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Abstract: The current state of science does not offer any remedy to stop a hurricane from occurring.
Therefore, accurate storm surge models capable of predicting water velocity and elevation are
indispensable. In this paper, the implementation of an implicit solver in the Advanced Circulation
(ADCIRC) storm surge model is presented. The implemented implicit solver uses hybrid finite
element and finite volume techniques for solving shallow water equations. Objectives of this research
include: Enhancing numerical stability, providing an option of using large timesteps, and the usage
of a relatively easier mathematical formulation than the existing one in ADCIRC. The storm surge
hindcast of Hurricane Katrina that hit Louisiana and Mississippi in 2005 is used as a case study.
Stability of the solver, comparison of water elevation and velocity against observed data, impact of
timestep sizes, and execution times of solvers are thoroughly investigated in this study. Results of the
implemented implicit solver are compared with those of existing lumped explicit and semi-implicit
solvers of ADCIRC; the findings appear to be very promising.
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1. Introduction

Hurricanes are among the worst natural disasters, and storm surges caused by these hurricanes
are the deadliest and most egregious contributors to the resulting destruction. Even though it is
not the only factor, climate change has made the impact of hurricanes much worse than ever [1].
Hurricanes have many aspects that need to be investigated; however, this paper focuses only on the
modeling of storm surges that hurricanes bring to land. To address this global challenge, the need
for precise, fast, and reliable models that are capable of predicting storm surges, floods, and levee
overtopping is indispensable. The physics of ocean circulation and the impact of hurricanes on ocean
shallow water are formulated mathematically in the Shallow Water Equations (SWEs), and computer
programs, called storm surge models, are used to numerically solve these equations. The simulation
of the phenomena is performed days before an impending hurricane hits the coast to predict the
water surge elevation and velocity. The algorithms used to solve the SWEs equations depend on
explicit [2], semi-implicit [2], or implicit [3] methods. Since today’s scientific status quo does not
offer any remedy to stop hurricanes from occurring, accurate predictions of the storm surge would
have significant impact on evacuation planning and execution that should potentially lessen damages.
Wrongful predictions may result in unpreparedness for disasters, or unnecessary preparedness that
would diminish public trust in authorities.

Advanced Circulation (ADCIRC) [4] framework is a well-known model used by the
U.S. government and many research and insurance entities to predict or study storm surges in coastal
regions. However, due to its explicit or semi-implicit method of solving the SWEs, the stability of
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this model may be a matter of concern in shallow water regions, especially when large timesteps are
used [5].

In this paper, the implementation of an implicit solver, called Computation and Modeling
Engineering Laboratory (CaMEL) [3], is performed in the ADCIRC framework. Implicit solvers
are inherently more stable than typical explicit or semi-implicit solvers, and hence are capable of
entertaining large timesteps [5]. Objectives of implementing the implicit solver in ADCIRC are
to enhance the numerical stability, provide an option of using large timesteps, take advantage of
the efficient parallel architecture of the ADCIRC framework, and reduce the complexity of the
mathematical formulation that currently exists in ADCIRC. The Generalized Wave Continuity Equation
formulation of ADCIRC requires some manipulation of the primitive continuity equation that involves
adding the time derivative of the continuity equation and subtracting the gradient of vertically
integrated momentum equations with it [2,6]. This manipulation is needed to avoid spurious
oscillations in water elevation; however, it inadvertently adds some complexity in the mathematical
formulation of the ADCIRC model. On the other hand, CaMEL keeps the mathematical formulation
as close as possible to the fundamental conservation equations [3,5,7], which may be a matter of
great advantage to model developers and users. Note that the scope of this paper is limited to the
implementation of an implicit solver in the ADCIRC model, and it does not address any accuracy or
reliability issues that may already have had existed in the ADCIRC framework.

