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Abstract: This paper describes a novel thruster fault-tolerant control system (FTC) for open-frame
remotely operated vehicles (ROVs). The proposed FTC consists of two subsystems: a model-free
thruster fault detection and isolation subsystem (FDI) and a fault accommodation subsystem (FA).
The FDI subsystem employs fault detection units (FDUs), associated with each thruster, to monitor
their state. The robust, reliable and adaptive FDUs use a model-free pattern recognition neural
network (PRNN) to detect internal and external faulty states of the thrusters in real time. The FA
subsystem combines information provided by the FDI subsystem with predefined, user-configurable
actions to accommodate partial and total faults and to perform an appropriate control reallocation.
Software-level actions include penalisation of faulty thrusters in solution of control allocation problem
and reallocation of control energy among the operable thrusters. Hardware-level actions include
power isolation of faulty thrusters (total faults only) such that the entire ROV power system is not
compromised. The proposed FTC system is implemented as a LabVIEW virtual instrument (VI) and
evaluated in virtual (simulated) and real-world environments. The proposed FTC module can be
used for open frame ROVs with up to 12 thrusters: eight horizontal thrusters configured in two
horizontal layers of four thrusters each, and four vertical thrusters configured in one vertical layer.
Results from both environments show that the ROV control system, enhanced with the FDI and
FA subsystems, is capable of maintaining full 6 DOF control of the ROV in the presence of up to
6 simultaneous total faults in the thrusters. With the FDI and FA subsystems in place the control
energy distribution of the healthy thrusters is optimised so that the ROV can still operate in difficult
conditions under fault scenarios.

Keywords: fault-tolerant control; thruster fault; fault detection and isolation; fault accommodation;
ROV; remotely operated vehicle; underwater vehicle

1. Introduction

Over the past decades, the use of remotely operated vehicles (ROVs) has become more widespread.
This is due to the reduction in costs driven by military and oil and gas research, making the technology
available for other commercial and scientific purposes [1]. In more recent years ROVs have been employed
for survey contracts and, with the push in the marine renewable energy (MRE) sector, ROVs will need to
be capable of operating in more difficult environments to carry out close quarters inspections of the MRE
devices and structures, thus reducing operational costs within the sector. The environment in which ROVs
operate can be unpredictable, with the external parts of the system being subjected to seawater, changes in
temperature, high pressures and interactions with solids drifting through the water column. These factors
all contribute toward possibilities of thrusters becoming damaged or developing faults in their dynamic
parts. In the past, it was common to abort a mission if a fault occurred in a thruster. Due to reduced
weather windows at the sites of MRE converters [2], the expensive nature of ROV operations and the drive

J. Mar. Sci. Eng. 2018, 6, 40; doi:10.3390/jmse6020040 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0001-9692-239X
http://www.mdpi.com/journal/jmse
http://www.mdpi.com/2077-1312/6/2/40?type=check_update&version=1
http://dx.doi.org/10.3390/jmse6020040


J. Mar. Sci. Eng. 2018, 6, 40 2 of 30

to reduce costs this method should be avoided, if possible. Fault-tolerant control system (FTC) within
ROVs can be utilised to combat this. To accommodate faults and allow ROVs to manoeuvre in difficult
environments they are usually designed so that they are over actuated. This increases the robustness of
the system. Podder et al. utilised this configuration in a novel underwater vehicle approach for thruster
force redistribution in the case of a fault [3]. Due to the particular advantages of FTC in ROV applications,
many different techniques have been proposed:

Caccia et al. implemented thruster fault diagnosis by monitoring the motor current and revolutions per
minute (RPM). If the monitored variables increased above a set threshold accommodation was performed
by inhibiting the faulty thruster and by reconfiguring the distribution of the control actions cancelling the
corresponding column in the thruster control matrix (TCM) [4].

Kim and Beale made use of Hotelling’s T2 statistic to diagnosis a fault in an underwater vehicle.
They compared measured variable basis data used for training, with actual variable data and carried
out statistical analysis. If the results of the statistical analysis were above a certain threshold then a
fault was present. Further analysis determined if the fault occurred in the stern plane (vertical) or
rudder (horizontal). The system was designed so that the controller was reconfigurable, meaning that
the type of fault in the system determined the type of controller to be utilised. Their tests were carried
out in simulations and found that noise can increase fault detection times [5].

Montazeri et al. proposed fault diagnosis in the steering system of an autonomous underwater
vehicle (AUV) through the use of two different neural network systems (multi-layer perceptron (MLP)
and Adaline). This method, validated using simulations, was capable of detecting both partial and full
faults. Results found that the speed of the MLP fault detection was lower than the Adaline method due to
its larger complexity [6]. Zhu et al. utilised a neural network to increase the performance of on-line fault
detection in thrusters on an open-frame ROV and provide appropriate control reallocation. This approach
was tested in simulations but only total faults of the thruster were taken into consideration, which was
different from the simulated fault situation of the thrusters [7].

A combination of tools was employed by Hai et al. for a fault-tolerable control scheme for an
open-frame ROV. The methods combined were a petri network and a recurrent fuzzy neural network
(PRFNN). This approach combines the advantages of low level learning, high level reasoning and
reduced calculations. Simulation and experiments proved that the ROV FTC could accurately detect
partial and full faults and accommodate this in the control [8].

Another previous approach was to integrate self-organizing maps and fuzzy logic clustering
to achieve fault diagnosis. Upon diagnosing the fault a novel weighted pseudo-inverse scheme
compensated in the control [9].

Liu and Zhu conducted thruster external fault diagnosis on an ROV by comparing expected
heading values with actual heading values for a given control voltage and referencing it back to a fault
code table [10]. Akmal et al. developed a fuzzy based thruster fault diagnosis and accommodation
system, which monitored voltage and current, and compared it to pre-measured values. The values of
the resulting residuals were then used to compare to a fuzzy fault code table, assigning PWM control
constraints to the thrusters, depending on their state. This simple approach was successful but was
unable to distinguish if there was an internal or external fault [11].

The FTC system for an ROV, proposed in [12], used a modified version of the Moore-Penrose
pseudo inverse to redistribute the control effort to healthy thrusters if a fault occurs.

