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Abstract: In the era of marine big data, making full use of multi-source satellite observations to
accurately retrieve and predict the temperature structure of the ocean subsurface layer is very
significant in advancing the understanding of oceanic processes and their dynamics. Considering
the time dependence and spatial correlation of marine characteristics, this study employed the
convolutional long short-term memory (ConvLSTM) method to retrieve the subsurface temperature
in the Western Pacific Ocean from several types of satellite observations. Furthermore, considering
the temperature’s vertical distribution, the retrieved results for the upper layer were iteratively
used in the calculation for the deeper layer as input data to improve the algorithm. The results
show that the retrieved results for the 100 to 500 m depth temperature using the 50 m layer in the
calculation resulted in higher accuracy than those retrieved from the standard ConvLSTM method.
The largest improvement was in the calculation for the 100 m layer, where the thermocline was
located. The results indicate that our improved ConvLSTM method can increase the accuracy of
subsurface temperature retrieval without additional input data.

Keywords: deep learning; iterative optimization; remote sensing data; convolutional long short-term
memory (ConvLSTM); marine temperature; Western Pacific

1. Introduction

It is well established that marine data are essential for oceanology and climate change
research. However, observing the ocean is difficult and expensive, so it remains rare.
Although implementing the Argo program has dramatically enhanced global ocean obser-
vations since 2004, the program still needs improvement regarding the observation density,
distribution, and time span due to the limitations of the observation means and cost [1,2].
On the other hand, with the development of satellite remote sensing technology, the re-
motely sensed sea surface temperature and sea surface height information are increasing,
providing many images of the ocean’s surface with comprehensive coverage, a high spatial
resolution, and strong temporal continuity [3,4].

These abundant satellite data only reflect the ocean’s surface; researchers need more data
to determine the structure and variation under the surface. The three-dimensional dynamical
processes within the ocean are very complex, and many crucial physical ocean phenomena
and dynamical processes exist within a certain depth range below the surface [5–7]. The
subsurface structure of the ocean, especially the temperature structure, needs to be accurately
studied to understand the ocean’s circulation, the thermocline structure, and climate change.
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Researchers are trying to utilize satellite data to compensate for the insufficiency of the data
obtained inside the ocean.

Artificial intelligence (AI) technology, driven by data, extracts valuable information
from data through multi-layer learning and objectively mines the intrinsic relationships
between data, which not only improves the efficiency and precision of data processing,
breaking the bottlenecks of traditional technology, but also brings a new opportunity for
the intelligent analysis and excavation of marine big data. In recent years, machine learning
and deep learning have also been applied to retrieve the ocean’s subsurface structure.
Ali used an artificial neural network (ANN) to retrieve the vertical temperature structure
through SST, SSH, and other sea surface flux parameters [8]. Wu used a self-organizing
neural network (SOM) to build a network through Argo grid data to retrieve the subsurface
temperature anomalies using remotely sensed data [9]. Su used a support vector machine
(SVM) to study the Indian Ocean 1000 m above the subsurface temperature anomaly [10].
Su proposed a geographically weighted regression (GWR) method to retrieve the global
subsurface temperature anomaly through multi-source satellite data and took into account
the significant spatial non-stationarity between the ocean surface parameters and the sub-
surface parameters in the model [11]. Cheng proposed incorporating a new sea surface
parameter, SSV, to retrieve the subsurface temperature in the Northern Pacific [12]. Su
proposed improving the generalization ability of the prediction model by incorporating
time series feature learning using a long short-term memory neural network (LSTM) [13].
Although the LSTM [14] algorithm, as a specific deep learning algorithm, can effectively
consider the time dependence of marine data, it cannot be efficiently trained on the spatial
scale to deal with the spatial nonlinearities of marine data simultaneously [15–17]. Con-
sidering the spatial correlation of ocean data, convolutional-neural-network-related deep
learning algorithms have also been widely applied to subsurface temperature retrieval
in recent years. Han proposed using a convolutional neural network (CNN) to incorpo-
rate spatial sequence feature learning to build a monthly CNN model to reconstruct the
subsurface temperature. However, the monthly CNN model did not subtract the corre-
sponding feature climate averages, and the single-point model lacked a certain degree
of universality [18]. Meng proposed utilizing a convolutional neural network to retrieve
the subsurface temperature in the Pacific region and improve the horizontal resolution
from 1◦ to 1/4◦ [19]. Shi et al. proposed the retrieval of the subsurface temperature with a
convolutional long short-term memory (ConvLSTM) network algorithm, which takes into
account the spatial and temporal characteristics of ocean data together and combines the
spatial information in the time series to improve the accuracy of the model prediction [20].
Song et al. then applied the method to atmospheric wind field forecasting and obtained
accurate large-scale forecasts [21]. The method can also combine several surface factors to
retrieve the subsurface parameters of other ocean variables (e.g., currents and eddies).