2. Governing Equations

The implemented CaMEL implicit solver was originally presented by Akbar and Aliabadi [3]
and Aliabadi et al. [7]. This solver uses hybrid finite element and finite volume methods to solve the
shallow water equations to model hurricane storm surges. The SWEs are a set of parabolic partial
differential equations that describe the flow below a pressure surface in a fluid, which is influenced by
several forces including wind field, rotation of the earth, tidal forces, bottom frictions, etc. The SWEs
can be derived by depth-averaging the Navier-Stokes equations for a column of fluid with mass and
momentum conservation. The scale of length in a horizontal plane is much greater than the scale of
length in a vertical plane. In SWEs, the vertical velocity of fluid is negligible due to mass conservation,
and vertical pressure is hydrostatic, which results in a homogenous flow along the vertical axis.
The velocity and depth of fluid moving in the domain x(x, y) ∈ Ω with boundary ∂Ω = ∂Ωg + ∂Ωh
during the time interval t ∈ (0, T) can be described in non-conservation form by the followings:

∂h
∂t

+∇ · (Hu) =
.
n (1)

∂u
∂t

+ u · ∇u + C = −g∇H −∇
(

p
ρw

+ gZ− κηg
)
+

τs

ρw H
− τb

ρw H
+

v
H
∇ · ∇(uH) (2)

where h, H,
.
n, u, ρw, p, Z, κ, η, ν and C are water hydrodynamic head, water depth, net source

term, velocity vector, water density, atmospheric pressure on the surface, ocean bottom elevation,
earth tidal potential reduction factor, tidal internal forcing water elevation, kinematic viscosity of
water, and Coriolis force, respectively [5]. More details about the Coriolis forces, tidal forcing, bottom
friction and wind stress terms, can be found in References [8–11].

The CaMEL solver uses a non-dimensional form of the conservation equations, which is
manipulated to a predictor-corrector formulation [5]. The predictor equation is a modified momentum
equation to solve for velocity and can be written in accordance to the finite volume formulation as
the following,

Mu +∇ · (uu)− ν∇ · (∇u)T = S (3)

where M and S are given, as

M =
( α1

∆t
+ cb −∇ · u

)
, S = −α0un + α−1un−1

∆t
−∇h−∇pn+1 + κ∇ηn+1 + csVn+1 −Cn+1. (4)
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The corrector equation is a modified continuity equation and can be written in accordance to the
finite element formulation for all ω ∈Vh and H′ ∈Sh such that:∫

Ω
Ñ ωh′dΩ +

∫
Ω

ωu · ∇h′dΩ +
∫
Ω

K̃ ∇ω · ∇h′dΩ

= −
∫
Ω

R̃ ωdΩ +
∫
Ω
∇ω · uHdΩ +

∫
∂Ωh

K̃ ωn · ∇h′dΓ−
∫

∂Ωh

ω(n · u)HdΓ, (5)

where

Ñ =
α1

∆t
+∇ · u, K̃ =

∆t
α1

C2, R̃ =

(
α1h + α0hn + α−1hn−1

∆t
− .

n
)

. (6)

For more details on the solver equations, refer to References [3,7,12–15].

3. Methodology

In this study, Hurricane Katrina storm surge hindcast is used for all the numerical experiments
presented below to assure the consistency between the ADCIRC lumped explicit, semi-implicit,
and the newly implemented implicit solvers. The simulation of hurricane Katrina starts at midnight
on 27 August 2005 UTC and ends at 6:00 a.m. on 31 August 2005 UTC with a total time of
4.208 days. For the wind data, the best track data published by the National Oceanic and
Atmospheric Administration (NOAA) is used as an input to ADCIRC [16] using ‘NWS’ input option
‘4′ after producing wind field using Planetary Boundary Layer (PBL) model (‘p15′ compiled in ADCIRC
‘work’ folder). A mesh, called EC2001, is used here, which covers the Gulf of Mexico and a large
part of the Atlantic Ocean consisting of 254,565 nodes and 492,179 elements, which is the same mesh
used by Mukai et al. to derive the ADCIRC tidal database for the United States east coast [17].
The Renaissance Computing Institute (RENCI) [18], which is one of the high-performance computing
(HPC) facilities that ADCIRC developers use for live forecasting, is used for all experiments presented
here. RENCI HPC environment consists of a cluster of Dell blade servers with two 8-core Intel
Xeon E5 processors connected by InfiniBand FDR/Ethernet 10/40GB interconnect [19]. A total
of 128 processors are used in all experiments below unless stated otherwise. Note that there are
slight differences from the findings with previous papers [5,20]; these are attributed to the major
update that RENCI environment has undergone recently. All variables are set to be the same for all
three solvers to assure that the three solvers are tested under the same conditions, with the exception
of solver-specific variables.