In the literature the majority of the fault-tolerant control methods proposed for underwater
vehicles have been integrated and evaluated in a simulated environment. As a first step for evaluation
this approach is beneficial but, when practical and affordable, real-world trials should be conducted to
evaluate the system in the environment in which it is expected to operate. Real-world trials have been
conducted in some cases to evaluate the FTC of the ROV [4,12], generating more accurate results.

This paper presents an active fault-tolerant control system for an ROV using a combination of
thruster fault detection and isolation, faulty thruster power isolation and fault accommodation in the
control of the ROV. The word “active” means that the method is based on active monitoring of relevant
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signals from the thrusters (currents, shaft speeds, applied voltages and temperatures of windings).
For thrusters that cannot provide these signals, the authors are currently working on novel “passive”
method for fault detection and isolation. It is expected to publish the main features of the “passive”
method and comparison table of both methods in Spring 2018.

Most underwater vehicle fault detection schemes are model-based, and concern the dynamic
relationship between actuators and vehicle behaviour or the specific input-output thruster dynamics [13].
The proposed thruster fault detection and isolation (FDI) approach is a model-free scheme based on
a pattern recognition neural network, trained with simulated and real-world data. New features of
the proposed FTC includes separation of the virtual control space into vertical and horizontal thruster
subspaces (planes) and real-world implementation in the real-time ROV control system for various thruster
configurations. The thruster FA subsystem receives thruster state data from the FDI and, in the case of a
fault, reallocates thruster forces by reducing the saturation bounds of the faulty thruster (software-level
action A). At the same time, in case of total faults, the thruster power is switched off (hardware-level
action B), in order to prevent a threat to full power system and reduce the risk of damage to other
ROV components.

The proposed FTC system has been successfully tested in a virtual environment (using a real time
ROV simulator, created at CRIS, in the University of Limerick (UL)) and a real world environment
(using VM5 thrusters from VideoRay in Pottstown, PA, USA) in a test tank at UL. The proposed
FTC system is part of the OceanRINGS+ ROV smart control system, currently under development at
CRIS, UL.

The paper outline is provided as follows. In Section 2 background information is provided,
including links with other research projects and a short description of Inspection ROV (IROV).
The architecture of the FTC, including description and implementation of the FDI & FA subsystems,
is described in Section 3. Section 4 presents the testing and evaluation results of the proposed FTC
in real-world and virtual (simulated) environments. Finally, concluding remarks and directions for
future work are provided in Section 5.

2. Background

2.1. OceanRINGS+

OceanRINGS is an Internet/Ethernet-enabled ROV control system, based on robust control algorithms,
deterministic network-oriented hardware and flexible, 3-layer software architecture [14]. ROV LATIS
is a prototype platform developed at UL to test and validate OceanRINGS [15]. System validation and
technology demonstration has been performed over the last eight years through a series of test trials with
different support vessels. Operations include subsea cable inspection/survey, wave energy farm cable to
shore routing, shipwreck survey, ROV-ship synchronisation and oil spill/HNS incident response.

Currently, researchers at UL are developing the next generation of the ROV control system
(OceanRINGS+, the extended version of OceanRINGS). The highly adaptive 3-layer software architecture
of OceanRINGS+ includes fault-tolerant control allocation algorithms in the bottom layer, transparent
interface between an ROV and supporting platforms (surface platforms, surface/subsea garages and/or
supporting vessels) in the middle layer and assistive tools for mission execution/monitoring/supervision
in the top layer. Software modules have been developed for advanced control modes, such as auto
compensation of ocean currents based on ROV absolute motion, robust speed/course controller with
independent heading control, semi and full auto pilot capabilities, auto-tuning procedure for low-level
controllers, ROV high precision dynamic position & motion control in absolute earth-fixed frame, or relative
to target or support platform/vessel. This paper is focused on the description of the FTC, the module at
the bottom layer of the full OceanRINGS+ control architecture.
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2.2. Inspection-Class Remotely Operated Vehicle (I-ROV)

As part of the ongoing MaREI research project “Smart Inspection ROVs for Use in Challenging
Conditions”, researchers at the Centre for Robotics & Intelligent Systems (CRIS), University of
Limerick have designed and developed a reconfigurable, inspection-class ROV (I-ROV) in the period
of 2014–2018, aimed to perform periodic and post storm inspection of offshore MRE converters,
moorings and foundations, reducing the need for commercial divers to be employed in this difficult
and potentially dangerous environment. The I-ROV (Figure 1) is a reconfigurable system with the
option to utilise two types of thrusters in different configurations.

Figure 1. Inspection-class remotely operated vehicle (I-ROV), developed at the Centre for Robotics &
Intelligent Systems (CRIS) researchers, University of Limerick (UL).

The reconfigurable propulsion system of I-ROV includes two thruster configurations (Table 1):

• Configuration 1: Eight VideoRay M5 thrusters configured in two layers: Horizontal Layer with
four thrusters and Vertical Layer with four thrusters. These thrusters provide active monitoring
of relevant signals from thrusters (currents, shaft speeds, applied voltages and temperatures of
windings).

• Configuration 2: Twelve Blue Robotics T200 thrusters configured in three layers: Horizontal
Layers L0 and L1 with four thrusters each and Vertical Layer with four thrusters. These thrusters
cannot provide monitoring of relevant signals and the passive FTC system for this class of thruster
is under development.

It should be emphasized that the OceanRINGS+ control architecture has been designed to be
generic, i.e., not limited to exclusive use by IROV, but any ROV with standard physical layout of
thrusters. Although testing and validation of proposed FTC is performed with IROV configured as
Configuration 1, the active FTC proposed in this paper and implemented as part of OceanRINGS+

is applicable to open-frame ROVs with a maximum of 12 thrusters subject to the constraint that
each thruster can provide measurement of relevant signals (currents, shaft speeds, applied voltages
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and temperatures of windings). The FDI subsystem detects faults in thrusters regardless of their
physical layout. However, for successful fault accommodation, the physical layout of thrusters plays
an important role.

Table 1. Thruster configurations.

Configuration 1: 8 × M5 Thrusters Configuration 2: 12 × T200 Thrusters

Horizontal Layer: HT1, HT2, HT3, HT4 Horizontal Layer (L0): HT1, HT2, HT3, HT4

Horizontal Layer (L1): HT1, HT2, HT3, HT4

Vertical Layer: VT1, VT2, VT3, VT4 Vertical Layer: VT1, VT2, VT3, VT4

3. Fault-Tolerant Control (FTC) System

3.1. FTC Architecture

The overall functional architecture of the proposed FTC system is shown in Figure 2. The description
of the architecture is provided in a hierarchical manner, such that the general description and the main
idea are introduced first, while more details about individual components can be found in the following
subsections. This architecture is an extension of the control architecture proposed in [16].