Using deep learning methods, the relationships between ocean elements can be ad-
dressed quickly, and the mapping relationship between the surface layer and subsurface
layer can be constructed with a low computational cost and high efficiency.

The tropical Western Pacific is well known as the “warm pool” of the global ocean,
featuring the highest global sea surface temperature and acting as the most important
global heat source. The water temperature variation in this area plays an important role
in regulating global warming and the climate system. The occurrence of EI Niño in the
Central and Eastern Pacific Ocean significantly impacts global climate change [22,23],
and many scholars have found that the Western Pacific’s water temperature is closely
related to El Niño [24–27]. Moreover, further studies have emphasized that the water
temperature variation in the tropical Western Pacific plays a critical role in the EI Niño–
Southern Oscillation (ENSO) cycling mechanism [28,29]. Additionally, the variation in
the water temperature in the Western Pacific is closely related to the frequent occurrence
of droughts and floods in East Asia in recent decades [30,31]. Therefore, retrieving and
predicting the structure and variation in the water temperature in the Western Pacific could
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advance our understanding of the mechanism of the ENSO cycle and climate change and
enhance our ability to defend against natural disasters.

In this study, we adopted the ConvLSTM network to retrieve the three-dimensional
temperature structure in the Western Pacific area and improved the calculation by taking
into account the vertical distribution features of the temperature. Firstly, we retrieved the
50 m layer temperature based on multi-source sea surface parameters and then took the
result as an additional input to retrieve the temperatures of deeper layers. In this way, we
improved the accuracy of the retrieval of the subsurface layers, especially the 100 m layer,
without adding new input data.

The rest of the paper is organized as follows. Section 2 describes the data and methods
used in this study. Section 3 presents the error metrics and retrieval results used to evaluate
the performance of the prediction model. Sections 4 and 5 provide the discussion and the
conclusions of the study, respectively.

2. Materials and Methods
2.1. Materials

The research area is shown in Figure 1. The range of the area is 135.125◦ E–154.875◦ E,
5.125◦ N–19.875◦ N. In this study, we calculated the subsurface temperature from multi-
source satellite observations, including the sea surface height (SSH), sea surface temper-
ature (SST), and eastward and northward components of the sea surface winds (USSW
and VSSW). Three-dimensional water temperature reanalysis data were used to train the
model and to validate the model results. The SSH data were acquired from the Archiv-
ing, Validation, and Interpretation of Satellite Oceanographic (AVISO) (https://www.
aviso.altimetry.fr/en/data/products, accessed on 1 March 2023), which spans the pe-
riod from January 1993 to the present; the SST data were from OISST version 2.1 (https:
//www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/, ac-
cessed on 1 March 2023), which spans from September 1981 to the present; the SSW data
were from CCMP version 3.0 (https://data.remss.com/ccmp/v03.0/, accessed on 1 March
2023), which spans from January 1993 to December 2019; and the reanalysis water tem-
perature data were from the CMEMS dataset, acquired from Copernicus Marine Service
(https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/, ac-
cessed on 1 October 2023), which spans January 1993 through December 2022. To stan-
dardize the resolution of the data in model training, the spatial resolution of all parameters
was 0.25◦ × 0.25◦, and the temporal resolution was monthly averaging with a time span of
January 1993 to December 2018. The CMEMS dataset includes 75 standard depth layers,
but only the first 10 layers were used in this study (for 20, 50, 100, 150, 200, 300, 500, 1000,
1500, and 2000 m). The temporal resolution of all parameters was monthly.
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The mean values from 2005 to 2018 were first subtracted from all remotely sensed
variables (SST, SSH, USSW, and VSSW) to obtain their anomalies and reduce the calculation
cost. The subsurface temperature, as the corresponding label for model training and testing,
was the main element in assessing the quality of the model.