4. Results and Discussion

In this section, results of the numerical experimentation of the implemented implicit solver,
existing lumped explicit and semi-implicit solver, are presented. The stability, accuracy, and impact of
timestep sizes on the solvers are studied. The results are compared against observation data of buoy
time series and high-water marks (HWM) collected after Hurricane Katrina. Finally, execution times of
all three solvers are investigated.

4.1. Solvers Stability

To assess the stability of the solvers, several cases are run using all three solvers. Each solver is
tested with increasing timesteps until a run failed to complete. The findings are presented in Table 1.
The implicit solver is able to run with a maximum timestep of 120 s with 4 nonlinear iterations,
while maximum timesteps for the lumped explicit and semi-implicit are 4 and 8 s, respectively.
The iterative nature of the implicit solver requires more execution time, if more non-linear iterations
are assigned. For ease of reporting, unique experiment case numbers are assigned to different solver
setups used in this paper, as shown in Table 2.
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Table 1. Stability Study of ADCIRC Solvers.

Timestep (s)
Lumped Explicit Semi-Implicit Implicit

Comment Walltime (s) Comment Walltime (s) Comment Walltime (s) Nonlinear Iterations

2 Success 1283 Success 1771 Success 10,466 2
4 Success 902 Success 1130 Success 5712 2
8 Fail N/A Success 866 Success 3497 2

12 Fail N/A Success 2685 2
40 Success 1368 2
100 Success 1213 3
120 Success 1272 4
150 Fail N/A 6

Table 2. Experimental Run Cases.

Case # Solver Timestep (s)

1 Lumped Explicit 2
2 Lumped Explicit 4
3 Semi-Implicit 2
4 Semi-Implicit 8
5 Implicit 2
6 Implicit 120

4.2. Water Elevation and Velocity Comparison

Maximum water elevation and velocity color plots for the simulated storm surges are displayed
in Figure 1. Line plots are shown along an arbitrary line that goes over the mainland near the
hurricane’s landfall, the Gulf of Mexico, and islands located deep in the Atlantic Ocean. Comparisons
of line plots between the lumped explicit (Case 1) and implicit (Case 5); and semi-implicit (Case 3)
and implicit (Case 5) solvers are done on the right side of the color plots. Figure 1 confirms the overall
accuracy and consistency among the results from different solvers with a few mismatches, even though
their mathematical representations and solution techniques are significantly different.

Figure 2 shows time snapshot differences of simulated water elevation and velocity magnitude at
10 AM on 29 August 2005 UTC from different solvers. It is evident that there are some differences in
elevation and velocity results between the solvers near shorelines. Such differences are reported by
other researchers [5,21], and these are attributed to ADCIRC wetting and drying convergence issues
due to the lack of mesh refinement in the shallow water regions. Note that velocities are less impacted
by the choice of solvers.
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Figure 1. Cont.
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Figure 1. Maximum elevation and velocity comparison study: (a) Elevation of Lumped Explicit
(Case 1) vs. Implicit (Case 5); (b) velocity magnitude of Lumped Explicit (Case 1) vs. Implicit (Case 5);
(c) elevation of Semi-Implicit (Case 3) vs. Implicit (Case 5); (d) velocity magnitude of Semi-Implicit
(Case 3) vs. Implicit (Case 5).
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Figure 2. Time snapshot differences of simulated water elevation and velocity magnitude at 10 a.m.
on 29 August 2005 UTC between: (a) Lumped Explicit (Case 1) vs. Implicit (Case 5); (b) Semi-Implicit
(Case 3) vs. Implicit (Case 5).

