl and tangent stiffness matrix Kl can
then be calculated in local coordinates:

fl =
∫

l
BT

l σl(εl) dl (16)

Kl =
∫

l
BT

l Dl Bl dl (17)

The material tangent matrix Dl and the generalized stress σl(εl) are provided by the constitutive
models developed in Section 3). The material tangent matrix Dl is

D =


0 0 0 0 1
0 GJ 0 0 0
0 0 D33 D34 0
0 0 D43 D44 0
1 0 0 0 − 1

EA

 (18)

The entries GJ, EA, D33, D34, D43, D44 of the matrix D are calculated by the elastoplastic constitutive
model presented in Section 3. The internal force vector fg and tangent stiffness Kg can then be
calculated in global coordinates by applying the coordinate transformation as follows:

fg = BT
trans fl (19)

Kg = BT
transKl Btrans (20)

The derivation of the coordinate transformation matrix Btrans is described by Battini [27].
For this work, the calculations of fg and Kg in each element are implemented in a user element

subroutine for Abaqus.

2.4. Execution

A mass matrix is included in the HBE implementation. In the current work, only the translational
inertia effect is considered, as suggested by Crisfield [28]. The HBE is designed to work with the Abaqus
solver by returning the element residual vector and tangent stiffness matrix (in global coordinates)
at every iteration. Time integration is handled by Abaqus using the Hilber-Hughes-Taylor (HHT)
method [30].
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3. Section Response Modelling

In this section, a semi-empirical nonlinear constitutive model is developed to relate section
resultants to section deformation measures in the proposed hybrid beam element.

3.1. Elastic Modelling

We consider a representative volume element (RVE) of the flexible riser - a hollow tube with
internal and external radii a and b, and the center-line length `. As shown in Figure 3, the representative
hollow tube is subjected to bending moments M1 and M2, twisting moment M3, and axial force N,
as well as internal and external pressure pi and pe. Its local state is described by curvature of the
center-line, κ1 and κ2, torsion κ3, and axial strain ε.

Figure 3. Euler-Bernoulli beam with center-line resultants.

As described in Section 1, flexible pipes are multilayer composite periodic structures. Accordingly,
we propose the following linear elastic constitutive relations as representative for small displacements
and curvatures for the Euler-Bernoulli beam (Figure 3):

κ1 =
M1

Eb I
κ2 =

M2

Eb I

κ3 =
M3 −M0

3
Gt J

ε =
N − N0

Ee Am
(21)

In the above I = 1
4 π
(
b4 − a4) and J = 1

2 π
(
b4 − a4) are bending and torsional second moments of

area, and Am = π
(
b2 − a2) is the cross-sectional area of the pipe excluding the bore. Due to the

anisotropy of the pipe, we assume that Eb, Gt and Ee are independent elastic (Young’s or shear) moduli
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for bending, torsion and extension. As shown later, these moduli are pressure-dependent and can be
calibrated for different pressure levels. M0

3 and N0 are the initial torque and axial force induced by
internal and external pressures under fixed torsional and extensional constraints, respectively.

Consistent with the available local degrees of freedom defined for the beam element in Section 2,
the continuum kinematic definitions of the generalised strains read

κi =
dθi
dl

, i = 1, 2, 3 ε =
du
dl

(22)

3.2. Vector Hysteresis Model

As the flexural structure response of risers exhibits a hysteretic behavior, the bending moment is
not a single-valued function of curvature. As a result, cyclic bending is associated with deformations
that are not immediately recovered on unloading. To determine the bending moment in a single-valued
manner, we should enlarge the state space (of thermodynamics) by introducing internal variables to
describe the sliding-induced irreversible curvatures. Due to the nature of the physical mechanisms
acting on the layers, such internal variables are much l ike plastic strains in conventional plasticity.

We borrow some concepts from plasticity in developing a hysteresis model for flexible risers. The
sliding-induced irreversible curvature can be taken as the accumulated plastic strain in conventional
plasticity. Both are loading history dependent internal variables.