2.2. Method

The LSTM [14] is a particular type of recurrent neural network that can effectively
reflect time continuity and address time series forecasting problems. The CNN is commonly
used in image and video processing to extract the complex spatial features of data. The Con-
vLSTM algorithm, proposed by Shi et al. for spatial–temporal prediction, takes advantage
of both [20]. ConvLSTM is a type of deep feed-forward neural network with advantages
in extracting local features and weight sharing. It is capable of predicting the temporal
variation in the spatial structure of data by switching the fully connected operation of the
LSTM algorithm to a convolutional operation. It can also progressively extract more and
more complex features and then greatly reduce the number of parameters through the
superposition of multiple network layers. Combining the convolutional structure with the
recurrent structure allows more complicated spatial–temporal features to be learned in the
time series of three-dimensional data. The problem of spatial discontinuity in the predic-
tion results of traditional models, which is usually caused by the inability to recognize the
influence of data’s spatial variation, can then be avoided in this way. The hyperparameters
in the ConvLSTM model can be adjusted as the research objectives change, and the model’s
training efficiency and prediction accuracy can be effectively improved through configuring
the model by adjusting the hyperparameters. Considering the strong temporal continuity
and spatial correlation of marine data, ConvLSTM, with all its aforementioned advantages,
is quite suitable and is now widely used in dealing with oceanographic issues [32,33].

In this study, we used ConvLSTM and determined the optimal configuration of the
hyperparameters using the grid searching method. We experimentally considered several
combinations of ConvLSTM networks with different layers and finally selected a model
with two layers of Convlstm2D and one layer of Conv3D. The complexity of the neural
network was reduced by adding regularized Dropout layers between the ConvLSTM layers
to avoid the overfitting phenomenon, so that the weights were dispersed and the model
did not rely too much on one or some features. The appropriate batch_size was determined
based on the results of sensitivity experiments to optimize the model training speed and
convergence speed. The nonlinear Relu function was chosen as the activation function
for the 2D layer of ConvLSTM, which can not only help to improve the nonlinear fitting
ability of the model and reduce the complexity of the model with its sparsity, but also has
the advantages of good computational efficiency and interpretability, fast convergence,
and reducing incidents of gradient disappearance. The specific settings of the ConvLSTM
parameters finalized for this study are shown in Table 1.

Table 1. ConvLSTM model parameters.

Hyperparameters Optimal Values

Network parameters

num_layers_ConvLSTM2D 2
kernel_size_ConvLSTM2D 3 × 3
activation_ConvLSTM2D Relu

num_layers_Conv3D 1
kernel_size_Conv3D 3 × 3 × 3
activation_Conv3D Relu

Optimized parameters

time_step 3
batch_size 32

training_epoch Customized
learning_rate 0.001

optimizer Adam

Regularization parameter dropout 0.3
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2.3. Experimental Setup