In contrast to the Fault Diagnosis and Accommodation System (FDAS), proposed in [17] and
implemented in the original version of OceanRINGS, there are a number of new features in the FTC
architecture shown in Figure 2 and implemented in OceanRINGS+. Firstly, there is a clear separation
between horizontal and vertical thrusters using decomposition of motion into horizontal and vertical
subspaces (planes). Secondly, there is provision for two layers of horizontal thrusters and one layer of
vertical thrusters. Thirdly, the Fault Detection Units utilize a pattern recognition neural network for
real-time fault detection instead of self-organising maps.

The virtual control input τ for the control allocation is a normalised vector of forces and moments:
τ = [ τX τY τZ τK τM τN ]T , where τX is surge force, τY is sway force, τZ is heave force,
τK is roll moment, τM is pitch moment, and τN is yaw moment. Decomposition of this vector into the
horizontal and vertical planes is presented in Table 2.

The Control Clusters (Figure 2 and Table 2) are links between the FTC module in the bottom
layer and upper layers in control architecture. The HT Control Cluster consists of two subclusters:
Virtual Joystick (to mimic direct surge & sway forces and yaw moment generated by human or virtual
pilot) and a set of settings for Low-Level Controllers (set points for surge speed ud (m/s), sway speed
vd (m/s) and heading Yd (◦), feed-forward inputs and on/off switches to enable/disable individual
controllers). The VT Control Cluster has two subclusters: Virtual Joystick (to mimic direct heave force
and roll & pitch moments generated by human or virtual pilot) and a set of settings for Low-Level
Controllers (set points for depth/altitude zd (m), roll Rd (◦) and pitch Pd (◦), feed-forward inputs
and on/off switches to enable/disable individual controllers). Inside the Synthesis module the LLC
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Settings subclusters are used as one of the inputs to the LLC loops (the other inputs are navigation data
and parameters of controllers). There is a single controller for each degree of freedom (DOF). Surge
and Sway controllers are velocity controllers, while Heave, Roll, Pitch & Yaw are position controllers.
Further information about the internal structure of LLC loops can be found in [9]. Individual outputs
of LLC loops are bundled into vectors τLLC. The final outputs of the Synthesis module are vectors τHT
and τVT , obtained by summation and normalisation of corresponding vectors τV J and τLLC for each
subspace, respectively.

Figure 2. Architecture of the Fault Tolerant Control (FTC) system: (a) Horizontal Subspace (Plane);
(b) Vertical Subspace (Plane).
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Table 2. Decomposition into Horizontal and Vertical Subspaces (Planes).

Virtual Control Input Horizontal Plane τHT Vertical Plane τVT

τ =


τX
τY
τZ
τK
τM
τN



τHT =

 τX
τY
τN

 τX—Surge Force
τVT =

 τZ
τK
τM

 τZ—Heave Force
τY—Sway Force τK—Roll Moment

τN—Yaw Moment τM—Pitch Moment

Each layer of horizontal thrusters has its own FDI, FA and Control Allocator module. It should be
emphasized that both layers of horizontal thrusters are independent from each other, i.e., they can
have a different physical layout and number of thrusters. In the Horizontal Plane, both layers have the
same input (vector τHT), which is the output of HT Synthesis module.

3.2. Fault Detection and Isolation (FDI) Subsystem

3.2.1. Fault Classification

Thrusters are liable to different fault types during the underwater mission e.g., propellers can be
jammed, broken or lost, water can penetrate inside the thruster enclosure, communication between the
thruster and the master node can be lost, applied voltage or temperature of the winding can exceed the
threshold, etc. Some of these faults (partial faults) are not critical and the thruster is able to continue
operation in the presence of a fault with the restricted usage, i.e., reduced maximum velocity. In other
cases (total faults—failures) the thruster must be switched off and the mission has to be continued
with remaining operable thrusters. Thruster faults are classified into two main classes:

• Internal faults (e.g., temperature of the windings is out of range, drop in bus voltage etc.),
• External faults (e.g., lightly jammed, jammed, heavily jammed, lost or broken propeller).

3.2.2. Fault Code Table

Relationships between thruster states, fault types and remedial actions are stored in the thruster
fault code table (Table 3). It must be emphasized, at this point, that this fault code table is just
a suggestion, intended to reveal the main ideas of the proposed FTC system. New states (rows)
can be added, and the existing relationships can be changed, in order to accommodate specific
requirements and available thruster data. For example, other faults like thruster shaft misalignment or
damaged bearings can cause excessive vibration, increased temperature and, in worst case scenarios,
cause flooding through broken shaft or damaged enclosure [18].

Table 3. Thruster Fault Code Table.

Thruster State Class Type Action A: Saturation Bounds Action B: Thruster Power

Invalid - - 1.00 ON
Healthy - - 1.00 ON

Lightly Jammed External Partial 0.75 ON
Jammed External Partial 0.25 ON

Heavily Jammed External Total 0.00 OFF
Broken Propeller External Total 0.00 OFF

Unknown External Total 0.00 OFF
Voltage outside threshold Internal Total 0.00 OFF
Temp. outside threshold Internal Total 0.00 OFF
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3.2.3. Fault Detection Unit (FDU)

It is assumed that each thruster is driven by a Thruster Control Unit (TCU), with integrated
power amplifiers and a microcontroller (Figure 3). The input to the TCU is desired shaft speed nd (%).
The outputs are current I (A), shaft speed n (rpm), bus voltage V (V) and temperature T (◦C) of
windings. The outputs of each thruster are sent to the associated FDI module in real-time. The FDI
module utilises the Fault Detection Units (FDUs) to monitor the state of the thrusters. The FDU
is a software module associated with the thruster, able to detect internal faults and external faults.
The output of the FDU is a fault state vector fi. Connections between the FDU and the TCU for an
arbitrary thruster Ti are indicated in Figure 3.

Figure 3. Block diagram showing connections between the fault detection unit (FDU) and the thruster
control unit (TCU) for thruster Ti.