In light of the mechanical representation of bending-induced hysteresis, we introduce a pair of
work-conjugate 4-component vectors, M and κ defined as

M =


M1

M2

α
(

M3 −M0
3
)

β` (N − N0)

 , κ =


κ1

κ2

α−1κ3

β−1`−1ε

 .

The former vector is the generalized bending moment while the latter the generalized curvature.
Note that α, β are dimensionless constants to be calibrated. As will be seen later, these two constants
measure the contribution of rotation per unit length κ3 and axial strain ε to the bending moment
hysteresis loss. In the case of α = β = 0, both torsion and axial extension have no contributions to
the irreversible sliding. In other words, the torsional and axial response will be purely elastic when
α = β = 0. Determination of appropriate values of α and β may be carried out by numerical studies
involving combined loading, and is left for future work.

To describe the hysteresis behavior, we employ concepts from plasticity theory. Our hysteresis
model is built upon the concept of kinematic hardening (see Puzrin and Houlsby [31]). In this
formulation, the constitutive behavior is completely defined by the following two potential functions:
the Gibbs free energy G and the energy dissipation D due to sliding. The Gibbs free energy G is
composed of three terms - the elastic potential F, the hyper-plastic potential P, and the term due to the
Legendre transformation. The curvature can be shown to have an additive decomposition. In other
words, G is a function of the bending moment M and the sliding-induced irreversible curvature χ (an
internal variable). For initial sliding, we have

M ·M = k2 (23)

where k is a constant. In component form, this reads

k2 = M2
1 + M2

2 + α2
(

M3 −M0
3

)2
+ β2`2 (N − N0)

2 (24)
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Built upon numerical results from the finite element simulations (Section 4), the following function is
found to describe the evolution of bending stiffness in the inelastic regime

(Eb I)T
Eb I

= (ζ − $) + (1− ζ) exp

[
−
(

κ − κ0

s

)2
]
+ η` (κ − κ0) (25)

where $, ζ, η and s are to be found through calibration.

3.3. Calibration

To verify the constitutive model proposed above and calibrate the outstanding constitutive
parameters, it is necessary to perform multiple detailed FE analysis of a riser section, as described in
Section 4, under full periodic boundary conditions.

Using the data resulting from carrying out these simulations under different combinations of
loading conditions (detailed in Section 4), curve-fitting was used to determine Eb, $, ζ, η and s. In this
model, we assume that bending is separate (uncoupled) from other loading actions. The dependence
of bending response on pressure is captured by making the parameters, Eb, $, ζ, η and s, quadratic
functions of the internal and external pressure.

4. Detailed Finite Element Modelling

Abaqus/CAE was used to create a detailed three-dimensional flexible pipe representation, shown
in Figure 4. All constituent parts of the modelled pipe were represented as separate geometric entities.
Frictional contact interactions discretised using a surface-to-surface method was defined between all
surfaces, using a Coulomb friction coefficient of 0.1. Simulations were carried out using a nonlinear
implicit static solver to avoid solution drift. The carcass and pressure armour layers in a flexible pipe
(see Figure 1) are self-interlocking helices with complex profiles. To reduce complexity in the model,
these layers were modelled as homogeneous cylinders with orthotropic material properties. Table 1
summarises the properties of the layers used in the model. The default length of the model is set to
equal one pitch length of the tensile wires, in order to take advantage of the periodic nature of the
structure, leading to a model containing nearly 200 000 nodal degrees of freedom. A parametrized
Python script was developed to allow automatic generation of flexible pipe models of arbitrary
dimensions and layer configuration. Boundary conditions for the model created by the generator
allowed the restrictions present at end-fittings to be imposed; alternatively, a custom form of boundary
conditions was implemented to approximate conditions far from end-fittings (periodic boundary
conditions), as detailed in Section 5.3.

