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Abstract: We study the atmospheric structure in response to the propagation of gravity
waves under nonisothermal (nonzero vertical temperature gradient), wind-shear (nonzero vertical
zonal/meridional wind speed gradients), and dissipative (nonzero molecular viscosity and thermal
conduction) conditions. As an alternative to the “complex wave-frequency” model proposed by
Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an
eighth-order complex polynomial dispersion equation. The empirical neutral atmospheric models
of NRLMSISE-00 and HWM93 are employed to provide mean-field properties. In response to
the propagation of gravity waves, the atmosphere is driven into three sandwich-like layers: the
adiabatic layer (0–130 km), the dissipation layer (130–230 km) and the pseudo-adiabatic layer (above
230 km). In the lower layer, (extended-)Hines’ mode or ordinary dissipative wave modes exist,
whereas viscous dissipation and thermal conduction fail to exert perceptible influences; in the
middle layer, Hines’ mode ceases to exist, and both ordinary and extraordinary dissipative wave
modes flourish; in the top layer, only extraordinary wave modes survive, and dissipations affect
the real part of the vertical wavenumber (mr) substantially; however, they contribute little to the
imaginary part, which is the vertical growth rate (mi). We also analyze the transition of Hines’
classical mode to ordinary dissipative wave modes, describe both the upward and downward
modes of gravity waves and illustrate nonisothermal and wind-shear effects on the propagation
of gravity waves of different modes.
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1. Introduction

In the early 1970s, seismic tsunamis were demonstrated theoretically to be able to excite
atmospheric acoustic-gravity waves, which propagate to the upper atmosphere where the
conservation of wave energy causes the amplitudes of the wave disturbance enhanced appreciably
due to the decrease of atmospheric density with increasing altitudes [1,2]. Facing such a natural
hazard, which has behaved as a significant threat to humans living throughout recorded history, e.g.,
the Sumatra tsunami of 2004 took the largest toll of human life, with approximately 228,000 casualties
attributed to the tsunami waves [3], much research work and experiments have been accomplished
through data-fit modeling and ground-based or spaceborne measurements of both tsunamis at sea
level and gravity waves propagating in the atmosphere to investigate the coupling between tsunamis
and gravity waves, to ray-trace the propagation of gravity waves in the atmosphere, and to extract
reliable tsunami information from gravity wave data for hazard estimation, forecast, warning and
even alerting, before their arrivals at given shores (see, e.g., [4–7]).
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Up to now, gravity waves have been extensively studied, and much progress has been achieved
on the basis of rudimentary studies in the 1950–1970s (e.g., [8–14]). Particularly, after the 1980s, with
the aid of measurements, like radar and GPS, numerous results have been published on, but not
limited to, the features of wave propagations in the atmosphere and ionosphere, the growth and
decay of wave amplitudes modulated by atmospheric and ionospheric properties, and the wave
perturbations to the GPS signals under different space weather conditions (see the introductions
and/or reviews in, e.g., [15–19]). Nevertheless, there is still a lack of knowledge on the dissipative
effect of viscous damping and thermal conduction in a realistic atmosphere where mean-field
non-isothermality and wind shears are unable to be neglected. This topic was firstly touched on
theoretically by Pitteway and Hines [20] for an isothermal and shear-free atmosphere. Under specific
conditions, say constant kinematic viscosity and thermal conductivity, strong damping effects were
found from the resultant “viscous waves” from the extra roots of the modified dispersion relation.

Pitteway and Hines’s work was then unified by solving a generalized problem of gravity wave
propagation for an arbitrary range of wave parameters [21]. This study illustrated the height of the
maximum wind amplitude and the fraction of reflected energy. Later, the influence of viscosity was
discussed on the vertical oscillations of gravity waves and the upper boundary conditions [22,23];
and the model was soon expanded by involving the effects of Newtonian cooling, ion drag and
thermal excitation around 90∼100 km altitudes [24,25]. It was found that the effect of viscosity and
conductivity terms appears dominant. Afterwards, Hines [26] exposed that the dissipation terms
also affect the criterion of the shear-related Richardson number Ri ∼ 1/4. Much more studies were
developed with more new results reported in the following 25 years. It was verified that viscosity and
conductivity influence the reflecting properties of an isothermal, small Prandtl number atmosphere,
which can be divided into three distinct regions: an adiabatic lower layer with negligible viscosity
and conductivity, an upper layer with considerable effects of the two terms, and the middle one with
negligible viscosity (e.g., [27–29]). At the same time, some similar studies took into consideration
a horizontal magnetic field (e.g., [30–32]). Particularly, in a series of work on the combined effect
of Newtonian cooling, viscosity and thermal conduction, Alkahby [33–35] demonstrated that, for an
arbitrary value of the Newtonian cooling coefficient, on the one hand, a large Prandtl number divides
an atmosphere into two distinct regions between which there is an absorbing and reflecting layer
produced by the exponential increase of the kinematic viscosity; on the other hand, a small Prandtl
number divides the atmosphere into three distinct regions when the Newtonian cooling coefficient is
small, while the two lower regions merge into one if the Newtonian cooling coefficient is large. For an
arbitrary Prandtl number, it was found that the effect of the thermal conduction is dominated by that
of the viscosity if the Newtonian cooling coefficient is small and becomes eliminated completely if the
Newtonian cooling is large. The author concluded that the thermal conduction influences the gravity
wave propagation only in cases with a small Prandtl number and negligible Newtonian cooling.
Nevertheless, all of these contributions are based on Hines’ isothermal and shear-free atmospheric
model with a 3D linear approximation, which assumes much smaller wave amplitudes than the
background values.

In parallel to these traditional linear wave studies, a purely numerical approach under the WKB
approximation (i.e., 2D linear approximation in the horizontal plane only), called the “full-wave
model”, was developed based on a tridiagonal algorithm [36–38]. The approach assumes a
single monochromatic wave in the horizontal plane, but provides respective altitude-dependent
non-wave magnitudes and phases in temperature, pressure, horizontal and vertical wind speeds
in an inhomogeneous atmosphere (e.g., [39–48]). The influences of all of the factors existing
in a realistic atmosphere can be considered in numerical calculations, such as height-dependent
mean temperature, the damping term associated with ion drag, molecular viscosity and thermal
conduction, the filtering of background winds, the eddy and the molecular diffusion of heat and
momentum, etc., subject to boundary conditions. Employing this model, Hickey [49] discussed
the effects of eddy viscosity and thermal conduction, along with Coriolis force, in the dynamics
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of wave-driven fluctuations of the hydroxyl (OH) nightglow in an isothermal and motionless
atmosphere. The author concluded that only for waves with long periods of >2∼3 h can the
conduction take effect; and only in connection with the conduction can the viscosity significantly
modify the results. In evaluating the propagation of tsunami-driven gravity waves, it was illustrated
that above some specific altitude (say, a 130-km altitude), viscosity and conductivity efficiently damp
the waves with periods of tens of minutes ([50] or [51]), while below that height, the effect can be
neglected if the phase-speed of gravity waves is lower than 20 m/s [52].

These results confirmed those obtained in the study of Jupiter’s atmosphere where the damping
rate due to viscosity is clearly shown to be smaller than that due to conduction by a factor of the
Prandtl number for Boussinesq waves [44]. In the studies, a sum of steady-state solutions was
assumed to supposedly result in the general solutions to the Navier–Stokes equations and, thus, likely
incorrect: in a recent paper, Vadas et al. [53] studied the excitation of acoustic-gravity waves driven
by an ocean surface wave packet in an idealized isothermal, windless and inviscid atmosphere. As
is argued in the paper, Hines’ formalism (i.e., real frequency and complex wavenumber) provides
solutions for steady-state wave sources; and, unfortunately, a tsunami is not a steady-state wave
source. This is because it has never been proven that the sum of the steady-state solutions brings
about these general solutions. Indeed, since the steady-state solutions maximize too high in altitude
because of the continuous pumping of energy and momentum into the atmosphere as occurring
under steady-state conditions (see a detailed description in Vadas and Nicolls [54]), it is therefore
unlikely the case that such a sum can represent the general solutions to the Navier–Stokes equations.