A time series of some statistical properties of the differences of water elevation and velocity
simulated by different solvers are presented in Figure 3. The averages, standard deviations, maximums
and minimums of those differences are calculated at all timesteps for the entire wet mesh, as follows:

• For each timestep, the differences of elevation and velocity are calculated for all wet nodes of the
mesh by subtracting elevation and velocity of the second solver, say Case 5, from those of the first
solver, say Case 1 (e.g., h_diff = h_Case1—h_Case5; V_diff = V_Case1—V_Case5).

• The average and standard deviation for the above differences of water elevation and velocity are
calculated for each timestep.

• Maximums and minimums of the above differences between the results of the two solvers are
obtained to identify the worst node-to-node differences for each timestep.

Figure 3 shows the time series average, standard deviation, minimum and maximum of water
elevation and velocity differences of the implicit (Case 5) from those of the ADCIRC lumped explicit
(Case 1) and semi-implicit (Case 3) solvers. When comparing the differences between Case 1 and
Case 5, it is found that the mesh average and standard deviation of the water elevation and velocity
differences are less than 0.07 m and 0.09 m/s, respectively. The maximum and minimum water
elevation and velocity differences are ±10 m and ±7 m/s, respectively. When comparing Case 3 with
Case 5, the average and standard deviations of water elevation and velocity differences are less
than 0.08 m and 0.09 m/s, respectively. The maximum and minimum water elevation and velocity
differences are ±10 m and ±7 m/s, respectively. It should be noted that the ADCIRC lumped



J. Mar. Sci. Eng. 2018, 6, 62 8 of 18

explicit and semi-implicit formulations use timestep average values of barotropic pressure gradients,
Coriolis effects, free surface stresses, and bottom friction terms [5], whereas the implemented implicit
solver uses new timestep values for these terms. Therefore, the differences of maximum and minimum
values between Case 1 and Case 5, and Case 3 and Case 5, are expected. Note that the ADCIRC
lumped explicit and semi-implicit solvers had an average and standard deviation of water elevation
and velocity differences less than 0.07 m and 0.05 m/s, respectively [5]. They had a maximum and
minimum elevation and velocity differences of ±8 m and ±5 m/s, respectively [5].

Figure 3. Cont.
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Figure 3. Time series average (‘Ave’), standard deviation (‘StDev’), minimum (‘Min’) and maximum
(‘Max’) of water elevation and velocity differences between: (a–d) Lumped Explicit (Case 1) vs. Implicit
(Case 5), and (e–h) Semi-Implicit (Case 3) vs. Implicit (Case 5).

4.3. Impact of Timestep

The impact of timestep on the implicit solver using small timestep (Case 5) and large timestep
(Case 6) is investigated. Cases 5 and 6 use timestep size of 2 s and 120 s, respectively. The same
arbitrary line, as in Figure 1, is used to create line plots for quantitative comparison between the
two cases. Figure 4 presents the results of this experiment. Very few discrepancies are visible, which
shows that even though Case 6 uses a significantly larger timestep, the results are still consistent
with those of the smallest timestep used in Case 5. Moreover, a time snapshot and maximum and
minimum elevation and velocity differences of both results are presented in Figure 5, which shows
some discrepancies. A possible source of those mismatches is the evaluation of terms such as coriolis
acceleration, barotropic pressure gradients, free surface stresses, and bottom friction in conservation
equations where the transient components use previous time level values that might be greatly different
near the wetting and drying regions at different times [5]. The velocity field seems to have less impact
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of timestep sizes than elevation. Recall that the implicit solver uses a nodal-based finite element
technique for its elevation calculation, whereas an element center-based finite volume technique
is used for its velocity calculation. Overall, it is a staggered mesh arrangement, which naturally
suppresses any spurious oscillations. The result of Case 6 does not seem to be significantly different
from that of Case 5, when putting the large difference of timesteps into perspective.