Table 1. Layer details. Dimensions in mm. Wire section dimensions 4 × 12.5 mm throughout.

Layer ID OD Notes

Carcass 203.2 213.2 -

Pressure sheath 213.2 223.2 Polymer

Pressure armour 223.2 235.2 -

Tensile wires 235.2 243.2 48 wires

Anti-wear layer 243.2 247.2 Polymer

Tensile wires 247.2 255.2 52 wires

Outer sheath 255.2 269.2 Polymer

A set of axial, bending and torsional tests were carried out on the model to generate response
data. Displacement control was used such that axial extension, torsion and net curvature in the pipe
model were either constrained to be zero or prescribed to vary cyclically. Simulations were carried
out on this model for a range of values of internal and external pressure. Selected axial, torsional and



J. Mar. Sci. Eng. 2019, 7, 340 11 of 24

bending response data generated are shown in Figures 5–7, respectively. (Refer to online version of
this article for colored plots.) Typical stress results in the tensile wires are shown in Figure 4.

From the response plots, it is evident that pressure effects give rise to initial tension and torque,
as well as increasing axial, torsional and bending stiffness. The increase in bending stiffness with
pressure will lead to wider hysteresis loops under cyclic bending, which is consistent with results from
cyclic bending tests reported by Skallerud [32] and Kebadze and Kraincanic [10] although Witz [11]
shows results in which average bending stiffness is reduced at very high internal pressure. For local
stress results, variation of stress across the width of tensile wires shows that local curvature effects
are captured.

Figure 4. Maximum principal stress (radius of curvature = 5m, pi = 6 MPa, pe = 15 MPa, displacement
exaggerated by factor of 3.0. Outer sheath, anti-wear layer and some outer tensile wires removed.).
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Figure 5. Axial results. Pressures in MPa.
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Figure 6. Torsional results. Pressures in MPa.
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Figure 7. Bending results.

5. Multiscale Analysis Procedures

Due to the structural complexity of unbonded flexible risers, detailed FE modeling of full-length
flexible pipes including individual riser layers is challenging and computationally expensive. A
global-local modeling approach is therefore desirable. Multi-scale modeling of complex structures can
follow a sequential local-global approach or a “nested approach”.

5.1. Sequential Multiscale Modeling

In a sequential multiscale approach, it is required that a suitable local time-invariant model is
constructed and analysed to generate a set of responses under representative loading conditions. The
responses obtained are then used to select and calibrate simpler representations for implementation in
the global model, which can be modeled with homogenised representations, such as using idealized
continuum models or structural elements, to estimate the global response. Subsequently, results
obtained at selected points in the global analysis can be extracted and re-imposed on the local model
as boundary conditions, enabling local stresses corresponding to the global motions to be determined.
For a complex structure such as the multiple-layer flexible pipes considering layer interaction effects, a
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sequential approach is more practical for standard analyses. We demonstrate the sequential local-global
approach for flexible pipes with local analyses of a length of flexible pipe using 3D FEA to determine
the nonlinear responses under axial loading, torsion, bending moments and pressure (Figures 5–7),
followed by the global analyses of full-length flexible pipes with hybrid beam elements employing
all constitutive behaviors obtained for each loading cases. The first part of this procedure is shown
schematically in Figure 8: Simulations using the detailed finite element model are used to calibrate a
constitutive model, which is then implemented in a large-scale simulation.

Figure 8. Sequential analysis of flexible pipe.

5.2. Nested Multiscale Modeling

For certain analyses in multiscale analysis, the sequential approach described above is inadequate,
firstly because changes in the local state of the structure may affect the large-scale response and thus
render the constitutive model calibration inaccurate, and secondly, because this influence on the
large-scale response may in turn influence the state of the small-scale model. In flexible pipes, this
includes the analysis of the consequences of wire breakage or loss of stability of the wires under pipe
axial compression. These failure modes are discussed by Sousa et al. [14], de Sousa et al. [33] and
Østergaard et al. [16], respectively. The development of a nested approach is considered valuable for
studying such progressive damage modes and the effects of local damage and manufacturing errors on
such instabilities. To analyse these situations, the following nested multi-scale framework is proposed.