Signals for detection of internal faults are already available in existing TCUs for VideoRay thrusters
M5. In particular, the communication protocol for the M5 provides monitoring of the winding temperature
T (◦C) and bus voltage V (V) of each thruster. In order to build a universal FDU, able to detect both internal
and external faults, it is necessary to augment the existing internal protection with a software module for
fast and reliable detection of external faults.

For detection of external faults available signals are desired: shaft speed nd (%), actual shaft speed
n (rpm) and current consumption I (A) of the thruster. By monitoring n and I, together with desired
shaft speed nd, obtained as the output of the Control Allocation, the FDU is designed to detect, isolate
and categorise external thruster faults using Pattern Recognition Neural Network (PRNN).

Finally, the universal FDU integrates both parts (internal and external) into one unit, which is
able to detect both internal and external faults (Figure 3). Integration includes a priority scheme,
where total faults have higher priority than partial faults. The fault state vector fi, the output of the
FDU, is the code of the fault.

3.2.4. Implementation

Implementation involves two phases: off-line training and on-line fault detection.
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Off-Line Training Phase

The first stage in the training phase is acquisition of training data. In the virtual environment,
thruster faults are simulated by varying properties of the thruster dynamic model (load, friction, etc.)
inside the propulsion subsystem of the ROV dynamics simulator. In the real-world environment,
various jammed propeller faults are simulated such that the objects of different sizes, shapes and
weights were attached to the blades, while a broken propeller was simulated with all blades removed
from the shaft. Further details about acquisition of training data in real-world environment is given in
the following. A normal state and four different fault cases were considered (lightly jammed, jammed,
heavily jammed and broken (lost) propeller). A test rig has been set up and thruster mounted in a test
tank in the University of Limerick. To mimic the jammed thruster states various objects (“blockages”)
have been attached to the thruster propeller during tests. The thruster test setup and “blockages” are
shown in Figure 4. Each “blockage” reduces efficiency of the thruster due to increased load on the
shaft and reduced flow of the water through the duct.

Figure 4. Thruster setup for acquisition of real-world data: (a) 30% area “blockage”; (b) 60% area “blockage”;
(c) 90% area “blockage”.

The relationship between the thruster states and setup for real-world data acquisition is given in
Table 4. For each state in Table 4, the thruster was actuated with a saw-like command signal nd (%)
with the following pattern: 0% » MAX% » 0% » −MAX% » 0%, with a step size 1%. The total duration
of signal was 20 s, sampling period 50 ms and max. value MAX = 100%. In each iteration the desired
shaft speed nd (%), actual shaft speed n (rpm) and current consumption I (A) have been logged.
The real-world raw data acquired for each thruster state are presented in Figure 5.
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Table 4. Thruster states & setup for real-world data acquisition.

Thruster State Setup

Healthy No blockage
Lightly Jammed Blockage (30% area)

Jammed Blockage (60% area)
Heavily Jammed Blockage (90% area)
Broken Propeller Propeller detached

Figure 5. Diagrams of raw training data: (a): I versus nd plot; (b) n versus nd plot.
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Analysing the distribution of the training data in Figure 5, the first feature that can be noticed
is that each fault type creates a certain pattern. The presence of measurement noise is noticeable in
acquired data for currents, resulting in patterns which exhibit a fuzzy (“cloudy”) look. The second
feature is that it is very difficult to distinguish individual patterns in the zone around nd ≈ 0 (called
the critical zone). This makes successful fault detection and isolation in the critical zone difficult to
achieve. In particular, for the near-zero velocity case nd ≈ 0 the thruster does not rotate or rotates very
slowly, reliable fault detection is impossible. The solution to this issue is the exclusion of the critical
zone from FDI during the on-line fault detection phase. For this reason, the critical zone is called
the forbidden zone with associated “Invalid” thruster state. When desired shaft speed is in this zone,
the FDI algorithm goes to sleep mode and outputs the “Invalid” state without any action.

Each fault type in Figure 5 is characterised by specific features, which makes them different from
the other types. These features are discussed in the following. In general, all the variables (nd, I and
n) are correlated, i.e., they tend to rise and fall together in a non-linear way. For lightly jammed,
jammed and heavily jammed propeller states, objects (“blockages”) attached to the blades generate an
additional load for the motor, leading to higher current I and lower n than in the fault-free case for
the same value of nd. In the case of a broken propeller, the absence of the blades means that the load
for the motor is much smaller than in other cases, yielding a reduction in current consumption and a
significant increase in shaft speed. However, the thruster does not generate any propulsion force in
this case.

The main idea of the second stage in the training phase is to use the acquired data from the
first stage to train a Pattern Recognition Neural Network (PRNN). In order to improve the PRNN
classification accuracy, the raw data shown in Figure 5 have been first replaced with best fit curves,
as shown in Figures 6 and 7, before creating input-output data sets for NN training. The MATLAB App
“Curve Fitting” has been employed to generate best fit curves. Details of the Curve Fitting functions
and their parameters can be found in Table 5.

Figure 6. Diagrams of raw & best fit training data: I versus nd plot.
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Figure 7. Diagrams of raw & best fit training data: n versus nd plot.

Table 5. Curve Fitting functions for thruster states.

Thruster State Dataset Plot Curve Fitting Function Type Curve Fitting Function Coefficients

Healthy I v nd positive Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = 19.15
b = 147.8
c = 63.78

Healthy I v nd negative Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = −16.07
b = −140.2
c = 62.24

Healthy n v nd positive Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 4008

b = 0.01298
c = 7.086

Healthy n v nd negative Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 4212

b = 0.01134
c = −42.63

Lightly Jammed I v nd positive Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = 20.04
b = 147.8
c = 64.41

Lightly Jammed I v nd negative Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = −19.26
b = −145.9
c = 65.05

Lightly Jammed n v nd positive Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 3908

b = 0.01274
c = 30.12

Lightly Jammed n v nd negative Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 3764

b = 0.01237
c = −37.82

Jammed I v nd positive Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = 16.27
b = 133.9
c = 59.91

Jammed I v nd negative Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = −20.4

b = −146.1
c = −65.54

Jammed n v nd positive Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 3565

b = 0.01289
c = 60.38
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Table 5. Cont.