Figure 4. Maximum elevation and velocity comparison for timestep size study: (a) Elevation of Implicit
(Case 5) vs. Implicit (Case 6); (b) velocity magnitude of Implicit (Case 5) vs. Implicit (Case 6).
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Figure 5. Implicit solver (Case 5) vs. Implicit solver (Case 6): (a) Time snapshot differences of water
elevation and velocity magnitude at 10 a.m. on 29 August 2005 UTC. (b) Maximum elevation and
velocity differences.

The time series average, standard deviation, minimum, and maximum of elevation and velocity
differences for the wet mesh are calculated and plotted in Figure 6. The mesh average and standard
deviation of water elevation and velocity differences are less than 0.06 m and 0.04 m/s, respectively.
On the other hand, maximum and minimum water elevation differences are less than ±10 m,
and maximum and minimum velocity differences are less than ±2.5 m/s.

Figure 6. Cont.
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Figure 6. Impact of timesteps on Implicit solver between small (Case 5) and large (Case 6) steps:
(a) Elevation time series average and standard deviation; (b) minimum and maximum of water
elevation; (c) velocity time series average and standard deviation; (d) minimum and maximum of
water velocity.

4.4. Buoys Time Series Comparison

The time series data, collected during Hurricane Katrina using buoys and archived by NOAA [16],
are used and compared with simulated results produced by Case 1, Case 3, and Case 5. There are
four buoys for which time series data are available and whose locations fall within the computational
domain used in the present study, as illustrated in Figure 7. The comparison between the simulated
results and collected data is presented in Figure 8. It is obvious that implicit (Case 5) simulated
results match reasonably well with the simulated results of the other two solvers (Cases 1 and 3).
It is worth mentioning that mismatches between the observed and simulated results are reported by
other researchers as well [22]. The surface waves are neglected in these simulations, which has most
likely contributed to under prediction of water elevation. It is worth mentioning that implicit solver
integration with the surface wave model (SWAN) is not implemented or experimented yet. Note that
the Waveland MS buoy (ID 8747766) experienced a failure starting at 9 a.m. on 29 August 2005 UTC,
which is why there is no data after that time.

Figure 7. The region of interest with NOAA tide and current stations during Hurricane Katrina.
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Figure 8. Observed time series data vs. modeled time series results of Hurricane Katrina storm surge:
(a) Station ID 8735180 Dauphin Island AL; (b) Station ID 8735180 Pilots Station East SW Pass LA;
(c) Station ID 8747766 Waveland MS; and (d) Station ID 8761724 Grand Isle.
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4.5. High Water Mark Comparison

The Federal Emergency Management Agency (FEMA) measured high-water marks (HWM)
after Hurricane Katrina had passed [23–25]. The HWM data is compared with results simulated by the
implicit solver (Case 5). In addition to that, comparisons between implicit (Case 5) and lumped explicit
(Case 1), implicit (Case 5) and semi-implicit (Case 3) are performed. In the present mesh, a total of
59 HWM stations are consistently wet in all simulations done using three solvers used here. The results
are presented in Figure 9. It is worth mentioning that there are a number of well-known deficiencies
with storm surge model setups such as: limitation of the PBL model in producing accurate wind fields,
absence of near shore waves, inadequate bathymetry-specific bottom friction tuning, decreased wind
drag over water, wrongful measurement of local water depth and land elevation, etc. [5]. When the
result of the implicit solver is compared against the observed high water mark data in Figure 8a, a linear
fit with a coefficient of determination (R2) value of 0.666 is obtained, similar to the ones reported in [5].
This value of R2 is considered very good in perspective since even a sophisticated mesh and model
setup for Hurricane Ike, which had the maximum water elevation of 5 m, the best fit for ADCIRC
produced R2 value of 0.716 [26]. Most importantly, the implicit solver (Case 5) gives almost identical
results to the ones produced by the lumped explicit (Case 1) and semi-implicit (Case 3) solvers, as
shown in Figure 9b,c.

Figure 9. Cont.



J. Mar. Sci. Eng. 2018, 6, 62 15 of 18

Figure 9. Hurricane Katrina HWM comparisons: (a) Observed data vs. Implicit Solver (Case 5);
(b) Lumped Explicit Solver (Case 1) vs. Implicit Solver (Case 5); (c) Semi-Implicit Solver (Case 3)
vs. Implicit Solver (Case 5).