In the nested approach, local detailed simulations of critical regions of the riser provide feedback
to the global model in every load increment. The global model consists mostly of hybrid beam elements
as used in the sequential global-local approach (described in Section 2), in which the axial, torsional
and bending response is obtained from the constitutive model described in Section 3. At critical regions
such as hang-off, touchdown point or areas where high curvature ranges are expected, “user multiscale
elements” are employed instead of hybrid beam elements. These elements are associated with
separate three-dimensional FEA representations of this pipe. Following the standard homogenisation
terminology, these secondary models are referred to as Representative Volume Elements (RVE), as
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both their structure and response are representative of the local behavior of the structure at any point.
If multiple multiscale elements are used, a separate set of local solution and state variables is stored for
each so that local and global representations are updated consistently. The RVEs take displacements
and rotations of the nodes of the multiscale elements as inputs for local simulations and return forces,
moments and element tangent stiffness to the nodes of the multiscale element based on the results
of the local simulations. Use of an incremental loading scheme in the global model and retention of
RVE variables minimises the computational expense of such a scheme. Global load increment size
influences the accuracy of the global response as it governs the update frequency of the multiscale
elements. For models implemented in the Abaqus environment, execution control can be handled
conveniently by a Python script while local variable storage can be achieved using analysis restarts.

5.3. RVE Analysis

An RVE model for flexible pipe was created taking into account interaction between pipe layers,
as described in Section 4. For nested multiscale analysis, a truncated version of this model may be
used, as suggested by Leroy and Estrier [13].

Traditionally, in computational homogenisation approaches for composite materials, either
prescribed displacement boundary conditions, prescribed traction boundary conditions or periodic
boundary conditions are applied when carrying out RVE analyses (see, for example, Geers et al. [25]).
The most appropriate and convient choice for flexible pipes is periodic boundary conditions, due to
the quasi-periodic nature of the structure. However, it is reconised that a primary determinant of
flexible pipe global response and local stresses is the slip state of the helical armour wires, defined
as the displacement of wire points relative to the deformation of the pipe structure (see, for example,
Kebadze and Kraincanic [10]). Consequently, when initiating an RVE analysis, we are interested in
imposing an overall deformation state (a combination of axial strain, bending and torsion), while
implementing the assumption that the slip state of the helical wires varies periodically along the pipe
as the circumferential coordinate of each point changes. This represents the conditions present in the
pipe far from constrictions and terminations, and avoids over-constraining the model.

Conventional discrete periodic boundary conditions impose a set of constraints on a structure
that can be written as

uL
i = uR

i + u∗i (26)

where i = 1, 2, 3 denotes degrees of freedom, superscripts L and R indicate that the node belongs to
the set of nodes on the left or right end of the structure, respectively, and u∗ represents the deformation
state to be imposed on the model. Equation (26) must be enforced for every pair of discrete points in
the model on the constrained surfaces.

We modify Equation (26) such that the imposed equality refers to displacements that are relative
and expressed in a local basis:

TL
ij (u

1
j − u2

j ) = TR
ij (u

3
j − u4

j ) + u∗i (27)

In Equation (27), Tij is a basis transformation matrix Tij = ej · ei, superscripts 1 and 3 refer to
constrained nodes as the left and right ends of the model, respectively, and superscripts 2 and
4 refer to displacements at the reference locations corresponding to the constrained nodes. This
equation involves 4 points and must be repeated for every pair of discrete points in the model on
the constrained surfaces. In finite element simulations, displacements u3 and u4 can be computed
conviently by creating non-physical nodes that are forced by rigid body constraints to follow the pipe
overall deformation,which is assumed to respond to the imposed axial strain, curvature and torsion as
would an elastic cylinder. Imposition of pipe deformation and the periodic slip boundary conditions
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is achieved by chaining nodal degrees of freedom to a single control node. Following theoretical
developments of computational homogenisation described by Edmans et al. [22], the work done at
this node is equivalent to the work of the corresponding multiscale element.