Thruster State Dataset Plot Curve Fitting Function Type Curve Fitting Function Coefficients

Jammed n v nd negative Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 3352

b = 0.01355
c = −29.18

Heavily Jammed I v nd positive Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = 22.92
b = 147.3
c = 66.57

Heavily Jammed I v nd negative Gaussian f(x) = a ∗ exp(−((x − b)/c)2)
a = −17.17
b = −134
c = 60.65

Heavily Jammed n v positive Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 2875

b = 0.01468
c = 68.49

Heavily Jammed n v negative Hyperbolic tangent f(x) = a ∗ tanh(b ∗ x) + c
a = 3007

b = 0.01488
c = −14.55

Broken Propeller I v nd positive Exponential f(x) = a ∗ exp(b ∗ x) a = 0.05542
b = 0.03747

Broken Propeller I v nd negative Exponential f(x) = a ∗ exp(b ∗ x) a = −0.05494
b = −0.03735

Broken Propeller n v nd positive Polynomial f(x) = p1 ∗ x4 + p2 ∗ x3 + p3 ∗ x2 + p4 ∗ x + p5

p1 = −0.0001074
p2 = 0.01742
p3 = −0.8264

p4 = 72.56
p5 = −46.07

Broken Propeller n v nd negative Polynomial f(x) = p1 ∗ x4 + p2 ∗ x3 + p3 ∗ x2 + p4 ∗ x + p5

p1 = 0.0001022
p2 = 0.0163
p3 = 0.7478
p4 = 70.58
p5 = 34.14

A two-layer feed-forward network, with 16 sigmoid hidden and 5 softmax output neurons has
been trained to classify input vectors. The architecture of the Pattern Recognition Neural Network is
shown in Figure 8.

Figure 8. The architecture of Pattern Recognition Neural Network.

As indicated in Table 4, there are five classes (Healthy, Lightly Jammed, Jammed, Heavily Jammed
and Broken Propeller). The input data set (matrix thrusterInputs_RWE) has dimension 3 × 1005 and
consists of five Input Blocks: thrusterInputs0_RWE, thrusterInputs1_RWE, thrusterInputs4_RWE
(one block for each class, see Table 6). Network inputs are stored in columns of the matrix
thrusterInputs_RWE. For each class, values of nd are −100, −99, +99, +100.
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Table 6. Structure of the input training data set thrusterInputs_RWE.

Class Input Block Size Column(j)

Healthy thrusterInputs0_RWE 3 × 201 nd(j); I(j); n(j)
Lightly Jammed thrusterInputs1_RWE 3 × 201 nd(j); I(j); n(j)

Jammed thrusterInputs2_RWE 3 × 201 nd(j); I(j); n(j)
Heavily Jammed thrusterInputs3_RWE 3 × 201 nd(j); I(j); n(j)
Broken Propeller thrusterInputs4_RWE 3 × 201 nd(j); I(j); n(j)

The target data set (matrix thrusterTargets_RWE) has dimension 5 × 1005 and consists of five
Target Blocks: thrusterTargets0_RWE, thrusterTargets1_RWE, thrusterTargets4_RWE (one block for
each class, see Table 7). For class k columns of corresponding Target Block have 1 at position k,
while all other column elements have value 0.

Table 7. Structure of the output training data set thrusterTargets_RWE.

Class Target Block Size Column

Healthy thrusterTargets0_RWE 5 × 201 1; 0; 0; 0; 0
Lightly Jammed thrusterTargets1_RWE 5 × 201 0; 1; 0; 0; 0

Jammed thrusterTargets2_RWE 5 × 201 0; 0; 1; 0; 0
Heavily Jammed thrusterTargets3_RWE 5 × 201 0; 0; 0; 1; 0
Broken Propeller thrusterTargets4_RWE 5 × 201 0; 0; 0; 0; 1

Algorithms used in PRNN training are provided in Table 8.

Table 8. Pattern Recognition Neural Network training algorithms.

Algorithms

Data Division Random (dividerand)
Training Scaled Conjugate Gradient (trainscg)

Performance Cross-Entropy (crossentropy)
Calculations MEX

The input matrix thrusterInputs_RWE has been randomly divided up into training samples (70%),
Validation samples (15%) and Testing samples (15%). These samples were presented to the network
during training, and the network was adjusted according to its error. Validation samples were used
to measure network generalization, and to halt training when the generalization stops improving.
The testing samples have no effect on training and provide an independent measure of network
performance during and after training. The training, Validation and Confusion Matrices are shown
in Figure 9. On the confusion matrix plot, the rows correspond to the predicted class (Output Class),
and the columns show the true class (Target Class). The diagonal cells show for how many (and what
percentage) of the examples the trained network correctly estimates the classes of observations. That is,
it shows what percentage of the true and predicted classes match. The off diagonal cells show where
the classifier has made mistakes. The column on the far right of the plot presents the accuracy for each
predicted class, while the row at the bottom of the plot shows the accuracy for each true class. The cell
in the bottom right of the plot shows the overall accuracy.

Figure 10 displays the Neural Network Cross-Entropy and Performance plots. Minimizing Cross-
Entropy within the neural network results in enhanced classification.

The Receiver Operating Characteristic (ROC) is a metric employed to check the quality of
classifiers. For each class of a classifier, the ROC applies threshold values across the interval [0, 1] to
outputs. For each threshold, two values are calculated, the True Positive Ratio (TPR) and the False
Positive Ratio (FPR). For a particular class i, the TPR is the number of outputs whose actual and
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predicted class is class i, divided by the number of outputs whose predicted class is class i. The FPR is
the number of outputs whose actual class is not class i, but predicted class is class i, divided by the
number of outputs whose predicted class is not class i. Figure 11 displays the ROC for each output
class of PRNN. The more each curve hugs the left and top edges of the plot, the better the classification.

The classification performance of the PRNN in the real-world environment is verified in Section 4.
In the third and last stage of the training phase, the structure of the trained PRNN is saved as

a MATLAB function nn_pr_16_RWE on the hard disk for future use. In this way, time consuming
training calculations are performed off-line, during the training phase, which enables fast and efficient
detection during the on-line phase.

Figure 9. Plots of Training, Validation, Test and All Confusion Matrices.
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Figure 10. Neural Network Cross-Entropy and Performance plots.

Figure 11. Receiver Operating Characteristic plots.
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On-Line Fault Detection Phase

From the preceding discussion, the problem of thruster fault detection is considered as a pattern
recognition problem. An original method for on-line fault detection, adapted to the specific features of
the underlying pattern recognition problem, will now be described.