Relying completely on numerical simulations to avoid time-consuming calculations, this
“full-wave” method draws much attention increasingly due to its efficiency in dealing with the highly
complicated nonlinear set of complex fluid equations for answers to any required degree of accuracy
under various circumstances. However, the results need to be properly evaluated or corrected for
the validity of the model through some kind of means of reference. For the complicated problems
concerned, the best way to test the “full-wave” solutions may rely on obtaining, as much as possible,
analytical or at least semi-numerical simulations with simpler models, but still complicated enough
to be used as a reference for the test. Fortunately, there have, to our knowledge, been two types of
such simpler models in studies applicable to validate the “full-wave” results. One of the said studies
was done by Zhou and Morton [55] under the WKB approximation. In the absence of dissipative
terms, the authors derived a generalized altitude-dependent Taylor–Goldstein equation for gravity
waves in a compressible and vertically non-isothermal and wind shear atmosphere. They found that
both the intrinsic horizontal phase velocity and the mean-field atmospheric properties determine
the influence of all of the gradient terms on the vertical wavenumber. For the background wind
variation, any terms related to the linear first-order derivative, second-order derivative, and the
square of the first-order derivative, can be dominant under different conditions. For temperature
variation, only the first-order derivative is important for waves of a slow intrinsic horizontal phase
velocity. This work was the only attempt in the past to introduce realistic atmospheric conditions into
Hines’ gravity wave theory and solved the problem under the WKB formalism. In other words, any
numerical results with the dissipative “full-wave” approach in a realistic atmosphere should be tested
for validity with Zhou and Morton’s analytical model by setting a zero viscosity and conductivity, as
well as dropping off other dissipative terms.

The other type of said studies relied on semi-numerical approaches to the characteristics of
gravity wave propagations and their comparisons with observations under dissipative conditions
within the linear wave regime (see the reviews by, e.g., [18,56]; and just to mention a few among a vast
pool of publications and the references therein: [7,52,57–65]). Among the numerous contributions,
Vadas and Fritts’ ray-tracing work was recognized as the “Vadas–Fritts ray-tracing model” [66].
Particularly for an isothermal and wind shear-free atmosphere, Vadas and Fritts ([62]; hereafter, VF05)
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extended Pitteway and Hines [20]’ model to a generalized anelastic dispersion relation, Equation (19)
in VF05, in which both the molecular viscosity and thermal diffusivity are considered:

− Ω2

C2 (Ω− iαν)2
(

1− iγ
αν

ΩPr

)
+ (Ω− iαν)

(
Ω− i

αν

Pr

)(
k2

h + m2 +
1

4H2

)
= k2

hω2
b (1)

where Ω is the intrinsic wave frequency, which is adopted as a “complex wave frequency”, C is
the sound speed, γ is the adiabatic index, kh is the horizontal wave number, m is the vertical wave
number, H is density scale height, ωb =

√
(γ− 1)g/γH is the buoyancy frequency, ν is kinematic

viscosity, Pr is the Prandtl number and α = −k2
h − (m− i/2H)2. The authors concluded that viscosity

has the same effect as thermal diffusivity when considered individually if Pr = 1. Only for a Prandtl
number of one and a large vertical wavenumber can the two effects add together linearly at and
below the dissipation altitude of 115∼155 km altitudes. In the limit of zero viscosity and diffusivity,
Equation (1) reduces to Hines’ classical expression in [67] under isothermal and non-dissipative
conditions by taking m = kz:

− Ω4

C2 + Ω2
(

k2
h + k2

z +
1

4H2

)
= k2

hω2
b (2)

which is Equation (22) in VF05.
Without any exaggeration, Vadas and Fritts’ series of work offered a landmark in the study

of gravity waves. It provides a necessary reference not only for generalizing Hines’ classical
theory analytically and semi-numerically under dissipative conditions, but also for exploring the
damping/pumping effect of the dissipative terms on the propagation of gravity waves in a more
realistic atmosphere. The leading work in VF05 was extended by Vadas and Fritts [68] and
Vadas [52] to include the temperature changes with height and by Fritts and Vadas [69], as well as
Vadas et al. [70,71] to involve the background winds. These nonisothermal and non-zero winds were
considered in the simulations along the ray paths.

These studies inspired us to relax the isothermal and shear-free constraints by involving effects
brought about by non-isothermality and horizontal wind shears in the vertical direction in the
presence of dissipative terms. We concentrate in this paper on the atmospheric structure in response
to the propagation of seismic tsunami-excited gravity waves under nonisothermal (i.e., nonzero
vertical temperature gradient), wind-shear (i.e., nonzero vertical zonal/meridional wind-speed
gradients), and dissipative (i.e., nonzero molecular viscosity and thermal conduction) conditions. We
use the traditional “complex vertical wavenumber” model, instead of VF05’s innovative “complex
wave frequency” formulation, to obtain the dispersion equation of gravity waves. In the study, we
will apply the empirical neutral atmospheric models of NRLMSISE-00 and HWM93 (see Section
3.1 in details) to calculate the mean-field properties of the atmosphere. We expect to see what
consequences will be brought about to the atmosphere in the presence of gravity waves, which are
influenced by the vertical temperature gradient, zonal and meridional wind shears and dissipative
effects. The structure of the paper is as follows: Section 2 generalizes Hines’ isothermal and
non-dissipative model by including altitude-dependent non-isothermality, wind shears, viscosity and
thermal conductivity. An eighth-order complex polynomial dispersion equation is derived. Section 3
analyzes the atmospheric responses in the structure in view of different wave properties. Adiabatic,
dissipative and pseudo-dissipative layers are delineated. Section 4 contributes a quick summary and
a few discussions.

2. Generalized Dispersion Equation of Gravity Waves

We choose a Cartesian frame, {êx, êy, êz}, for the study, where êx is horizontally due east, êy

due north, and êz vertically upward. We concentrate on the propagation of atmospheric gravity
waves, which are associated with either tsunamis or other geophysical disturbances (e.g., volcanoes,
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earthquakes). These waves have a typical period Tgw of tens of minutes (say, 30 min), a horizontal
wavelength (λh) in the order of a few 100 km (say, 300 km) and a vertical wavelength ranging from
several km to tens of km. Thus, the horizontal phase speed C f is typically ∼170 m/s. For such a
kind of wave, the influence of ion drag and wave-induced diffusion are not significant (e.g., [72,73]).
The set of equations to describe the propagation of gravity waves in a dissipative, irrotational, but
compressible atmosphere with an altitude-dependent background temperature and horizontal wind
velocity can be easily obtained as follows (e.g., [38,74]; cf., Equations (2)–(4) in VF05):

∂ρ
∂t +∇· (ρv) = 0

ρ ∂v
∂t + ρv · ∇v = −∇p + ρg + µ

[
∇2v + 1

3∇(∇ · v)
]

∂p
∂t + v · ∇p = −γp∇·v+ (γ− 1) λ∇2T
p = ρRsT

 (3)

in which v = (u, υ, w) is the velocity vector; (ρ, p, T) are the atmospheric mass density, pressure
and temperature, respectively; g = −gêz is the gravitational acceleration; γ and Rs are the adiabatic
index and gas constant, respectively; µ and λ are the molecular viscosity and thermal conductivity,
respectively, defined by ([75]; cf., [76]):

µ = 3.34× 10−7T0.71 (kg/m · s); λ = 6.71× 10−4T0.71 (W/m ·K) (4)

We linearize Equation (3) by employing:

ρ = ρ0 + ρ1, T = T0 + T1, p = p0 + p1, v = v0 + v1 = {U, V, 0}+ {u, υ, w} (5)

where parameters attached with the subscript “0” are ambient mean-field components and those
with subscript “1” are the linearized quantities; U and V are the zonal (eastward) and meridional
(northward) components of the mean-field wind velocity (note that the wind is horizontal, and thus,
the vertical component W is zero), respectively; (u, υ, w) are the three components of the perturbed
velocity, respectively. The inhomogeneities of the mean-field properties bring about the following
altitude-dependent parameters:

kρ =
d(lnρ0)

dz
, kp =

d(lnp0)

dz
, kT =

d(lnT0)

dz
(6)

in which kρ, kp and kT are the scale numbers in density, pressure and temperature, respectively,
satisfying kT = kp − kρ from the equation of state. There also exists a simple relation among kp, g
and C: kp = −γg/C2 = −1/H (where H is scale height).

The linearization of Equation (3) yields the following set of perturbed equations:
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(7)
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We seek a generalized dispersion equation of gravity waves from Equation (7) by adopting the
traditional plane-wave manipulation of the form:(

ρ1

ρ0
,

p1

p0
,

T1

T0
,

u
U

,
υ

V
, w
)

∝ ei(k·r−ωt) (8)

where ω is the extrinsic angular wave frequency; k = {k, l, m} is the wave vector in which k and
l are the two horizontal wavenumbers, constituting a horizontal wave vector kh = {k, l}; and
m = mr + imi is the complex vertical wave vector. Notice that in atmospheric gravity wave studies,
this “complex vertical wavenumber” approach has been a traditional manipulation starting from the
earliest work initiated by Hines. This is different from studies in plasma physics, where the “complex
wave frequency” formulation (i.e., ω = ωr + iωi) is always adopted to obtain the growth rate of wave
instabilities. Vadas and Fritts borrowed this treatment and first applied it to gravity wave studies. In
this paper, we return to rely on the traditional method.