4.6. Execution Time

Some experiments are conducted to study the execution times of the implicit solver and compare
the results with those of the other ADCIRC solvers. The number of processors used in these experiments
ranged from 1 to 256. The experiments are divided into two parts. The smallest timestep (2 s, Cases 1,
3, and 5) for all solvers is used to run the first part of experiments; the findings are presented in Table 3.
The largest timesteps for all solvers (Cases 2, 4, and 6) are used to run the second part of experiments.
Table 4 presents the findings of all these extreme cases. Figure 10 shows plots of execution time
comparison. Regarding execution time, it is evident that the lumped explicit, and semi-implicit solvers
surpass the implicit solver in all experiments. When comparing with the extreme cases presented
by Akbar et al. [5], the ADCIRC implicit solver (Case 6, execution time 1142 s) is slightly faster than
the fully implicit solver of CaMEL (execution time 1205 s) presented in [5]. The gained speed can
be partially attributed to the efficient parallel environment of ADCIRC. Note that the number of
nonlinear iterations impacts the execution time performance of the implicit solver, which uses an
iterative solution technique. It should be mentioned that repeated experiments show a slight variability
of execution times due to the load conditions of servers.

Table 3. ADCIRC Solvers Execution Times in Seconds (timestep 2 s).

No. of CPUs ADCIRC Lumped Explicit Case 1 ADCIRC Semi-Implicit Case 3 ADCIRC Implicit Case 5

1 58,591 79,686 572,863
2 35,390 72,672 500,688
4 20,571 39,423 276,973
8 10,662 20,487 131,750

16 5837 10,149 80,415
32 3224 5438 42,342
64 1951 2855 19,901

128 1283 1771 10,466
256 1097 1440 7657
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Table 4. ADCIRC Solvers Execution Times in Seconds (extreme cases).

No. of CPUs ADCIRC Lumped Explicit Case 2 ADCIRC Semi-Implicit Case 4 ADCIRC Implicit Case 6

1 25,062 21,970 52,528
2 21,693 20,107 41,529
4 11,531 11,083 21,747
8 6024 5267 9467

16 2958 2539 5942
32 1930 1750 3364
64 1259 1104 2128

128 902 866 1272
256 602 785 1142

Figure 10. Execution times comparison between Lumped Explicit, Semi-Implicit, and Implicit solvers
using Hurricane Katrina hindcast: (a) Execution time using the same timestep (Cases 1, 3, and 5) for all
solvers (see Table 3); (b) execution time using maximum timesteps (Cases 2, 4, and 6) to each solver
(see Table 4).
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5. Conclusions

Although hurricanes have many aspects that need to be studied, this paper focuses on the
implementation of an implicit solver in the ADCIRC storm surge model. The CaMEL implicit
solver solves the shallow water equations using hybrid finite element and finite volume techniques.
Enhancing numerical stability, providing an option of using large timesteps, taking advantage of
efficient parallel framework of ADCIRC, and reducing the complexity of mathematical formulation
of ADCIRC are among the main objectives of this implicit solver implementation. In all experiments,
Hurricane Katrina hindcast is done using the same mesh and similar input variables in different
solvers to guarantee the validity of these experiments. Comparisons of results of the implicit solver
with those of the lumped explicit and semi-implicit solvers are performed. Solver stability, accuracy
and consistency of water elevation and velocity results, impact of timesteps, comparison of simulated
results with observed data of buoys and HWMs, and execution times are studied. In general, results of
the implicit solver are very well comparable with those of other solvers. The implicit solver shows great
stability even when using large timesteps. The lumped explicit solver outperforms both semi-implicit
and implicit ones regarding speed and execution times. The solver execution times are comparable
when extreme timesteps are used, although the explicit solver still outperforms the other two. It should
be noted that the current implementation of the implicit solver in ADCIRC is done on an ad hoc basis
to study the feasibility, and no optimization is done at this point.
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