During the initialisation stage of the on-line fault detection phase, training data for each class
(acquired in the off-line training phase) are loaded into memory and displayed as separate static
background plots I versus nd and n versus nd for each layer (HT Layer 0, HT Layer 1 and VT Layer).
These plots are utilised to represent the relationship between variables for different thruster states and
for visualisation of actual thruster measurements in real-time. Additional activities during initialisation
phase include memory allocation for buffers, reading fault code table settings from file and the creation
of action lists.

After the initialisation is finished, the fault detection is performed by repeating the steps from the
FDU Algorithm (Table 9) for each thruster at each programme cycle.

Table 9. FDU Algorithm—On-line fault detection.

FDU Algorithm

1 Read values for external faults (nd, I and n) and internal faults (V and T) from TCU.

2 Create vector x = [ nd I n ]T and execute y = nn_pr_16_RWE(x); y = round(y); 1

3 Combine fault code table (Table 3) and thruster target table (Table 6) to determine
thruster external fault state and corresponding actions A & B.

4 Determine internal fault state and actions A & B from thruster fault code table by
examining if values of V and T exceed the limits.

5 (Optional) Use prioritisation scheme to resolve simultaneous appearance of external and
internal faults: total faults have higher priority than partial faults.

6 Deliver the final thruster state and actions A & B as output.
1 Vector y will have one of the following six values: [1; 0; 0; 0; 0], [0; 1; 0; 0; 0], [0; 0; 1; 0; 0], [0; 0; 0; 1; 0], [0; 0; 0; 0; 1],
[0; 0; 0; 0; 0]. The last value is obtained in cases when a thruster operates in an unknown regime i.e., out-of-normal
regime, different from faulty cases shown in Table 5. Typical examples for this case from the real-world environment
include propeller jammed with rope or seaweed. The thruster state associated with value y = [0; 0; 0; 0; 0] is
“Unknown” (see Thruster Fault Code Table in Table 3).

It should be mentioned that, in order to avoid false detection due to outliers and measurement
noise, the outputs of FDU Algorithm are buffered i.e., the final decision about thruster fault is not
derived from a single measurement, but is accomplished using present and past thruster states (FDU
Algorithm outputs), which are stored in the buffer. This buffer operates similar to the shift register:
when the new state is pushed into the buffer, the other states are pushed (shifted) down and the
”oldest” state is pushed (shifted) out. Elements of the buffer are compared to each other, and if all buffer
elements have the same value (state), then the aggregate thruster state is set to this value. Otherwise,
the previous value is kept as the aggregate state.

3.3. Fault Accommodation (FA) Subsystem

The proposed FA subsystem is an extension of the hybrid approach for control allocation based on
integration of the pseudoinverse and the fixed-point iteration method which compensates the thruster
fault effect [15,16]. It is implemented as a two-step process. The pseudoinverse solution is found in
the first step. Then the feasibility of the solution is examined, analysing its individual components.
If violation of actuator constraint(s) is detected, the fixed-point iteration method is activated in the
second step. In this way, the hybrid approach is able to allocate the exact solution, optimal in the l2
sense, inside the entire attainable command set. This solution minimises a control energy cost function,
the most suitable criteria for underwater applications.



J. Mar. Sci. Eng. 2018, 6, 40 18 of 30

As stated in Section 3.1, the HT Synthesis and VT Synthesis modules create virtual control vectors
τHT and τVT . These vectors represent the total control effort (normalised forces and moments) to be
produced by the actuators (thrusters). Control Allocators in Figure 2 find individual actuator settings
(true control vectors uHT and uVT for horizontal and vertical thrusters, respectively) to be applied in
order to produce desired control effort. The Fault Accommodation (FA) subsystem uses FDI outputs
(aggregate thruster states) and associated software-level actions (action A) and hardware-level actions
(action B) to solve the control allocation problem for each thruster layer in presence of partial/total
thruster faults. Action A (see Table 3) includes penalisation of faulty thruster in the solution of control
allocation problem by restricting saturation bounds i.e., by increasing the corresponding weight in the
weighting matrix [16]. Action B includes power isolation of faulty thrusters (total faults only in Table 3)
such that the entire ROV power system is not compromised. Hence, if the aggregated thruster state is a
partial fault, the thruster is penalised, but will continue to operate. However, in the case of a total fault,
the thruster is removed from the control allocation process, and its power is switched off in parallel.

3.4. Software Implementation

The proposed FTC has been implemented as a LabVIEW VI named “Thruster Active FDI”,
which is a software module integrated with other OceanRINGS+ modules. The user interface,
which shows FDI results, is presented in Figure 12. This image is just an example; it has been artificially
generated by injecting faults in the simulated thruster models, and it is intended to illustrate various
options available in the software to detect, isolate and accommodate faults. The display is divided into
3 groups: horizontal thrusters (Layer 0 & Layer 1) and vertical thrusters. Each state has an associated
colour code box. The external faults are represented with a column named “States”, while internal
faults are displayed as columns named “Voltages” and “Temperatures”. The fault code table for the
individual layers can be edited on the configuration tab of the main application. The fault code table
for the horizontal thrusters (Layer 0) can be viewed in Figure 13.

Figure 12. User Interface showing thruster FDI states and actions.
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In order to increase the flexibility of the proposed FTC scheme, each thruster has associated
individual “Enable Action” buttons. If the “Enable Action” is true, actions A & B will be applied.
If the “Enable Action” is false, no actions will be applied i.e., the FDI subsystem will detect fault,
but no action will be executed by the FA subsystem.

Thrusters HT1, HT2, HT3 & HT4 in Layer 0 in Figure 12 have “Enable Action” buttons set to
true. The FDI subsystem has detected external faults (partial faults) in HT3 (Lightly Jammed) and
HT4 (Jammed) and no presence of internal faults. All four thrusters remain powered on, while the
software-level actions resulted in Saturation Bounds set to 0.75 and 0.25 for HT3 and HT4, respectively.

In a similar way, thrusters HT1, HT2, HT3 & HT4 in Layer 1 in Figure 12 have “Enable Action”
buttons set to true. In this case, the FDI has detected external faults (total faults) in HT1 (Heavily
Jammed), HT2 (Broken) and HT3 (Unknown), and presence of an internal fault in HT4 (Voltage <
Threshold). Hardware-level actions resulted that the power to all four thrusters is switched off (as was
confirmed by the power relay states for HT1–HT4, Layer 1), while software-level actions resulted in
Saturation Bounds set to 0 for all four thrusters.