5.4. Execution Control

Run-time linking between the RVE and global analyses is controlled by using Python scripting
which automatically initializes the different global/local analyses and post-processes results. The RVE
analysis is initialized by a Python sub-process command once each global load step is completed,
which then provides the nodal displacements and rotations of the multiscale elements (special beam
elements). A tracking method is used to indicate whether each global and local analysis are finished.

Each set of global displacements and rotations of the multiscale element’s nodes at every load
increments is effectively transferred to the RVE model through Python scripting and application of
periodic boundary conditions. On receiving the transferred deformation profiles, nonlinear analyses
of the RVE are carried out to predict the 3D RVE deformation state corresponding to the current global
step as well as to update the stiffness for the multiscale elements in the next load steps. Initial stiffnesses
of the RVE are first calculated through a series of linear perturbation steps. The RVE perturbation
analyses allow computation of the axial stiffness EA, bending stiffnesses EI1 and EI2, and torsional
stiffness GJ at the current RVE deformed state without affecting the results of subsequent nonlinear
analyses of the flexible pipe subject to the transferred global deformation. By this approach, we assume
the stiffnesses of the RVE at the current state to be computed from the previous RVE deformation
state. This is similar to the modified Newton iteration method whereby the stiffness matrices remains
constant at the beginning the increment and only updated at the end of the increment. In addition,
we develop a procedure to overwrite the stiffness of the global multiscale elements by those achieved
from the RVE simulations. To handle various global and local analyses of the flexible pipe efficiently,
we generate different restart analysis models for both the global and RVE models, storing all the
previous deformed states and resume the analyses with new load information. Python scripting in
association with shell batch scripts such as “Runjob.sh” and “Restart.sh” are implemented to run
several simulation jobs at multiscale levels within a single execution command.

A flowchart for the complete nested multiscale framework is presented in Figure 9.



J. Mar. Sci. Eng. 2019, 7, 340 16 of 24

, bending 
 at the 

reference deformed state of the RVE. Subsequent 
nonlinear analyses of flexible pipe subject to the 

. 
the 

teps 
and restart input files of the RVE models with the 

es 
e 

d 
 

sion 
are assigned for hybrid beam elements which are 

n 
unchanged throughout global analysis steps. On the 

egions 
by multiscale elements are assumed linear elastic 
which stiffness parameters are determined from the 
RVE analyses and keep modified through global 
analysis steps. Upon receiving the load parameters 
from the global model, the RVE return the new 

al 
th 

cale 
s to 

call the user-defined element subroutine (UEL) in 
ABAQUS and the process of calling user-defined 
subroutine while updating stiffness parameters 

 

The linking between the RVE and global analyses of 
flexible pipes are done through a Python interface 

olling 
evel 

e 
global analysis is completed with results of nodal 

nts. 
The RVE analyses are then invoked by a sub-process 
command of the Python compiler. Subsequent global 

 
analyses in ABAQUS. The local stiffness update 

the 
step 
f the 

dition, 
’ and 

’ help execute different global and local 
e 

flowchart for the nested multiscale framework is 

 

���������	
�����������������	�
��

� ����������	�
����������
� �������������
�������������������

��������������
�
�
��
����
����������

��������������������������������	�
��
�������������

���������������
�������������������
���
�������
���� �������

���������	
��������

��������������������
���	��	�����	�
��
��	�������
��

���������������
�������������������
���
�������
���� �������

���������	
��������

� ����������	�
����������
� ���������������������

��������������������

���������	�
��

���	��	�����	�
��
��	�������
��

���	��	�����	�
��
��	�������
��

�

�

����������
�	
���������

��������
���������������

���	��	�����	�
��
�����
��

����������������
�
���������������
�������������������
��

� ����������
�� ���� �����������
����������
� !���
������ �������������
�������������������

� ���������"���
�����������
��������������
� ��������������#������
������������$%�������

� ��������������#������
�����������������������
� ���
���&%'����������������������
���� ��������

� ����
���
���������!���������
��������������
� ����
���
���������(���������
���� �������

� ��������
����
���

	��������
�������������
�����
��

� ����������������&)�&�������������
���� �������
� ����
�����������������
�������$%����
�

	����������*�
�
��
��+� !"#

���������,

$�

%�

�

Figure 9. Flowchart for nested multiscale procedure.
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5.5. Verification of the Nested Multiscale Approach

The application of the nested multiscale framework is demonstrated through simple examples of
steel pipe models. The results of the integrated multiscale method are validated against the results of
detailed and full-length analyses of pipes, referred to as “standalone analysis”, with identical material
properties and loading conditions.

5.5.1. Example 1: Single Element

Using the nested multiscale approach, the global pipe model is defined with a single user-defined
beam element (“multiscale element”) together with its associated RVE model. The pipe has an internal
radius of 95.9 mm, an external radius of 116.2 mm and a length of 0.5 m. The RVE model associated with
the multiscale element consists of 352 S4R shell elements. The internal and external radii and the pipe
length of the RVE model are exactly the same as those of the single-beam global model. The validation
is illustrated in Figure 10. This example is designed to validate the accuracy of the information passing
framework and stiffness update procedure. Though this example is much simpler than an analysis of
realistic flexible pipe, it provides a basis for validation efforts of the nested multiscale framework.

Comparison is made between the standalone analysis and the multiscale analysis. An
elasto-plastic material model with elastic modulus of 200 GPa, yield stress of 250 MPa and an isotropic
hardening of 2 GPa is used for both the standalone model and the RVE model. A vertical displacement
is applied at one end of the global beam model while the rotations are fixed, and the response of
the beam model and its associated RVE model are analysed. At every load increment, the global
model transfers the displacements and rotations to the controlled nodes of the associated RVE of the
multiscale element and obtains new stiffness values of RVE in return. The responses predicted for the
pipe by the nested multiscale method is shown in Figure 11. It is seen that the results from the nested
multiscale method are consistent with those predicted by the stand-alone analysis. The deformed
shape of the pipe and the predicted Von Mises stress and plastic strains between the two models
are identical.

Figure 10. Multiscale validation: Example 1.
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Figure 11. Von Mises Stress prediction by the nested multiscale method (on the left) and stand-alone
RVE analysis (on the right) at different global steps. (a) (above) with applied vertical load U2= 0.05 m ;
(b) (below) with applied vertical load U2= 0.25 m.

5.5.2. Example 2: Multiple Elements

The multiscale model in this example consists of multiple standard beam elements (Abaqus
B33 elements) and one multiscale element in the center. The standard beam B33 elements use the
elastic-plastic material model as described in Example 1 while the constitutive model of the multiscale
elements are obtained from its associated RVE model. A description of the global and RVE models for
the nested multiscale method is shown in Figure 12. For comparison purposes, a standalone beam
model, consisting solely of B33 elements is also analysed. The standalone model has the same pipe
geometry and constitutive elastic-plastic behavior as the beam elements in the nested multiscale model.
The left end of the beam is fixed while displacements in horizontal (U1) and vertical (U2) directions are
applied to the right end of the beam

The results predicted by the standalone model and the integrated multiscale model are presented
in Figures 13 and 14. Comparison of plots in the center and right of each image shows good agreement
between standalone and integrated approached. Similar values of maximum Von Mises stresses are
obtained in the two models at different analysis steps, showing that the multiscale model is capable of
providing consistent results with the standard beam model in Abaqus. It can also be observed that the
nested multiscale method has an advantage over the standalone analysis in revealing more detailed
stresses at the regions of interests through using multiscale elements, which becomes more relevant
when increasingly complex structural models are investigated.
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Figure 12. Description of the nested multiscale model with standard beam elements B33 and one
multiscale element with its associated RVE (reproduced from Pham et al. [34], with permission).