The model architecture for the retrieval of the ocean subsurface temperature field
using ConvLSTM is illustrated in Figure 2. The horizontal distributions of the sea surface
parameters at moments t − 2, t − 1, and t were input into the ConvLSTM model, and the
subsurface temperature at the target depth at moment t was output. Data from January
1993 to December 2018 (312 months in total) were used in the experiments, where 80% of
the samples were randomly selected as the training set (20% of which were used as the
validation set), and the remaining 20% were used as the test set.
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Considering the physical regulations inside the ocean, and in order to improve the
accuracy of the subsurface layer retrieval, the subsurface temperature prediction results of
the upper layer were iterated into the retrieval of the lower layer as additional input data.
Specifically, the model output of the 50 m layer was added to this study’s calculation of
the 100 to 500 m layer. Two groups of comparative experiments for the 100–500 m layers
were carried out: in one group, the results were directly retrieved from remote sensing
data with the standard ConvLSTM method, and in the other group, the 50 m layer’s results
were input into the models for deeper layers. Figure 3 shows the flowchart of our technical
route, which included three steps: training dataset construction, model training, and model
prediction. For the iterative modeling process, the model prediction of the 50 m layer was
added to the input data for the deeper layers’ (100–500 m) model training.

In data preprocessing, the input to ConvLSTM is a set of five-dimensional tensors
that need to be reconstructed in the shape of (N_samples, N_steps, N_rows, N_columns,
N_channels), where N_samples is the total number of input samples, N_steps denotes the
number of time steps included in one sample, N_rows and N_columns reflect the input
data’s spatial dimensions, and N_channels is the number of channels of the input data.
In this study, since the spatial dimension of the input image is 60 × 80, N_rows is 60 and
N_columns is 80. N_steps is 3 (t − 2, t − 1, t), N_channels is 4 in the standard ConvLSTM
method, and N_channels is 5 in the improved model. Considering the existence of different
orders of magnitude of the parameters in the input data, normalization is performed before
inputting the model.
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The RMSE and R2 are used as indicators to quantitatively evaluate the results.

RMSE =

√
1
m

m

∑
i=1

(xi − yi)
2 (1)

R2 = 1 − ∑m
i=1(xi − yi)

2

∑m
i=1(xi − x)2 (2)

In the equations, xi is the true value at time i, i.e., the temperature from the CMEMS
data at time i for a certain location and layer; yi is the corresponding prediction, i.e., the
retrieved temperature at time I for the same point; m is the number of samples; and x is the
average of the true values.

3. Results
3.1. Results Retrieved Directly from Sea Surface Data with Standard ConvLSTM Model

We used the standard ConvLSTM method to build the model and retrieved the 0–2000 m
(10 layers) subsurface temperatures by inputting sea surface anomaly data. Each layer of
the subsurface temperature was calculated one by one, and the models were independent of
each other. Along with their corresponding CMEMS data, 80% of the dataset was selected
randomly as the input data for model training. After the models were built, the remaining
20% of the dataset was used for the subsurface temperature as test data. The results were
compared with the corresponding temperature data from the CMEMS dataset to verify the
accuracy of the model prediction. The comparison method was mainly used to calculate the
RMSE and R2 between them.

Figure 4 shows the vertical profiles of the errors (RMSE, R2) from the standard ConvL-
STM method. The RMSE rises gradually in the 0–150 m range and reaches a maximum of
150 m. Below this, with an increase in depth, the RMSE gradually decreases. Finally, the
variation in the RMSE tends to flatten out as the depth increases below a 1000 m depth.
The average RMSEs at 100, 150, and 200 m were 0.59, 0.76, and 0.65◦, respectively. It can be
seen that the errors around 100–200 m are extremely large, showing a peak in the curve.
The R2 shows a tendency to decrease, then increase, and then decrease again, with values
of 0.75, 0.90, 0.96, and 0.98 at depths of 100, 150, 200, and 300 m, respectively. The R2 value
decreases steadily below the depth of the 300 m layer, which reflects the decrease in the
model’s prediction ability. The reasons for these phenomena will be discussed in Section 4.2.
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Table 2 shows the RMSE and R2 of the results from the standard ConvLSTM method for the
100–500 m layer test sets. In the 100 m layer, the root-mean-square error (RMSE) increases
with seasonal changes, with a minimum of 0.51 in the spring and a maximum of 0.66 in
the winter; in the 150 m layer, the RMSE increases, then decreases, and then increases with
seasonal progression, with a maximum in the summer and a minimum in the fall.
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Table 2. Monthly RMSE and R2 of test sets from standard ConvLSTM method.