Figure 13. Fault Code Table for horizontal thrusters (Layer 0).

Finally, thrusters VT1, VT2 & VT3 have “Enable Action” buttons set to true. The FDI has
detected external fault (total fault) in VT1 (Broken Propeller), and internal faults (total faults)
in VT2 (Temperature < Threshold) and VT3 (Temperature > Threshold). Hardware-level actions
resulted that the power to all three thrusters is switched off (as confirmed by Power Relay States),
while software-level actions resulted in Saturation Bounds set to 0 for all three thrusters. Thruster VT4
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has “Enable Action” button set to false. The FDI has detected an external fault (total fault) in VT4
(Broken Propeller) and no presence of internal faults. However, the FA subsystem did not execute
action A (set Saturation Bounds to 0) and action B (switch off power to the thruster, as confirmed with
power relay state for VT4).

An event log table is used to log Fault Detection and Isolation (FDI) events i.e., details of thruster
external and internal faults as they occur. The FDI Event Log Table data includes event I.D., date and
timestamp of fault occurrence, thruster in which fault occurred, type of external and internal fault and,
if the “Enable Action” button is set to true, the software-level and hardware-level actions that were
applied. An example of the FDI Event Log Table is shown in Figure 14.

Figure 14. Thruster Fault Detection and Isolation (FDI) Event Log table.

4. Testing and Evaluation of the FTC

The performance of the FTC, proposed and described in Section 3, is evaluated and tested
in a real-world and virtual (simulated) environment. In the real-world environment, a single M5
VideoRay thruster has been utilised to evaluate the FTC performance for various fault conditions.
In the virtual (simulated) environment, various thruster fault conditions were simulated in order to
examine the behaviour of the FTC in different situations (open-loop/closed-loop control performance
with enabled/disabled FA actions).

4.1. Evaluation of the FTC in Real-World Environment

A single M5 VideoRay thruster, configured as VT4, has been used for post-training validation of
the trained PRNN and to evaluate the performance of the FTC in fault-free mode (no object attached to
the propeller) and faulty modes (with “blockages” of various sizes and shapes attached to the blades,
see Figure 4). The main objective was to evaluate the capability of the FDI subsystem to detect thruster
states for external faults only, with a disabled FA subsystem (the “Enable Action” button set to false

for VT4). The thruster was actuated with the same signal that has been used to acquire training data
(Figure 15) i.e., with saw-like command signal nd (%) with the following pattern: 0% » MAX% » 0% »
−MAX% » 0%, step size 1%. The total duration of signal was T = 20 s, sampling period 50 ms and max.
value MAX = 100%. The critical (forbidden) zone has been set to nd ∈ [−20%, 20%]. Screenshots of
the FDI results for various thruster states are shown in Figures 16–20. Note that the results are for VT4
only. All other thruster states are shown as Invalid.

The FDI subsystem registers events only when the command signal nd leaves the critical (forbidden)
zone. Two events have been logged for each fault: the Event 1 with timestamp t1 (time instance when the
command signal nd left the critical zone for the first time, see Figure 15), and the Event 2 with timestamp t2

(time instance when the command signal nd left the forbidden zone for the second time). While passing
through the forbidden zone, the FDI subsystem went to “sleep” mode indicating a thruster state = “Invalid”.
The PRNN correctly recognised a thruster state outside the forbidden zone in all five cases. Test results



J. Mar. Sci. Eng. 2018, 6, 40 21 of 30

confirmed that the PRNN has 100% classification accuracy outside the forbidden zone, and that the
miss-classification appears exclusively inside the critical (forbidden) zone, as predicted in Section 3.1.

Figure 15. Time responses of command signal and thruster states.

Figure 16. Thruster FDI result for thruster state = “Healthy”.
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Figure 17. Thruster FDI result for thruster state = “Lightly Jammed”.

Figure 18. Thruster FDI result for thruster state = “Jammed”.
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Figure 19. Thruster FDI result for thruster state = “Heavily Jammed”.

Figure 20. Thruster FDI result for thruster state = “Broken Propeller”.

4.2. Evaluation of the FTC in Virtual (Simulated) Environment

As mentioned in Section 3.2, in the virtual (simulated) environment thruster faults are simulated
by varying properties of the thruster dynamic model (load, friction, etc.) inside the propulsion
subsystem of the ROV dynamics simulator. Off-line training and on-line fault detection phases are
performed in the same way as described in Section 3.2 for the real-time environment but, in this case,
faults are simulated by varying efficiency of thruster or by pushing the “Broken Propeller” button on
the Thruster Configuration tab, shown in Figure 21.
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Figure 21. Thruster Configuration tab for horizontal thrusters (Layer 0) in the ROV dynamics simulator.

A description of the simulation test cases, presented in this section, is given in Table 10.

Table 10. Description of simulation tests.

ID Type LLC Settings Thruster Fault “Enable Action”

1

Open-Loop

HT2 (L0) Broken Propeller FalseτX(V J) = 0.3 Heading: OFF
τY(V J) = 0.0 Surge Speed: OFF
τN(V J) = 0.0 Sway Speed: OFF

2
Closed-Loop vd = proj(SOGd)y

HT2 (L0) Broken Propeller FalseSOGd = 0.54 m/s ud = proj(SOGd)x
COGd = 60

◦ Yd = COGd

3
Closed-Loop Yd = COGd

HT2 (L0) Broken Propeller TrueSOGd = 0.54 m/s ud = proj(SOGd)x
COGd = 60

◦ vd = proj(SOGd)y

The test cases described in Table 10 enable investigation of the influence of thruster faults on
the overall control performance of the ROV and demonstrate the ability of the FTC to accommodate
the faults and minimise the negative impact on control performance. It should be emphasized that
similar test cases have been conducted with total and partial faults in vertical thrusters, and the main
conclusion is that the ROV control system with active FDI and FA subsystems is capable of maintaining
full 3 DOF in the vertical plane in the presence of a partial or total fault in a single vertical thruster.