Such a traditional manipulation to Equation (7) provides the following matrix equation:

k l m− ikρ −Ω Ω

X1 0 −dU
dz −ik C2

γ αν0
d2U
dz2

0 X2 −dV
dz −il C2

γ αν0
d2V
dz2

0 0 iΩ− ν0K2 −im C2

γ g

k l m− i kp
γ −Ω

γ X3





u

v

w

p1
p0

T1
T0


= 0 (9)

where:
X1 = iΩ + ν0

(
1
U

d2U
dz2 − K2

)
X2 = iΩ + ν0

(
1
V

d2V
dz2 − K2

)
X3 = i ν0

Pr

(
1+α
T0

d2T0
dz2 − K2 + i2mkT

)
 (10)

In the above expressions, α = 0.71, Ω = ω − (kU + lV) is the intrinsic (or Doppler-shifted) angular
frequency, K2 = k2

h + m2, ν0 = µ0/ρ0 is the mean-field kinematic viscosity and Pr is the Prandtl
number, which is 0.5 after using Equation (4). Note that (1) the second term in the molecular
viscosity,∇(∇ · v)/3, is negligible with respect to the first term,∇2v, for gravity waves with a vertical
wavenumber |m|much larger than 1/2H (see the details in VF05); (2) Vadas and Nicolls [54] included
this extra term in the formalism (but mostly shown to be negligible). The validity of this constraint in
the present paper is to be discussed later following discussing Figure 2 in the next Section.

By defining phase speed C f = Ω/kh and letting kρ,p,T be dimension-free in units of kh,
Equation (9) gives rise to an eighth-order complex polynomial equation if and only if the determinant
of the coefficient matrix is zero:

(a8 + ib8)Z8 + (a7 + ib7)Z7 + (a6 + ib6)Z6 + (a5 + ib5)Z5 + (a4 + ib4)Z4+

+(a3 + ib3)Z3 + (a2 + ib2)Z2 + (a1 + ib1)Z + (a0 + ib0) = 0

}
(11)

in which:
a8 = −γ

η4

ε2 Pr , b8 = − η3

ε3 Pr ;
a7 = b8

(
kρ + 2kT

)
, b7 = −2a8kT ;

a6 = −
(
1 + 2

Pr
) η2

ε , b6 = b8
[
4− c− 2kTkρ − ε2 (3γ + Pr)− P

]
;

a5 = b8
{

6kT
(
1− γε2)+ kρ (3− c)− P

(
2kT + kρ

)}
, b5 = η2

ε2 Pr

(
4kT + Pr kp + 2kρ + Q

)
;
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a4 = η2

ε2 Pr

[
P (Pr+1) + kT

(
4kρ + Pr kp

γ + 2Q
)
+ 3 (γ + Pr) ε2 + 2c− 3 (2 + Pr)

]
,

b4 = η
ε Pr (1 + 2 Pr);

a3 = η
ε Pr
[
(Pr+1) Q + 2kT + 2kp Pr+kρ

]
,

b3 = − 1
ε3

η2

Pr

{
S + 2ckρ − Pr α

(
kp
γ − kρ

)
R + εP

[
kT + (1 + Pr) kp

]
+

+ε
[(

6γε2 − 4
)

kT − 2 (Pr+2) kp − (2− c) Q
]}

;
a2 = 1,
b2 = − η

ε3

{
kp
γ

(
kρ −

kp
γ

)
+ ε2

[(
3 + γ

Pr
)

ε2 + 2
Pr kρkT + 1

Pr (c− 2)− 4 + P +
(

2
Pr kT + γ−1

γ kp

)
Q
]}

;

a1 = − η

ε2

[
S + αR

(
kρ − c

γ kp

)
+ 2ε3 γ

Pr kT − kpε
(

1
Pr + 2 + 1

kp
Q +

kT−ckρ

Pr kp
− P

)]
,

b1 = −
(
kp + Q

)
;

a0 = 1− ε2 − kp
γ

[
kT + (γ− 1) Q +

(
kρ −

kp
γ

)
1
ε2

]
,

b0 = η

ε3

{
ε3
[

Rα (γ− 1)− ε
(

3 + 1−c
Pr γ− P

)]
+ ε

(
1− 1

γ

)
kpS +

kp
γ

(
kp
γ − kρ

)
(1−O) +

+ε2
[
2
(

1− 1
γ kpkT

)
+ P 1

γ kpkT −
(

1− 1
γ

)
kpQ−O

]}
where:

Z = m
kh

, ε =
C f
C , η = ν0kh

C ; a = 1
k2

h

∂2U
∂z2 , b = 1

k2
h

∂2V
∂z2 , c = 1+α

k2
hT0

∂2T0
∂z2

O =

k2
y

U
∂2U
∂z2 +

k2
x

V
∂2V
∂z2

k2
h

, P =
1
U

∂2U
∂z2 + 1

V
∂2V
∂z2

k2
h

, Q =
kx

∂U
∂z +ky

∂V
∂z

Ω

R =
kx

∂2U
∂z2 +ky

∂2V
∂z2

k2
hC

, S =
kx
V

∂U
∂z

∂2V
∂z2 +

ky
U

∂V
∂z

∂2U
∂z2

Ck3
h


(12)

Note that three parameters, a2, b1 and a0, are dissipation-free parameters. They contribute
(extended-)Hines’ modes, to be discussed in the next Section. Besides, we stress here that the
viscosity-related input parameter η varies versus both C and ν0 under different kh. It is an infinitesimal
parameter below ∼200-km altitudes, to be discussed below in the description of Figure 1.

To test the validity of our model, we rewrite Equation (11) under the non-dissipative condition
by setting η = 0 and obtain:

Z2 − i
(
kp + Q

)
Z + 1− ε2 −

kp

γ

[
kT + (γ− 1) Q +

(
kρ −

kp

γ

)
1
ε2

]
= 0 (13)

from which we immediately have

mi =
kp + Q

2
(14)

by evaluating the imaginary parts on both sides of Equation (13).
Equation (13) generalizes Hines’ isothermal and motion-free model for more realistic

nonisothermal (kT 6= 0) and wind shear (Q 6= 0) situations. Adopting kT = 0 and Q = 0 in
Equation (13) yields:

Z2 − ikρZ + 1− ε2 − γ−1
γ2

k2
ρ

ε2 = 0 with mi =
kρ

2

Or, in the dimensional form,
Ω4 − C2 (k2

h + m2)Ω2 + (γ− 1) g2k2
h − iγgΩ2m = 0

 (15)

which recovers Hines’ model as given in Equation (2). Note that the definition of m in our model is the
same as Kz in Hines’ model; and that m and Kz have opposite signs due to the different assumptions
between Hines’ i(ωt− k · r) and our i(k · r−ωt) manipulations.
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3. Atmospheric Structure

3.1. Mean-Field Properties

In Equation (11), the magnitudes of all of the coefficients in nine pairs from (a0, b0) to (a8, b8)

determine which order(s) of the vertical wavenumber Z dominates the propagation of gravity waves
in a nonisothermal, wind-shear, and dissipative atmosphere. To manifest the vertical profiles of
these coefficients, we consider realistic situations by hiring the neutral atmospheric empirical model
NRLMSISE-00 [77] and the horizontal wind model HWM93 [78] to obtain the mean-field properties
and related inhomogeneities, as given in Figures 1 and 2, respectively.