Month 100 m 150 m 200 m 300 m 500 m

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

1 0.69 0.91 0.80 0.95 0.72 0.96 0.31 0.98 0.20 0.86
2 0.70 0.77 0.77 0.93 0.70 0.95 0.36 0.98 0.20 0.87
3 0.46 0.73 0.81 0.81 0.53 0.96 0.33 0.98 0.18 0.88
4 0.53 0.85 0.97 0.87 0.68 0.95 0.45 0.97 0.22 0.84
5 0.53 0.71 0.71 0.88 0.63 0.95 0.30 0.98 0.22 0.83
6 0.61 0.68 0.68 0.88 0.71 0.94 0.31 0.98 0.19 0.87
7 0.49 0.76 1.02 0.86 0.60 0.97 0.27 0.99 0.19 0.87
8 0.58 0.75 0.83 0.89 0.70 0.95 0.34 0.98 0.21 0.83
9 0.59 0.63 0.65 0.92 0.75 0.94 0.33 0.98 0.20 0.84

10 0.58 0.75 0.53 0.96 0.54 0.97 0.35 0.98 0.19 0.85
11 0.65 0.63 0.78 0.89 0.62 0.96 0.29 0.98 0.21 0.80
12 0.60 0.80 0.61 0.95 0.64 0.96 0.34 0.98 0.18 0.87

Average 0.59 0.75 0.76 0.90 0.65 0.96 0.33 0.98 0.20 0.85

Overall, the accuracy of the direct retrieval from the sea surface data is reasonable but
still needs improvement.

3.2. Results Retrieved from Improved Method with 50 m Layer’s Output as Input

We then made some changes to the models. We still configured and ran a model for
every single layer. The models were still independent of each other. The configuration
of the new models for the 20 and 50 m depth layers was similar to that of the standard
ConvLSTM model, with only the sea surface anomaly data as input. After this, the retrieved
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temperature field from the 50 m layer model output, besides the sea surface anomaly data,
was added as an input parameter into the ConvLSTM model training for each layer at the
100–500 m depths. The same 80% of the dataset as that selected for the work described in
Section 3.1 was used as the training data, and the remaining 20% of the data were used for
testing. The predictions were compared to the subsurface temperature data from CMEMS
and the results from the standard ConvLSTM model by calculating the RMSE and R2.

Figure 5 illustrates a comparison of the errors between the standard ConvLSTM method
and the improved method at the 100, 150, 200, 300, and 500 m layers. The trends of the RMSE
and R2 are similar to those observed with the standard ConvLSTM method, with a maximum
model error of 0.76 at the 150 m layer. The results indicate that the additional input improves
the retrieval accuracy for deeper layers. It is most significant for the 100 m layer, where the
RMSE is reduced by 12%, and the R2 is improved by 9%. We speculate that the reason for
this result is that the water properties beneath the upper mixing layer (~100–200 m) do not
vary simultaneously with the surface layer due to the differences in their dynamic forcing and
mechanisms; rather, they correlate more with the layer in the middle, which is less exposed
to surface external forcing. Table 3 shows the RMSE and R2 from this improved method for
each month of the test set from the 100 to 500 m layers. In the 100 m layer, the RMSE increases
and then decreases with the seasons, with a minimum error of 0.47 in the fall and a maximum
error of 0.61 in the winter; in the 150 m layer, the RMSE increases with the seasons, with a
minimum error in the spring and maximum error in the winter.
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The horizontal distributions of the temporally averaged RMSE at the 100–500 m depth
layers from different methods are also compared and shown in Figure 6. For example, the
error in Figure 6b improves significantly in the south, especially in the southwest region
with the high error in Figure 6a. In Figure 6j, there is an east–west lateral high error region
band at a 12◦~15◦ N latitude, with the highest error in the region of 148◦~152◦ E longitude;
in Figure 6k, the high error region is significantly reduced. The right panel of Figure 6
(subplots c, f, i, l, o) shows the differences between the RMSE from the two methods. It can
be seen that the values of the RMSE are reduced for almost all regions. The illustrations
also imply that, for the regions where the errors are larger, the improved method decreases
the magnitude of the errors, rather than reducing the area of the featured region. This
phenomenon implies that the source of the error still exists, and the improved method does
not fundamentally change the model but optimizes the result quantitatively.
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Table 3. Monthly RMSE and R2 of test sets from improved method.