Figure 13. Comparison on Von Mises Stress between the nested multiscale method (left and center)
and stand-alone beam B33 analysis (right) at U1 = 0.2 m, U2 = 0.0 m.
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Figure 14. Comparison on Von Mises Stress between the nested multiscale method (left and center)
and stand-alone beam B33 analysis (right) at U1 = −0.2 m, U2 = 0.2 m.

6. Verification of Dynamic Analysis Model

As part of efforts to demonstrate and validate these models, the dynamic analysis model
was benchmarked against Orcaflex software. The scenario chosen for the comparison involved a
tethered-wave configuration in shallow water attached to an FPSO subject to a regular Stokes 5th order
wave. For comparison purposes, a linear elastic, decoupled section response model was employed in
the beam element. The purpose of this verification is to demonstrate that the numerical formulation
and treatment of hydrodynamic loads gives satisfactory results in a realistic dynamic analysis when
compared to validated software using a different formulation (namely, a lumped-mass and -stiffness
approach). Validation of the nonlinear section response model described in Section 3 is left for future
work. A screenshot from the Orcaflex model showing the riser configuration shown in Figure 15.

Figure 15. Orcaflex model configuration used for validation of dynamic analysis, showing FPSO,
buoyancy modules and hold-down tether.

Comparisons of effective tension range, static configuration and curvature range are shown in
Figures 16–18, respectively. For Figures 16 and 18, curves represent maximum and minimum values
obtained over the loading history (considering fully developed motion only) for each location along
the riser arc length.
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Based on the comparisons shown in Figures 16–18, it can be concluded that the dynamic analysis
implementation in Abaqus shows satisfactory agreement with Orcaflex.

7. Conclusions

In this article, procedures and methodologies for carrying out multiscale analysis of flexible risers
have been presented. A detailed finite element model for local analysis, a beam element for global
analysis and a nonlinear constitutive model have been introduced as component models. Procedures
for carrying out sequential and integrated multiscale analyses have been described. The sequential
procedure is distinguished from a standard global-local analysis by the inclusion of more realistic
nonlinear behaviour in the global analysis that is tailored to the specific pipe design and operating
conditions and the use of more accurate boundary conditions in the local analysis. The integrated
procedure allows an evolving local configuration in selected elements to update the global analysis
model in a staggered solution process. Applications of these multiscale procedures include fatigue
assessment and, for the integrated model, investigation of progressive damage modes such as lateral
buckling of tensile wires. Future validation work planned for this model include comparison of the
global response obtained with the beam element/calibrated constitutive model against commercial
dynamic analysis codes, as well as comparison of stresses obtained in the detailed FE model with other
leading local analysis methods.

The adequacy of the lumped-mass and -stiffness approach used in Orcaflex for standalone
dynamic analysis has been shown [35]. However, the authors contend that beam elements are more
suitable for use in a multiscale framework. Beam elements allow the implementation of the wide
variety of beam theories developed in structural mechanics and are formulated with reference to
meaningful and measurable intermediate scale quantities (section force resultants and deformation
measures). Consequently, we believe there is more scope for achieving a predictive and physically
meaningful link between global dynamics and local stresses by using beam elements in global models.
A survey of the performance of beam element formulations and/or beam theories for this application
is outwith the scope of the current study. The current study demonstrated that a hybrid formulation
with inextensibility constraint (Equation (11)) is an effective means of implementing beam theories
in structures with high axial and low flexural stiffness. Further development of this approach could
include implementation of more complex beam theories, in conjunction with determination of other
section deformation measures (such as section rotation and warping).
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