Figure 1 brings to light the mass density ρ0 and pressure p0 (upper left panel); sound speed C
and temperature T0 (upper right panel); zonal (eastward) wind U and meridional (northward) wind
V (lower left panel); and the molecular viscosity, µ0, thermal conductivity, λ0, kinematic viscosity,
ν0, and Prandtl number, Pr (lower right panel). It is worth noticing that C spans from the lowest
∼240 m/s at around a 90-km altitude to ∼700 m/s at a 300-km altitude, much higher than the typical
horizontal phase speed C f ∼ 170 m/s. Pay attention to the lower right panel. It illustrates the vertical
profiles of all of the dissipation terms. From the sea level to a 300-m altitude, µ0 varies in the range
of (1–50) × 10−5 kg/m·s, and λ0 is (2–10) × 10−2 W/m·K. They are not constants versus altitude,
but varying in less than one order of magnitude. By contrast, ν0 soars over 11 orders of magnitude
upward. In 150 km–300-km altitudes, it raises up nearly exponentially from 2 × 104 m2/s–2 × 106

m2/s. Thus, the constant ν0-assumption made by Pitteway and Hines [20] is invalid, and should be
updated for convincing solutions of gravity wave equations. The left parameter is Pr. It turns out to be
a constant, 0.5, by using Equation (4). For parameter η in Equation (12), we consider gravity waves of
kh ∼ 100–1000 km. Together with the vertical profiles of C and ν0, we obtain η ≈ (2 ∼ 20)× 10−13 at
sea level, (2 ∼ 20)× 10−10 at a 50-km altitude, (2 ∼ 20)× 10−6 at a 100-km altitude, (1 ∼ 10)× 10−3

at a 200-km altitude and, 0.02 ∼ 0.2 at a 300-km one. Thus, at most altitudes, it is an infinitesimal
parameter.
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Figure 1. Altitude profiles of atmospheric mean-field properties from the neutral atmospheric
empirical model NRLMSISE-00 [77] and the horizontal wind model HWM93 [78].
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Figure 2 discloses the properties of atmospheric inhomogeneities versus height calculated from
the vertical profiles of the mean-field density, pressure, temperature and horizontal wind components
in Figure 1. The upper left panel portrays density gradient dρ0/dz and pressure gradient dp0/dz.
Definitely, the two curves show a dρ0/dz 6= dp0/dz. This means the density scale height is not
the same as the pressure scale height (notice in Hines’ isothermal model that these two heights are
the same as each other). However, they are merging together at higher altitudes and eventually
united into one above a 200-km altitude, according to the calculated data. In addition, the two scale
heights are not the same because the background temperature T0 increases dramatically with z in the
thermosphere. Once T0 is constant with height (z > 200 km, as shown in Figure 1), the density and
pressure scale heights are equal [79]. In the upper right panel, temperature gradient dT0/dz transits
twice from negative to positive below a 100-km altitude, within 10 m/s per km. Initiating from a
120-km altitude, it declines monotonously versus altitude, returning moderately to zero.
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Figure 2. Altitude profiles of atmospheric inhomogeneities calculated from Figure 1.

The zonal wind gradient dU/dz and the meridional wind gradient dV/dz are outlined in the
lower left panel. They undulate violently, especially in the middle altitudes. For example, the former
profile jumps from 2 m/s per km to −3 m/s per km within only a 25 km-thick layer at about a
100-km altitude. Above a 200-km altitude, the gradients are small, less than 0.4 m/s per km, and
stabilize down to zero upwards. The lower right panel elucidates three scale numbers in density, kρ,
in pressure, kp, and in temperature, kT . Up to a 200-km altitude, kρ 6= kp is always valid, and thus,
the isothermal condition kT = 0 is broken in a realistic atmosphere, except at three heights only: 13.1
km, 47.2 km and 87.9 km. Above a 100-km altitude, kT always keeps positively polarized, and above
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a 200-km altitude, kT = 0 can be taken as granted. Note that kp offers accurately the scale height
H, which is equal to −1/kp. At sea level, H is calculated to be 8.44 km and then goes to as high as
75.6 km at about a 200-km altitude and beyond. It deserves to mentioned here in Hines’ isothermal
condition kρ = kp due to kT = 0. Thus, H = −1/kρ = ρ0/(dρ0/dz).

It deserves discussing the validity of the constraint derived by VF05, which is related to
discarding the second term in the molecular viscosity, ∇(∇ · v)/3, with respect to the first term,
∇2v. This term was included in Vadas and Nicolls [54]’s formalism; however, it was shown to be
negligible mostly. The constraint is |m| � 1/2H or the vertical wavelength λz � 4πH. From the
kp-curve in the lower right panel of Figure 2, we obtain H ∼ 10–100 km from sea level to a 300-km
altitude, with the minimal value at roughly a 100-km height. This requires that λz � 126–1260 km.
We are focusing on atmospheric gravity waves, the vertical wavelength of which lies in several km to
tens of km. Thus, VF05’s requirement is considered satisfied.

The above mean-field properties and their inhomogeneities provide the vertical profiles of all
of the coefficients in Equation (11). The curves are illustrated in Figure 3. The upper row panels
display a0 ∼ a8, and the lower row ones depict b0 ∼ b8. In the two LHS panels, the horizontal
axis is in the range of 10−45 ∼ 105; while in the two RHS panels, it is 10−2 ∼ 102. There are also
two horizontal lines in each panel to label specific altitudes, which separate the atmosphere into
three distinct layers according to the vertical variations of the coefficients: (1) non-dissipative Hines’
adiabatic layer (I: 0–130 km), where Equation (11) is dominated merely by a0, a2 and b1, and all of the
other coefficients are negligible; (2) dissipative (viscous + thermal conducting) layer (II: 130–230 km),
where Equation (11) depends on all of the coefficients; and (3) pseudo-dissipative layer (III: above 230
km), where Equation (11) relies on a4, b6 and b8 only.
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Figure 3. Vertical profiles of coefficients a0 ∼ a8 (upper row panels) and b0 ∼ b8 (lower row panels).
The horizontal axis in the two LHS panels ranges in 10−45 ∼ 105, while in the two RHS panels, it
is 10−2 ∼ 102. Two horizontal lines divide the atmosphere into three vertical layers: adiabatic layer
(I: 0–130 km), pumping/damping layer (II: 130–230 km) and viscous layer (III: above 230 km).
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3.2. Non-Dissipative Adiabatic Layer: Existence and Fading of Hines’ Modes

In the adiabatic layer (I) below a 130-km altitude, Figure 3 exposes that the magnitudes of a0 and
a2 are at least two orders larger than those of other ai (i = 0 ∼ 8), while that of b1 is at least one order
larger than other bi. Above a 100-km altitude, the atmosphere becomes non-adiabatic increasingly
with the emergence of a viscosity-driven term, b0, to compete with b1. Considering these leading
terms in the dispersion equation, Equation (11), we obtain:

Z2 − i(kp + Q)Z + 1− ε2 −
kp

γ

[
kT + (γ− 1) Q +

(
kρ −

kp

γ

)
1
ε2

]
+ i

η

ε3 ζ0 = 0 (16)

which provides the two ordinary viscosity wave modes (i.e., the traditional gravity wave modes
under the dissipative condition) according to Volland [38], where:

ζ0 = ε3
[

Rα (γ− 1)− ε
(

3 + 1−c
Pr γ− P

)]
+ ε

(
1− 1

γ

)
kpS +

kp
γ

(
kp
γ − kρ

)
(1−O) +

+ ε2
[
2
(

1− 1
γ kpkT

)
+ P 1

γ kpkT −
(

1− 1
γ

)
kpQ−O

]
.

We mention here that, if |Z| is smaller than one, it is valid to decide whether or not to keep or
remove appropriate terms in Equation (11) in the resulting reduced equations, like Equation (16),
by analyzing and comparing the magnitudes of all of the coefficients related to these terms; by
contrast, if |Z| is larger than one, this reduction becomes tricky [79]. Fortunately, in the propagation of
tsunami-excited gravity waves, the characteristic wave length of tsunamis in the horizontal plane (λh)
is tens to hundreds of km, while the magnitude of the vertical wavelength (λz) of gravity waves lies
in the range of tens of km. Thus, |Z| ∼ λh/λz is in the order of 1∼2. At the same time, Figure 3 gives
that the eighth-order dispersion equation is dominated merely by a0, a2 and b1, and all of the other
coefficients are mostly at least two orders smaller than these three coefficients. Thus, it is allowable
for us to analyze the magnitude of the coefficients in Equation (11) and to decide whether to include
the related terms or not in the resulting equations reduced from Equation (11).

Evaluating the imaginary parts on both sides of Equation (16) yields the growth rate of the
ordinary viscosity wave modes:

mi =
1
2

(
kp + Q− η

ε3
ζ0

mr

)
(17)

which returns to the extended Hines’ mode, Equation (14), for η = 0. In comparison with
Equation (14), Equation (17) has an extra term contributed by η, which is coupled with mr. Hines’
theory tells us that vertically-propagating waves have a couple of branches, upward with mr+ > 0
and downward with mr− < 0. The introduction of mr through η inevitably divides mi into two
different non-Hines’ modes relative to Hines’ adiabatic mia given in Equation (14): one mode with
mi+ < mia for the upward wave propagation and the other one with mi− > mia for the downward
wave propagation. Consequently, the mi+-branch grows exponentially in amplitude versus altitude
relative to the mia-profile, while the mi−-branch decreases exponentially. This is a well-known
phenomenon that, when dissipation is important, partial reflection (downward) of gravity waves
occurs. The different signs of mi relative to mia lead to the simultaneous occurrence of both upward
(pumping) and downward (damping) propagating modes. The pumping and damping modes result
in the growth and attenuation of the wave amplitude, respectively, as discussed in a sister paper [80].
Notice that the thermal conductivity effect (Pr) does not occur. Thus, above a 100-km altitude, the
ordinary viscosity wave modes substitute Hines’ classical wave modes; and above an ∼130-km
altitude, Hines’ wave mode becomes evanescent due to the appreciable influence of the viscosity.

