
Citation: Zhao, W.; Leira, B.J.;

Høyland, K.V.; Kim, E.; Feng, G.; Ren,

H. A Framework for Structural

Analysis of Icebreakers during

Ramming of First-Year Ice Ridges. J.

Mar. Sci. Eng. 2024, 12, 611. https://

doi.org/10.3390/jmse12040611

Academic Editor: Spyros A. Mavrakos

Received: 18 February 2024

Revised: 19 March 2024

Accepted: 29 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

A Framework for Structural Analysis of Icebreakers during
Ramming of First-Year Ice Ridges
Weidong Zhao 1,2, Bernt Johan Leira 3 , Knut Vilhelm Høyland 4, Ekaterina Kim 3, Guoqing Feng 1,*
and Huilong Ren 1

1 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
2 School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China
3 Department of Marine Technology, Norwegian University of Science and Technology,

7491 Trondheim, Norway; bernt.leira@ntnu.no (B.J.L.)
4 Department of Civil and Environmental Engineering, Norwegian University of Science and Technology,

7491 Trondheim, Norway
* Correspondence: fengguoqing@hrbeu.edu.cn

Abstract: This paper presents a framework for structural analysis of icebreakers during ramming
of first-year ice ridges. The framework links the ice-ridge load and the structural analysis based on
the physical characteristics of ship–ice-ridge interactions. A ship–ice-ridge interaction study was
conducted to demonstrate the feasibility of the proposed framework. A PC-2 icebreaker was chosen
for the ship–ice interaction study, and the geometrical and physical properties of the ice ridge were
determined based on empirical data. The ice ridge was modeled by solid elements equipped with the
continuous surface cap model (CSCM). To validate the approach, the simulated ice resistance was
computed using the Lindqvist solution and in situ tests of R/V Xuelong 2. First, the local ice-induced
pressure on the hull shell was determined based on numerical simulations. Subsequently, the local
ice pressure was applied to local deformable sub-structural models of the PC-2 icebreaker hull by
means of triangular impulse loads. Finally, the structural response of sub-structural models with
refined meshes was computed. This case study demonstrates that the proposed framework is suitable
for structural analysis of ice-induced stresses in local hull components. The results show that the
ice load and the structural response obtained based on the four first-year ice-ridge models show
obvious differences. Furthermore, the ice load and corresponding structural response increases with
the width of the ridge and with increasing ship speed.

Keywords: icebreaker; first-year ice ridge; speed-dependency; ship-ice interaction; structural analysis

1. Introduction

Traditional ship design is based on simplifying the complex ship–ice interactions
and following the rule-based formulae for dimensioning the hull [1–4]. One of these
simplifications is related to the interaction between a moving ship and an ice ridge. The ice
ridge is a linear feature formed by ice blocks that are created by the relative motion between
ice sheets [5]. The newly formed first-year ridge is composed of individual pieces of ice that
are poorly bonded. Due to the complex formation process of ice ridges, their geometrical
and physical properties are complicated. Local ice-ridge loads for dimensioning the ship’s
hull are often represented via simplified semi-empirical methods with parameters reflecting
current operational experience. If the ship’s speed is not explicitly included in the ice-
load formulation, it makes it difficult (if not impossible) to back-calculate the admissible
ship speed (from the viewpoint of ship damage) based on the hull scantlings. There is a
need for approaches that link ice-load estimation with ship-resistance models that are also
dependent on the ship’s speed.

Currently, there are few research studies on the interaction between ice ridges and
moving and deforming structures [6–9]. In semi-analytical approaches, the geometrical and
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physical properties of the ship’s hull and the ice ridge are frequently represented in a very
simplified manner. The ice ridge is often replaced by gross models, e.g., the effects of the
ice ridge on ship–ice interaction are considered by multiplying the mean level ice thickness
with a factor, Kr [10]. The factor Kr can be obtained based on the occurrence probability,
Pr, of ridges in an ice-covered area [11]. However, such an empirical procedure fails to
represent the inherent mechanics of the ice ridge and the complex hull geometry, since a
mean level ice thickness combined with an amplification factor does not reflect precisely
the geometrical and physical properties of the ice ridge.

Recently, researchers carried out the ship–ridge interaction by using a dimensional
discrete element method (DEM) [7,12]. Gong and Polojärvi [7] uses ridges of equal depth
but different widths and observes that ridge width has a major effect on ridge resistance:
ridge resistance increases with ridge width until the ridge width is of the same order of
magnitude as the ship’s length. Hisette and Alekseev [12] describe a simulation tool for
estimating the ridge breaking ability of ships and offshore structures, based on the Discrete
Element Method (DEM).

However, the hull is frequently represented as a rigid body. Utilization of numerical
simulations [13,14] allows for the inclusion of complex hull and ridge geometry and 3D
effects, etc., but is often limited to ice-ridge-load estimation without consequent struc-
tural analysis. Refined ice-ridge models combined with deformable-structure hull models
require further developments for analysis of ship–ice interaction as part of focused re-
search efforts [15–17].

To address this shortcoming, we present a framework that can explicitly link a speed-
dependent ice-load model and a structural hull model. To demonstrate the feasibility of the
proposed framework, a numerical model for the analysis of ship–ice-ridge interaction is
established, and structural analyses are carried out based on the calculated local ice loads.
The effects of model parameters for the ice ridge as well as the ship speed on structural re-
sponses are also discussed. Section 2 presents the proposed framework. Section 3 describes
the application example including the ice-ridge model and structural analysis of the ice-
breaker ramming a first-year ice ridge. Section 4 discusses the effects of model parameters
and the ship speed on local ice loads and the responses obtained by the structural analysis.
The last section summarizes the primary conclusions drawn from the present study.