Month 100 m 150 m 200 m 300 m 500 m

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

1 0.72 0.91 0.94 0.94 0.77 0.96 0.28 0.98 0.18 0.89
2 0.54 0.89 0.75 0.93 0.66 0.96 0.31 0.98 0.19 0.88
3 0.41 0.80 0.63 0.88 0.54 0.96 0.30 0.98 0.18 0.88
4 0.60 0.79 0.69 0.93 0.65 0.96 0.45 0.96 0.21 0.85
5 0.42 0.81 0.75 0.87 0.63 0.95 0.29 0.99 0.20 0.85
6 0.46 0.86 0.81 0.82 0.68 0.95 0.27 0.99 0.19 0.88
7 0.49 0.74 0.68 0.93 0.60 0.97 0.30 0.98 0.18 0.88
8 0.58 0.79 0.76 0.91 0.69 0.96 0.31 0.98 0.20 0.86
9 0.48 0.81 0.91 0.86 0.67 0.95 0.27 0.99 0.18 0.87

10 0.41 0.87 0.65 0.94 0.53 0.97 0.30 0.98 0.17 0.88
11 0.52 0.77 0.81 0.89 0.62 0.96 0.29 0.98 0.19 0.84
12 0.58 0.83 0.77 0.91 0.60 0.96 0.31 0.98 0.17 0.88

Average 0.52 0.82 0.76 0.90 0.64 0.96 0.31 0.96 0.18 0.87
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4. Discussion
4.1. Pearson Correlation Coefficient Analysis

In our study, we designed the experiments based on the fact that the temperature
structure of the 100–500 m depth layers is more correlative and varies more simultaneously
with the “middle” layers, such as the 50 m layer, than with the surface layer. This is a
precondition that distinguishes our work from a mathematical trick. Considering the
modulation of the surface heat flux and wind forcing with regard to the temperature
structure of the surface and near-surface layers, this assumption seems to be correct based
on common sense, although it is difficult to explain directly from observations. In this
section, we describe a simple test that we conducted to indirectly check the relationship
between these layers.

In an attempt to prove this relationship, we calculated the Pearson correlation coeffi-
cients between the time series of the CMEMS temperature on each spatial point from the
0, 50, and 100–500 m layers, respectively. Figure 7 shows the spatially averaged values of
these correlation coefficients. It can be seen from Figure 7 that the correlations between the
surface temperature and 50 m temperature and the layers below them are reduced as the
depth increases. Meanwhile, the correlation coefficients between the 50 m layer and the
layers below are significantly higher than those between the surface and the same layers.
The largest value of these correlation coefficients is that between the 50 and 100 m layers,
which is as small as 0.47, suggesting the incapability of linear analysis tools in resolving
the relationship between the surface and subsurface water temperature and the need to
develop a deep learning method in this research field.
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Figure 7. Pearson correlation coefficients between the CMEMS temperature time series of surface and
the layers below (black) and of 50 m and the layers below (diagonal lines).

4.2. Analysis of Significant Improvement at 100 m Layer

The vertical profile of the retrieved temperature’s RMSE features a peak in extreme
large values at the 100–300 m depth. As shown in the left panel of Figure 8, the thermocline
is located at this depth. The thermocline, undergoing complex dynamical processes and
drastic changes in temperature, is usually located around this depth. The peak RMSE
may be attributed to the vertical perturbation of the thermocline and the resulting drastic
temperature variation. The RMSE is lower at the upper 50 m depth as the surface features
are still influential at this depth; it is also lower below a 500 m depth since the distribution
of the temperature does not vary much, as seen from the right panel of Figure 8. The
decrease in the R2 with depths below the 500 m layer also suggests that the existence of the
thermocline cuts off the impact of the surface features on the middle and deep seawater and
makes it more challenging to predict the temperature structure at this depth with methods
relying on only surface data. It is almost meaningless to retrieve the temperature structure
under a 1000 m depth with AI methods such as ConvLSTM, since the retrieval RMSE and
the temperature’s standard deviation are of similar magnitudes.
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CMEMS data.