Figure 4 exhibits the fading of Hines’ mode driven by viscosity in the non-isothermal and
wind shear atmosphere. The LHS panel gives the squared real part of the dimension-free vertical
wavenumber, (mr/kh)

2, and the RHS panel illustrates the imaginary part of the dimension-free
vertical wavenumber, mi/kh. To show explicitly the effects contributed by nonisothermality, wind
shear and viscosity, we show three modes in each panel: (1) Hines’ classical isothermal and
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motion-free mode given in Equation (2); (2) the extended Hines’ mode under nonisothermal and
wind shear conditions given in Equation (13); and (3) the ordinary viscosity wave modes given in
Equation (16). First of all, Hines’ isothermal mode (solid lines in black) in the two panels appears to
exist all the way up till a 300-km altitude, and above 80–90 km altitudes, the changes are monotonous
versus height. Secondly, the extended Hines’ mode (dash lines in red) exposes wind shear effects,
which, though centered at Hines’ isothermal profiles, exaggerate the amplitudes of the variation
in Hines’ mode, along with additional fluctuations and obvious phase shifts. Above the 200-km
altitude, the mode begins to merge into Hines’ basic mode. Lastly, while the LHS panel reveals the
viscosity-driven mode (dashed lines in blue) superimposing upon the second mode below a 130-km
altitude and combining with the first one more rapidly than the second mode above a 150-km altitude,
the RHS panel offers unexpected features: (1) starting from around a 100-km altitude, there appear
a couple of modes that can be identified to follow the development of the extended Hines’ mode
till a 130-km altitude (Hines’ region as labeled in the panels); (2) above this height, the two modes
separate from each other, and one (dashed line in blue) grows on the LHS of the extended Hines’
mode, while the other one (solid line in blue) is on the RHS. No similar mode is originated in this
case from the extended Hines’ mode in the presence of viscosity-driven term. This indicates that the
extended Hines’ mode becomes faded when the viscosity is taken into consideration. Alternatively,
two viscosity-driven branches are excited to replace the extended Hines’ mode, which is irrelevant for
the dissipation ingredients, such as viscosity and thermal conductivity. By checking the simulation
data, we confirm that these two branches are the only two products excited by the viscosity term.
Below the 130-km altitude, both of them join into one and develop into the same profile as the
extended Hines’ mode due to weak dissipation effect; whereas above 130 km, a strong viscosity effect
brings about obvious mr-dependence to mi, as given in Equation (17). (3) In the fading region (shaded
area), one of the ordinary viscosity wave branch resides in the negative mi-band, and the other one
is in the positive mi-band. According to Equations (8) and (17), we know that the amplitude of the
gravity wave in the negative mi-band grows and that the other one decreases. This implies that the
former is pumped and that the latter is damped.

However, there is a caveat in these discussions: both Equations (16) and (17) are obtained in the
adiabatic layer below a 130-km altitude. At higher altitudes, do the two emerging ordinary viscosity
wave modes continue to behave as what is described in the above, and, from where the second-order
polynomial dispersion equation, like Equation (16), is no longer to be appropriate? These doubts
need to be clarified in following Sections.

3.3. Dissipative Layer: Emergence and Development of (Extra-)Ordinary Dissipation Wave Modes

In Layer II of 130–230-km altitudes, Figure 3 demonstrates that all coefficients should be involved
to characterize the propagation of gravity waves. We have to include all of the coefficients in the
Z8-dispersion equation, Equation (11), to present the propagating features of gravity waves. No
doubt there should be eight pairs of complex solutions of (mr.mi) for this eighth-order polynomial
equation. Among these solutions, we find that there exist two groups of wave modes. One group
exposes two ordinary dissipation (viscosity + conduction) wave modes, and the other group
demonstrates six extraordinary dissipation wave modes.

To clarify the doubt about whether or not the two emerging ordinary viscosity wave modes
solved by the second-order Z2-polynomial dispersion equation, Equation (16), are still existing at
higher altitudes where only the eighth-order Z8-dispersion equation, Equation (11), is applicable,
we illustrate the two ordinary viscosity wave modes obtained from solving Equation (16) and the
two ordinary dissipation wave modes out of the eight pairs ofsolutions from solving Equation (11).
The results are shown in Figure 5. The layout of the figure is the same as that of Figure 4, except
the shaded region changed to below a 130-km altitude. All of the blue lines (either solid or dashed)
represent solutions from the Z2-equation, and all of the red lines (either solid or dashed) represent
solutions from the Z8-equation. Above the 130-km altitude, the LHS panel displays such a feature:
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the m2
r -profile of the two Z8-ordinary dissipation modes (one positive mr and one negative mr) has

an obvious shift of no more than 2k2
h toward the higher wave-frequency end. The shift disappears

gradually with the increase of height and is close to zero above a 230-km altitude. Within the same
heights, the RHS panel of mi reveals the emergence of the two Z8-ordinary dissipation wave modes
at the 130-km altitude. One is the upward mode in dashed red, and the other is the downward mode
in solid red.
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Figure 4. Fading of Hines’ wave modes due to viscosity. LHS panel: squared real part of the
dimension-free vertical wavenumber, (mr/kh)

2; RHS: imaginary part of the dimension-free vertical
wavenumber, mi/kh. Fading regions of Hines’ wave modes are shaded.

Therefore, in the fading region (starting from the 130-km altitude), Hines’ two classical modes are
merging into the two new ordinary viscosity-wave modes obtained from the Z2-dispersion equation,
Equation (16). However, the two new modes are only viscosity-related, unable to present a complete
dissipative picture of the atmosphere in the presence of both viscosity and thermal conductivity. By
contrast, the Z8-dispersion equation, Equation (11), provides us a full solution to exhibit the realistic
propagating features of the gravity waves. Thus, the previously-mentioned two modes in solving the
dissipative Z2-equation (i.e., the traditional gravity wave modes), as provided by Equation (16), are
replaced by the two modes in the solutions of the generalized dissipative Z8-equation.

More importantly, although the profiles of two Z2-ordinary viscosity modes are not suitable
to describe the propagation of gravity waves in the fading region (above a 130-km altitude), they
are helpful for us to understand the effect of thermal conduction on wave propagation. Note that
Volland [38] defined “thermal conduction waves” under isothermal and shear-free constraints. In our
model, we use the Prandtl number, Pr, to couple this effect with that of viscosity. This coupling has
already been expressed by the shifts in Figure 5 between the profiles of the Z2-modes and that of the
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Z8-modes. These shifts reflect without any ambiguity the impact of thermal conduction, considering
that the Z2-modes are purely viscosity-driven and the Z8-modes are dissipation-driven (viscosity +
conduction). For the m2

r -profile in the LHS panel, thermal conduction has a discernible influence
to drive the curve with a shift of <2k2

h toward the higher wave-frequency end between 100 and
230-km altitudes; out of the region, it is negligible. By contrast, for the mi-profile in the RHS panel,
the impact of the thermal conduction is traceable, but varies, on all of the heights above a 100-km
altitude: it exaggerates the viscous influence from the 100-km altitude to drive the profile apart from
the Z2-modes. The exaggeration reduces to zero at a 130-km altitude and then increases again till a
170-km altitude. However, above that height, thermal conductivity appears to mitigate the viscous
effect. Noticeably, the higher the altitude, the more obvious the impact of the thermal conduction on
the viscosity mode above an ∼200-km altitude.
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Figure 5. Comparison between the two ordinary viscosity wave modes from the solutions of the
Z2-dispersion equation, Equation (16), and the two ordinary dissipation (viscosity + conduction) wave
modes out of the eight complex solutions of the Z8-dispersion equation, Equation (11).