4.2.1. Test 1: Impact of “Broken Propeller” in Open-Loop Mode with Disabled Fault Accommodation

In this case, the Surge, the Sway and the Yaw LLCs are disabled and the virtual control vector
τHT = [ 0.3 0.0 0.0 ]T is constant during the duration of the test. At time instance t0 the “Broken
Propeller” fault occurs in HT2, Layer 0. The FDI subsystem detects the fault and logs the FDI event,
but the FA subsystem does not perform any action, since the “Enable Action” button is set to false
(Figure 22). For this reason, the Control Allocator still assumes that the thruster HT2 is healthy and
does not modify the solution of the control allocation problem. However, since HT2 does not produce
any thrust/moment, the ROV drifts to the right side, with continuous change in heading (Figure 23).



J. Mar. Sci. Eng. 2018, 6, 40 25 of 30

4.2.2. Test 2: Impact of “Broken Propeller” in Closed-Loop Mode with Disabled Fault Accommodation

In this case, the Surge, the Sway and the Yaw LLCs are enabled, while all components of the
Virtual Joystick vector are set to zero. The Speed Mode is set to SM2 (Follow Speed and Course) and
the Heading Mode is set to HM2 (Follow Course). The Desired Speed Over Ground (SOGd) is set to
0.54 m/s, and Desired Course Over Ground (COGd) is set to 60◦. The set points ud for Surge Speed
LLC and vd for Sway Speed LLC are found as projections of the velocity vector in the horizontal plane
on the x and y axis of the body-fixed {b} frame. At time instance t0 the “Broken Propeller” fault occurs
in HT2, Layer 0. The FDI subsystem detects the fault and logs the FDI event, but the FA subsystem
does not perform any action, since the “Enable Action” button is set to false (Figure 24). Similar to
Test 1, the Control Allocator still assumes that the thruster HT2 is healthy. However, robustness of
closed-loop low-level controllers limit the ROV drift to the starboard side with a heading offset of
4.833◦ (Figure 25).

4.2.3. Test 3: Impact of “Broken Propeller” in Closed-Loop Mode with Enabled Fault Accommodation

Similar to Test 2, the Surge, the Sway and the Yaw LLCs are enabled, all components of Virtual
Joystick vector are set to zero, the Speed Mode is set to SM2 (Follow Speed and Course) and the
Heading Mode is set to HM2 (Follow Course). At time instance t0 the “Broken Propeller” fault occurs
in HT2, Layer 0. Since the “Enable Action” button is set to true (Figure 26), the FDI subsystem
detects the fault and logs the FDI event, and the FA subsystem sets Saturation Bounds to zero for HT2
(action A) and switches off the thruster power (action B). The Control Allocator penalises (excludes)
the faulty thruster in the solution of the control allocation problem and reallocates control energy
among the operable thrusters (Figure 27). Small changes in the surge & sway speeds and heading are
visible during the transient stage. The appearance of these transients is unavoidable, since operable
thrusters need time to spin to new setpoints. However, after a short time period, all these changes
diminish and the ROV continues in a straight-line motion, following the desired speed and course
without error (Figure 27).

Figure 22. Test 1 (Open-Loop): Total fault in HT2 (“Broken Propeller”) with disabled fault accommodation.
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Figure 23. Test 1 (Open-Loop): Total fault in HT2 (“Broken Propeller”) occurred at t0; the lack of fault
accommodation causes the ROV to drift with continuous change in heading.

Figure 24. Test 2 (Closed-Loop): Total fault in HT2 (“Broken Propeller”) with disabled fault accommodation.



J. Mar. Sci. Eng. 2018, 6, 40 27 of 30

Figure 25. Test 2 (Closed-Loop): Total fault in HT2 (“Broken Propeller”) occurred at t0; the lack of fault
accommodation and robustness of the closed-loop controllers causes limited drift to the starboard side
with a heading offset of 4.833◦.

Figure 26. Test 3 (Closed-Loop): Total fault in HT2 (“Broken Propeller”) with enabled fault accommodation.
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Figure 27. Test 3 (Closed-Loop): Total fault in HT2 (“Broken Propeller”) occurred at t0; excellent control
performance is achieved due to fault accommodation and robustness of closed-loop controllers.

5. Conclusions and Future Work

This paper described a novel thruster fault-tolerant control system (FTC) for open-frame remotely
operated vehicles (ROVs), developed by researchers at the Centre for Robotics & Intelligent Systems
(CRIS), University of Limerick. The proposed FTC system is part of the OceanRINGS+ ROV smart
control system, currently under development.

The proposed FTC consists of two subsystems: a model-free thruster fault detection and isolation
subsystem (FDI) and a fault accommodation subsystem (FA). The FDI subsystem employs fault
detection units (FDUs), associated with each thruster, to monitor their state. The robust, reliable and
adaptive FDUs use a model-free pattern recognition neural network (PRNN) to detect internal and
external faulty states of thrusters in real time. The FA subsystem combines information provided by
the FDI subsystem with predefined, user-configurable actions to accommodate partial and total faults
and to perform an appropriate control reallocation. Software-level actions include penalisation of
faulty thrusters in solution of the control allocation problem and reallocation of control energy among
the operable thrusters. Hardware-level actions include power isolation of faulty thrusters (total faults
only) such that the entire ROV power system is not compromised.

Using simulations and real-world tests, the performance of the FTC was evaluated through a
series of representative test cases, in order to examine the behaviour of the FTC in fault-free and
faulty conditions. In the real-world environment, a single M5 VideoRay thruster has been used to
evaluate the FTC performance for various fault conditions. Test results confirmed that the PRNN
has 100% classification accuracy outside the forbidden zone, and that the miss-classification appears
exclusively inside the critical (forbidden) zone. In the virtual (simulated) environment, various thruster
fault conditions were simulated in order to examine the behaviour of the FTC in different situations
(open-loop/closed-loop control performance with enabled/disabled FA actions). Simulation results
show that the FTC provides automatic reallocation in faulty conditions, keeping all the DOF in the
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horizontal plane fully controllable and providing the opportunity to continue the mission with a
minimal loss of control performance.

In the worst case scenario, the proposed FTC is able to maintain full 6 DOF control of the ROV
in presence of up to 6 simultaneous total faults in thrusters (one layer with four horizontal thrusters
fully disabled plus one disabled thruster in the other layer of horizontal thrusters plus one disabled
vertical thruster).

Future work includes extension of the proposed FTC to interface with other ROVs and development
of a “passive” method for fault detection and isolation for ROVs with thrusters that cannot provide
active real-time monitoring of relevant signals from thrusters (currents, shaft speeds, applied voltages and
temperatures of windings).
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