In this study, we applied the improved method to the 100, 150, 200, 300, and 500 m
layers, and the results showed a significant improvement only at the 100 m layer, with
no notable improvement at the other layers. We still attribute these results to the vertical
perturbation of the thermocline. The thermocline shifts seasonally and with climatologic
events at the depth range of 100–300 m. For the 100 m layer, which is above the thermocline,
the temperature structure undergoes similar physical processes to the 50 m layer, resulting
in an obvious enhancement in the retrieval accuracy with the new method. However, for
the 150, 200, and 300 m layers, the thermocline may lie above them at certain periods and
below them at other periods. This uncertainty can render the new method ineffective. For
the 500 m layer, which is below the thermocline, the new method performs equally poorly
as the standard ConvLSTM method.

4.3. Possibility That Result Was Obtained by Chance

In our experiments, some of the data were randomly selected to create a training set,
and the rest acted as a test set. It is shown in Tables 2 and 3 that the RMSE features notable
monthly variation, and the performance of the improved method varies from month to
month. Considering that there are only 62 samples (data for 62 months) in the test set, i.e.,
five samples for each month on average, the results are greatly affected by whether the
samples are from the months in which the new method performs well or poorly. Since the
error reduction with the improved method is much smaller than the errors themselves in
magnitude, there exists the possibility that the improvement in the method is attributed to
the partition of the input data.

In order to further test whether the improvement observed with the new method arose
by chance, a set of random tests was carried out by designing five different random seeds.
Each random seed was used to select the training set from all input data for a test. The
temperature at the 100 m layer was retrieved from both the standard ConvLSTM method
and the improved method, respectively, for each test with a unique random seed. The error
performance of all tests is shown in Table 4. It can be seen that the RMSE and R2 of the
errors show similar relationships for the two methods in all cases, although their values
vary with the cases. The result indicates that the improvement in the new method does not
arise from the data selection.
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Table 4. RMSE and R2 values from the two methods in the test cases mentioned in Section 4.3.

Case
Standard ConvLSTM Method Improved Method

RMSE (◦C) R2 RMSE (◦C) R2

Case 1 0.64 0.74 0.61 0.76
Case 2 0.61 0.77 0.59 0.80
Case 3 0.52 0.78 0.50 0.80
Case 4 0.59 0.72 0.49 0.80
Case 5 0.50 0.76 0.47 0.79

5. Conclusions

In this study, the ConvLSTM model was employed to retrieve the three-dimensional
temperature structure from multi-source sea surface parameters in the Western Pacific
Ocean, with the CMEMS reanalysis temperature data serving as labeling and validation
data for the retrieval. A new experimental workflow to increase the retrieval accuracy
without additional input data was put forward.

The new experimental workflow takes the output of the 50 m layer model for the
construction and training of the deeper layer’s model, considering the better correlation
between the 50 m layer and the layers beneath it than that between the 0 m layer and these
layers. This improved method resulted in an 11% decrease in the RMSE and a 9% increase
in the R2 compared to the standard ConvLSTM method.

Although the improved method still has limitations, such as the fact that it only
changes the retrieval errors quantitatively and does not modify their spatial distribution
types, it would be beneficial to consider some non-mathematical factors when solving
oceanographic problems with the deep learning method. In future research, we will
try to introduce more physical and dynamic factors into the field of AI oceanography.
Considering the inherent physical linkages between different types of marine parameters,
the physics-driven perspective may have an effect on both aspects, namely increasing the
accuracy and reducing the consumption, and it should not be ignored in the research field
of data-driven marine science.
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