In addition to the above-mentioned two ordinary dissipation wave modes, the Z8-dispersion
equation, Equation (11), contributes to an extra six extraordinary dissipation wave modes (all of
those different from the normal modes of gravity waves). In Hines’ region below a 130-km altitude,
these extraordinary modes are insignificant because the propagation of gravity waves is dominantly
determined and well-described by Hines’ classical model, Equation (2), in an isothermal, shear-free
and non-dissipative atmosphere; or by the extended Hines’ model, Equation (13), in a nonisothermal,
wind shear and non-dissipative atmosphere; or at the furthest by the more extended Hines’ model,
Equation (16), in a nonisothermal, wind shear and viscous atmosphere. That is, in this adiabatic layer,
all of the coefficients attached to higher orders than two of Z in Equation (11) are reasonably small
enough to be omitted when compared to a2, a0, b1, b0. Thus, a second-order Z2-dispersion equation is
sufficient to account for the propagation of gravity waves. As a matter of fact, as shown in Figure 5,
this second-order Z2-dispersion equation does upgrade Hines’ classical non-dissipative solutions to
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a stage at which viscosity-driven ordinary wave modes, on the one hand, superimpose upon Hines’
modes below a 130-km altitude, where the dissipative terms are small and display no perceptible
roles; on the other hand, they replace Hines’ modes above a 130-km altitude, where the dissipative
terms grow so strongly as to dominate the propagation of gravity waves.

However, ignoring the higher-order terms in the Z8-dispersion equation excludes some wave
modes, which are different from ordinary gravity waves, either in their initiation and/or propagation.
In response to the presence of those higher-order coefficients in the Z8-equation, there should be
six extra extraordinary modes in addition to the already obtained two ordinary modes. These modes
are illustrated in Figure 6. In the LHS panel, every pair of the ±mr-modes in the six solutions
condenses to one m2

r -profile. The small attached panel to the RHS panel gives a full view of the
six mi-profiles. Above the 130-km altitude, all of these modes (as reflected by both the m2

r and mi
panels of the figure) do not shift away appreciably from the two ordinary gravity wave modes,
as given in Figure 5; by contrast, below that altitude (particularly no more than 50 km), in the
shaded Hines’ region, these modes become far beyond the regime of gravity waves, expressing the
“extraordinary” properties. For example, at sea level, all of the m2

r -values are higher than 106k2
h,

and all of the |mi|-values are at least 1.5 × 103kh (see the inserted small panel). In comparison,
at ∼120-km altitudes, m2

r goes down to (10–100) k2
h, and |mi| reduces to no more than 15kh, while

above the 130-km altitude, where the higher-order terms in the Z8-dispersion equation can no longer
be neglected, these extraordinary modes are developed into a matching band with ordinary wave
modes of m2

r ≤ 5− 60k2
h and |mi| ≤ 6kh. The magnitude of their modes, either the pumping or the

damping branches, reduce continuously upward to within m2
r ∼ 0.06− 0.12k2

h and |mi| ≤ 2.3kh at
the 300-km altitude. In comparison, we mention the ordinary modes as shown in Figure 5, which
presents slightly smaller values: m2

r ∼ 0.01k2
h and |mi| ≤ 0.4kh at the 300-km altitude.

Figure 6. Six extraordinary dissipation wave modes out of the eight complex solutions of the
Z8-dispersion equation, Equation (11).



J. Mar. Sci. Eng. 2016, 4, 25 16 of 27

3.4. Nonisothermal and Wind Shear Effects on Wave Modes Below a 230-km Altitude

In a realistic atmosphere where thermal ducting and Doppler ducting are confirmed either
theoretically or experimentally, the altitude-dependent mean-field temperature gradient and
horizontal wind shear bring about appreciable influences on the propagation, reflection, refraction,
dissipation and evanescence of gravity waves (see a review in, e.g., [18] and the references
therein). The most important advances after VF05’s leading work with an isothermal and shear-free
model include, but are not limited to, that the temperature change with height was taken into
consideration [52,68] and that the effect of the background winds was involved [69–71]. These
papers included nonisothermal and non-zero winds in the simulations along the ray paths. In these
approaches, the derived expressions assumed that the temperature and wind were approximately
locally constant.

We use the traditional “complex vertical wavenumber” model to obtain Equation (11) under
the generalized non-isothermal and wind-sheared conditions. To understand the influence of these
factors on both the ordinary and extraordinary wave modes, we choose a region up to a 230-km
altitude within which the coefficients attached to the highest seventh/eighth-order Z, a7,8 and b7,8, are
dominated by the rest, as seen in Figure 3. As a result, we can reduce Equation (11) to a sixth-order
Z6-polynomial dispersion equation:

(a6 + ib6)Z6 + (a5 + ib5)Z5 + (a4 + ib4)Z4+

+(a3 + ib3)Z3 + (a2 + ib2)Z2 + (a1 + ib1)Z + (a0 + ib0) = 0

}
(18)

from which we plot two figures in both the absence and the presence of d(T0, U, V)/dz and
d2(T0, U, V)/dz to manifest the influence of nonisothermality and wind shear on the two ordinary
wave modes, as shown in Figure 7, and the four extraordinary ones, as shown in Figure 8.

The two panels in Figure 7 give a comparison of ordinary m2
r and mi, respectively, between

the isothermal and shear-free situation and the nonisothermal and wind shear situation. The LHS
panel confesses that the introduction of nonisothermality and wind shear strengthens the vertical
variation of m2

r by amplifying the amplitude by an increment of less than 3k2
h below a 130-km altitude.

Above this height, the increment declines steadily and turns into zero above a 230-km altitude. The
RHS panel contains a pumping mode and a damping mode. In the isothermal and shear-free case
(solid lines), the two modes diverge from each other at an ∼100-km altitude. Above 130 km, the
vertical profiles of the two modes evolve roughly symmetrically to mi = 0, with a magnitude of
|mi| ∼ (0.2− 0.4)kh. By contrast, in the nonisothermal and wind shear case (dashed lines), the two
modes diverge from each other at a lower altitude of∼90 km and follow similar vertical modulations
to the isothermal and shear-free case above 130 km, except an apparent departure in the amplitude of
fluctuations. For example, around a 200-km altitude, in a 20-km range, the former case has a variation
of ∼0.05kh, while the latter case gives a sharp change of ∼0.2kh. Above a 230-km altitude, the two
cases do not have much difference. Note that this is a region where the Z6-dispersion equation should
be updated by a new equation. We still draw the profiles to present the overall trends of all of the
modes.

On the contrary, for the four extraordinary dissipation wave modes, the LHS panel of Figure 8
does not divulge in general much nonisothermal and wind shear effects on the m2

r -profiles, except
small discrepancies within 10 km around a 200-km altitude. Even for the mi-profiles in the RHS
panel, though the effects are perceptible by scaling down the mode magnitudes slightly by no more
than 1kh, no visible fluctuations are supplied by the inhomogeneous inputs. These results indicate
that the vertical temperature and wind gradients in a realistic atmosphere are not strong enough to
exert substantial impacts on extraordinary wave modes.
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Figure 7. Effect of isothermality and wind shear on two ordinary dissipation wave modes from the
Z6-dispersion equation, Equation (18), applicable for the region below a 230-km altitude.

Figure 8. Effect of isothermality and wind shear on four extraordinary dissipation wave modes from
the Z6-dispersion equation, Equation (18), applicable for the region below a 230-km altitude.
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3.5. Pseudo-Adiabatic Layer: Extraordinary Wave Modes

Figure 3 reports that a4, b6 and b8 play leading roles in the dispersion equation of the top Layer
III (above 230 km). Equation (11) reduces to the following:

Z4 + ξ2Z2 − i
ε

η
ξ0 = 0 (19)

with ξ2 = 4− c− P− 2kTkρ − ε2(3γ + Pr),

ξ0 = 3(2− γε2)− P− 2c− kT
(
4kρ + 2Q

)
+ Pr

[
3(1− ε2)− P− kT

kp
γ

]
.

Because the terms of ordinary wave modes with coefficients a0, a2 and b1 are absent,
Equation (19) offers four extraordinary modes only. Figure 9 illustrates the results from
230-km–400-km altitudes. The LHS panel exposes the two groups of the overlapped mr-profiles,
Modes 1 and 2 and Modes 3 and 4. The magnitude of all of the (mr/kh)-profiles gets smaller with
altitude. Note that Vadas and Fritts [68] pointed out that a smaller mr/kh gives rise to a larger λz, a
well-known effect that occurs when the temperature increases. The magnitude of the former group
is at least one-order smaller than that of the latter group. In the RHS panel, the growth rate mi of
Modes 1 and 2 is ∼±2kh, respectively. For Modes 3 and 4, the magnitude of mi is not constant, but
decreases from ∼0.6kh at a 230-km altitude to ∼0.2kh at a 400-km altitude. This indicates that, though
the magnitude of mr decreases appreciably with altitude in these two modes, as exposed by the LHS
panel of Figure 9 where (mr/kh)

2 has nearly an exponential relation with altitude, that of mi is not
heavily dependent on altitude. Thus, on the one hand, the dissipative terms exert significant roles on
mr; on the other hand, they do not do so on mi above the 230-km altitudes. This region can hence be
considered as a “pseudo-adiabatic” layer due to its similarity to the lower dissipation layer (below a
130-km altitude) where dissipative terms can be neglected in dealing with wave propagations.

Interestingly, we can obtain Modes 1 and 2 directly through a simple analysis on Equation (19)
where the last term on the LHS is proportional to η−1. See the lower right panel of Figure 1. It tells
us that above a 150-km altitude, ν0 grows exponentially to ×106 m2/s, and thus, η−1 → 0 in this
region. As a result, two approximate mi-solutions can be obtained by neglecting this last term in
Equation (19) and taking ξ2 ∼ 4 and ε ∼ 1/4:

m2
r → 0; mi → ∓

√
ξ2 → ∓2kh (20)

Furthermore, a check on the LHS panel of Figure 9 yields that the mr-group of Modes 1 and 2 does
reside closer to zero than the other group. This is in agreement with m2

r → 0.
We can also estimate Modes 3 and 4 by neglecting the Z4-term due to |Z| = |m/kh| < 1 (see the

profiles of the modes in Figure 9). Equation (19) presents:

mr ≈ mi, and, mi ∼ ε
ξ0

ξ2

1
2ηmr

(21)

which gives:

mr ≈ mi ∼ ±
√

ξ0

2ξ2

ε

η
≈ ±(0.15− 0.5)kh (22)

by taking ξ0 ∼ 7.5 from the ξ0-formula attached to Equation (19) and η ∼0.9–9 estimated following
Equation (12) in Section 2. The results match with the curves drawn in Figure 9 well.



J. Mar. Sci. Eng. 2016, 4, 25 19 of 27

2 3 0

2 6 0

2 9 0

3 2 0

3 5 0

3 8 0

4 1 0

1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 - 3 - 2 - 1 0 1 2 3

 

 

(  m  r  /  k h  ) 2

Alt
itu

de
 ( k

m 
)

 m o d e  1   m o d e  2
 m o d e  3   m o d e  4

  

 

m i  /  k h

Figure 9. Four pseudo-adiabatic wave modes above a 230-km altitude.

4. Summary and Discussion

Inspired by Vadas and Fritts’s pioneer work [62], we revisited a classical problem to understand
the properties of upward-propagating atmospheric internal gravity waves under the influence
of nonisothermality (a nonzero vertical temperature gradient), wind shears (nonzero vertical
zonal/meridional wind-speed gradients) and dissipations (nonzero molecular viscosity and thermal
conduction). We focused on the region where the waves are launched at the bottom of the troposphere
driven by earthquake-excited tsunami waves across the surface of the ocean. Such a concern was first
suggested in the early 1970s by Hines [1], that because of the fall of atmospheric density with height,
the amplitude of the waves propagating upward would have to increase exponentially in order to
keep the conservation of energy; and that the atmospheric gravity waves that are generated by a
tsunami may well produce an identifiable ionospheric signature.

Since Peltier and Hines’ study on the possible detection of tsunamis via monitoring related
gravity waves propagating in the atmosphere and ionosphere [2], this idea had laid fallow for several
decades until the expected ionospheric signals were detected by means of the GPS constellation to
detect gravity wave-driven Total Electron Content (TEC) perturbations. Because tsunamis propagate
across the surface of the ocean at the shallow water speed which is a substantial fraction of the
sound speed in the atmosphere, the atmospheric wave fields are naturally strongly influenced by the
atmospheric compressibility effects to trigger the variations of the ionospheric electron density (ne).
As a complimentary work to investigate ne-perturbations driven by seismic tsunami-excited gravity
waves [81], this paper extends the classical analyses of Hines’ work where all of these influences were
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more or less discussed in the important series of papers in the literature of the upper atmospheric
physics through the decades of the 1960s and 1970s (e.g., [11,13]).

The primary innovation of the present work lies in invoking the standard atmospheric model to
reformulate Vadas and Fritts’s pioneer study and obtain a generalized, altitude-dependent dispersion
relation of atmospheric gravity waves under nonisothermal, wind-shear and dissipative conditions.
The dispersion relation is derived from the determinant of a matrix that reduces to an eighth-order
complex polynomial equation for the wave propagation, which recovers Hines’ classical result in the
appropriate isothermal limit and VF05’s equations under proper siplifications. Various asymptotic
properties of the dispersion relation are investigated. Results show that the atmosphere is featured
by a sandwich-like structure of three different layers determined by the relative importance of the
eight-pair coefficients of the dispersion equation at different altitudes. These layers include: (1) the
adiabatic layer: 0–130 km, where viscous dissipation and thermal conduction fail to exert perceptible
impacts on wave propagation; and only (extended-)Hines’ mode or ordinary wave modes exist; (2)
the dissipation layer: 130–230 km, where the combined effect of viscous dissipation and thermal
conduction affects wave propagation; and both ordinary and extraordinary wave modes survive;
and (3) the pseudo-adiabatic layer: above 230 km, where the combined effect of viscous dissipation
and thermal conduction influences the profile of mr, but not that of mi; and only extraordinary wave
modes can remain alive. As the “extraordinary” branch of gravity waves, the existence of these
extraordinary modes supports that not all of the gravity waves are evanescent above the 230-km
altitude. At the top of the bottom layer, Hines’ mode extinguishes and is replaced by the ordinary
dissipative wave, which develops into a superposition of upward and downward propagating
gravity waves because dissipation is strong. The amplitude of the former increases while that of
the latter decreases in altitudes. In the middle layer, the extraordinary modes come into being in the
gravity wave band. They have a higher wave number and growth rate than the ordinary modes. In
the top layer, ordinary modes disappear, and dissipations affect the growth rates of the extraordinary
wave modes little.

The above results were obtained by employing the traditional “complex vertical wavenumber”
approach to obtaining the gravity wave dispersion equation. The method is different from VF05’s
“complex wave frequency” formulation (assuming ω = ωr + iωi) where the imaginary part, ωi,
implicitly contains the deviation of the wave amplitude away from an exponential increase or
decrease with altitude. Thus, an explicit change in time of the wave’s amplitude is able to be given
from viscosity along the wave’s ray path. Because a gravity wave always propagates vertically, this
was said to be an implicit change of amplitude in altitude from viscosity in addition to Hines’ classical
e−z/2H-factor from the i/2H term. See Equation (25) in VF05 for the explicit formula of ωi.

No doubt, VF05 provided insightful suggestions for improvement over past efforts on studying
the atmospheric responses to gravity waves excited by a kind of diverse, localized and intermittent
source, like tsunami. More than the above, VF05 validated that the second term in the molecular
viscosity, ∇(∇ · v)/3, can be reasonably omitted due to its small magnitude compared to the first
term, ∇2v, if |m| � 1/2H. This greatly reduces the algebra procedure to obtain a complex matrix
dispersion equation for numerical calculations. That was why we put a premium on Vadas and
Fritts’s series and extend VF05’s isothermal and shear-free model by including the effects of vertical
temperature and wind gradients. We hope our work is able to offer a supplementary reference to
relevant studies.

The “complex vertical wavenumber” approach is a traditional method to obtain a single
algebraic equation from the set of basic equations of conservation of mass, momentum and energy,
plus the ideal gas equation. Particularly, Hickey and Cole [74] derived a quartic dispersion equation
for gravity waves in an isothermal and shear-free atmosphere in the presence of not only dissipation
effects, but also Coriolis and ion drag effects. By ignoring the last two terms, their matrix dispersion
equation, Equation (8) in their paper, reduces to our Equation (9) in the absence of temperature and
wind gradients. However, instead of Z, they used a dimension-free parameter, R = {k2

h + [mr +
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i(mi − 1/2H)]2 + 1/4H2}/k2
h as the variable for the complex quartic dispersion equation. The merit

of the manipulation is evident in that two of the extraordinary wave modes can be easily estimated
via their Equation (11) if 1/H and kh are small enough to be neglected:

(mr + imi)
2 = −i

ω

ν0
⇒ mr ∼ mi = ±

ω

2mrν0
(23)

which turn out to be our Modes 3 and 4 by offering the same analytical result as our Equation (21).
Note that these modes are the only two of our four extraordinary modes they can provide to exist
above a 230-km altitude. Below this height, an updated version of their Equation (11) may be
necessary to give complete ordinary and extraordinary modes.

In view of future studies on GPS measurements of ionospheric perturbations caused by the
propagation of tsunami-excited gravity waves, we would like to compare briefly the atmospheric
structure identified in this paper with the general structure of the ionosphere, which overlaps
atmospheric layers from the lowest D-region through the middle E-region up to the top F-region.
These quasi-neutral plasma layers have distinct physical properties from each other: (1) D-region:
50 km–90 km; which absorbs radio waves effectively; (2) E-region: 90 km–150 km; atmospheric
winds drive plasma particles against the geomagnetic field to form an ionospheric dynamo; and
(3) F-region: 150–1000 km; it decouples gradually from atmospheric effects and is the load region
of a global-scale magnetosphere-ionosphere interaction. Obviously, the atmospheric adiabatic layer
(<130 km) involves ionospheric D and most E regions; the atmospheric dissipation layer (130–230 km)
corresponds to the ionospheric F1 region (150–220 km); and the atmospheric pseudo-adiabatic layer
(>230 km) refers undoubtedly to the ionospheric F2 region (220–800 km) and higher. As a result, in
dealing with the ionospheric electron density responses to seismic tsunami-excited gravity waves, we
just need to include the pseudo-adiabatic properties of the atmosphere in evaluating the TEC peak in
the F2 region (see details in [81]).

This paper derives the ordinary and extraordinary modes of gravity wave solutions in a
non-isothermal, wind-shear, and dissipative atmosphere, thereby providing an extension to previous
studies (e.g., [1,2,74]). The solution ansatz used here is that the vertical wavenumber is a complex
number, as defined by pioneering studies, like Hines. In isothermal and shear-free cases, the solution
reduces to Hines’ result, i.e., the amplitude has an exponential growth with altitude because of the
density decrease with altitude, after removing the imaginary part which contains i/2H [79]. However,
there exists a concern on the application of the results: the solutions may only be applied realistically
to steady-state wave sources; because a tsunami may not be a steady-state gravity wave source, the
solution is unlikely well applicable in dealing with tsunami-related problems.

By reviewing the history of tsunami-excited gravity wave studies since the early 1970s and the
abundant studies on gravity wave propagation to seek appropriate models of reliable algorithms to
approach to tsunami warning or alerting on the basis of ground-based and/or spaceborne data (like
LiDAR and GPS signals), we think differently with the following arguments:

At the very beginning, Hines [1] suggested in 1972 that tsunami-excited gravity waves
propagating in atmosphere can produce identifiable perturbations in the ionosphere that could be
used for tsunami warning. Later, Peltier and Hines [2] pointed out that the dominant difficulties to
be faced lie in: (i) the feasibility of such detections of the tsunami signatures due to the transmission,
reflection and absorption of wave energy in the regions between the ocean surface and the ionospheric
height of observation; (ii) the time-delay experienced by the tsunami signature in reaching that
height; (iii) a degradation of amplitude when the signature is detected via its effect on isopleths
of the electron concentration; and (iv) the competition of “noise” that would obscure the signature.
Fortunately, the authors found these difficulties to bring only “marginal consequences” to the original
suggestion. Therefore, from the 1970s, tsunamis began to be widely recognized as a possible driver
to excite atmospheric gravity waves, which subsequently propagate to the upper atmosphere where
the conservation of wave energy causes the enhancement in wave amplitudes due to the decrease of
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atmospheric density with increasing altitudes under Hines’ isothermal and shear-free conditions. As
a result, there existed no issues from the start on either “steady-state” or “non-steady-state” sources.

Alternatively, there appeared concerns that challenge Hines’ primitive model. For more than 10
years, LiDAR facilitates have recorded both atmospheric nonisothermality (featured by temperature
gradients up to 100 K per km) and large wind shears (e.g., 100 m/s per km) between ∼85 and
95-km altitudes [82–86]. Serious attention was naturally given to such fundamental questions, like
to what extent the non-isothermality and wind shears influence the propagation of acoustic-gravity
waves, what the amplitude features are when the waves are modulated in the damping or growing
processes versus altitudes, etc. Much work then concentrated on either the linear wave approach
to solving extended dispersion relations of gravity waves (e.g., [7,49,87]) or with nonlinear WKB
approximation via purely numerical “full wave model” (e.g., [43,47,48]). Particularly, due to the
2004–2007 earthquakes over Sumatra, more and more tsunami-related ionospheric perturbations
were studied (e.g., [50,81,88]). These studies reinforced and validated Hines’ theory to make use of
tsunami-excited gravity waves for an operational hazard-warning system. Consequently, the research
in the last tens of years proved that it is on the right track to employ and develop Hines’ linear wave
theories in studies on solving tsunami-related problems. As far as the state of tsunami sources, either
“steady” or “non-steady”, this is merely related to such an issue of the initial and boundary conditions
of the excitation and propagation of gravity waves. This is due to following reasons:

(1) Tsunamis are irrelevant with respect to the intrinsic properties of the atmosphere and
ionosphere. The space above sea level, including the atmosphere and ionosphere, is present as a
giant “black-box”. It has been studied by using either linear or nonlinear theories depending on
different purposes. Tsunami waves on the ocean surface provide an input to this “box”. As the
initial and boundary condition, this input can be either at a steady state (namely, time independent)
or a non-steady state (namely, time dependent), relying on specific situations under different
considerations of research. The condition is irrelevant for the intrinsic properties of the “box”.

(2) Tsunamis provide only the conditions to drive gravity waves. It is thus natural to conclude
that there exist tsunami waves on the ocean surface that do not fall into the gravity wave regime
that would be allowed to propagate vertically after excitations occurring at sea level. Luckily,
this suggestion is in agreement with the most recent work done by Godin, Zabotin and Bullett on
acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean [89]: not
every tsunami-generated wave has periodicity in the permitted regime; in particular, these waves
are featured by a transition frequency of about 3 mHz (34.9 min in wave periods), only below which
the infragravity waves continuously radiate their energy into the upper atmosphere in the form of
acoustic-gravity waves.

(3) Either “steady” or “non-steady” tsunami sources fit with studies on gravity waves
propagating in the atmosphere and ionosphere, if they fall into the gravity-wave regime. A
proper tsunami model was adopted from the late 1960s to model the initial and boundary
condition for the excitation and propagation of tsunami-generated gravity wave packets
(e.g., [1,2,12,50,51,88,90]): in the horizontal plane at initial time t = 0 and sea level z = 0, the tsunami
displacement Z(x) is determined by the Airy function, Ai,

Z(x, z = 0, t = 0) = A(t = 0)
[

Ai(1− x)
x
2

e1−x/2
]

(24)

where x is the horizontal distance at the sea surface in units of 100 km and A ∼ 0.5 m is the amplitude
of the forcing in meters [88] for a dominant horizontal-scale size of λh = 400 km. Let ω and k = 2π/λh
be the wave frequency and horizontal wavenumber, respectively. The k-spectrum of the forcing can
be obtained from the Fourier transform of Equation (24):

Ẑ(k, 0, 0) =
1

2π

∫ ∞

−∞
Z(x, 0, 0)eikxdx, along with w(k, 0, 0) = iωẐ(k, 0, 0) (25)
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where w is the vertical speed spectrum. The time-dependent solution can be obtained by updating
the conventional Fourier spectral method:

Z(x, t) =
∫ ∞

−∞
Ẑ(k, 0, 0)ei[ω(k)t−kx]dk (26)

with (i) the term of Ẑ(k, 0, 0) replaced by Ẑ(k, t, 0) and (ii) the term of ω(k)t replaced by
∫

ω(k, t)dt.
Hence, the modeling and solutions introduced in this paper can be used for not only steady-state, but
also non-steady-state wave sources. Steady-state modelings with Equation (26) were already used in,
e.g., [50] (or [51]), for tsunami-excited gravity wave studies in the atmosphere and ionosphere, and in,
e.g., [91,92], for Gaussian source-excited flapping wave studies in the magnetosphere. These studies
provided a reference for the next non-steady-state modelings.

As a result, we make certain to remove the concern readily for readers to apply the modeling
and results given in this paper with either steady-state or non-state-state wave sources. Regardless
of this fact, we have to be cautious to check and make sure that the initial and boundary conditions
(e.g., measured tsunami wave periods, zonal and meridional wavelengths, the vertical wave speeds)
are within the gravity wave regime, so as to avoid the model being misused in coding ray-tracing
algorithms to demonstrate wave propagations, as well as in interpreting experimental signals from,
e.g., GPS satellites, for a global manifestation of the ocean-generated gravity waves.
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