2. The Proposed Framework

This section presents a framework for the structural analysis of icebreakers during
ramming of first-year ice ridges (see Figure 1). There are two main steps in the proposed
framework: (Step 1) reconstructing local ice pressure variation in time and space and
(Step 2) analysis of the related structural response. As part of the proposed framework, in
this study, numerical simulations of the ship–ice-ridge interaction are utilized as a tool to
reconstruct the local ice pressures and analyze the related structural response. The novelty
of the framework lies in linking the ice-ridge load and the structural analysis based on the
physical characteristics of ship–ice-ridge interactions. The following sections detail the
different parts of the proposed framework.

The sub-steps of Step 1 include the identification of plausible ice scenarios and ice
events for defining design situations based on the structural design, the local ice conditions,
and the metocean environment [5]. The interaction scenario needs to be determined, in-
cluding ship characteristics, ice data, speed, etc. Subsequently, the numerical–mathematical
representations of the involved objects and their interactions are established. For the ship–
ice-ridge interaction, the main objects include the ice ridge, the water body, the ship hull,
and its relevant components. The governing equations/material models, discretization
approach, and contact models are determined for these objects. It is worth noting that for
different scenarios, the corresponding mathematical representations of objects (ice ridge,
water body, and ship hull) can be different.
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Figure 1. The proposed framework for ice-ridge-induced structural response and strength analysis.

After that, the ship–ice-ridge interaction scenario is built. Analysis option param-
eters are specified, e.g., the Explicit Dynamic Analysis Method. Based on analysis and
postprocessing, the ice-load histories (ice resistance, ice pressure) can be obtained. In
order to perform structural analysis of localized structural components in Step 2, the
location-specific ice load histories (local ice pressure) need to be extracted from the global
interaction study.

As the next step (Step 2 in Figure 1), the “structural strength analysis” is performed.
The key structural components are determined based on the location-specific ice-load
histories (from Step 1) and the experience of the analyst. For the selected target structural
components, the force–time histories at a specified location may need to be simplified.
A locally refined structural FE model is established and subjected to the simplified load
representation at the local level. Finally, based on post-processing of the analysis results,
the structural response of the hull being subjected to ice-ridge impacting can be obtained.

The framework requires a geometric description of the ice ridge, the ship hull structure,
ice and water material models, a ship–ice interaction model, and a structural analysis model
(see Figure 1).

In the current work, to demonstrate the feasibility of the proposed framework, an
application example is carried out according to the steps outlined in Figure 1 for the scenario
of an icebreaker ramming a first-year ridge at a given speed V. All numerical simulations
are performed using LS-DYNA version R12. Four ice-ridge models with homogeneous or
in homogeneous material properties have been considered, including the homogeneous
CSCM model, homogeneous elastic model, combined elastic model and CSCM model,
and homogeneous CSCM model. The ship structure in Step 1 was modeled as a rigid
body, while a deformable-body model including structural details was used in Step 2.
The ice ridge and ship interactions were modeled using FEM based on solid element
discretization for the ice, and with shell elements (linear quadrilateral, type S4R) for the
ship hull. The water was modeled by means of the ALE method (solid elements). In Step 2,
the load computed in Step 1 was slightly simplified (e.g., represented as a triangular pulse
load [18,19]). However, the proposed framework can be applied beyond this choice of
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discretization, simplifications, and software (e.g., using DEM or SPH in LS DYNA R11.0
MPP for the ice ridge and FEM for the ship).

3. The Interaction between Ship and First-Year Ice Ridge
3.1. Select the Interaction Scenario
3.1.1. The Adopted Ship Structure

To illustrate the proposed framework (Figure 1), a numerical example corresponding
to the PC-2 icebreaker ramming first-year ice ridge is studied. Since the bow is the main part
that interacts with ice ridge, the main structural damage also occurs in this part. Therefore,
the bow of the PC-2 icebreaker is chosen for ice-load simulation and structural analysis, as
shown in Figure 2.
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3.1.2. The Morphology and Main Dimensions of First-Year Ice Ridges

An ice ridge is composed of sail and the keel. The keel in first-year ridges consists of
an upper consolidated layer and a lower unconsolidated layer (the rubble). Both the sail
and the rubble consist of loosely connected pieces of ice whereas the consolidated layer is
refrozen and solid and is similar to level ice. The key geometrical parameters of ridges are
the keel depth, the thickness of the consolidated layer, the sail height, the keel width, the
keel shape, and possibly the block thickness, where the keel depth and the consolidated
layer are the two most important parameters of ridge loads (Figure 3).

The sail height provides some valuable information about the feature of an ice ridge.
The sail height ratio (keel depth/sail height) for first-ice ridges is about 4~5. The keel width
is about 2–3 times the sail width.

The geometry and morphology of the ice ridges are taken from a ridge mapped by
Høyland [20] in the North-western Barents Sea (Table 1). Furthermore, the width of an ice
ridge is an important factor which affects the ‘passability’ of icebreakers. This quantity is
set in Section 4.3 to account for the 3D effects.

Table 1. The geometry and morphology of the analyzed ice ridge [20].

Hs (m) Ws (m) αs (◦) Hk (m) hk (m) αk (◦) bk (m) Hc (m)

1.35 9.586 30 5.0 3.5 58 19.7 1.5
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3.2. The Ship–Ridge Interaction Model
3.2.1. The Numerical Models for Ice Ridge

To analyze the effect of ice-ridge model, four different ice-ridge models were set up in
this work, as shown in Table 2.

Table 2. The numerical model for ice ridge.

Model Numerical Model Cost CPU Time (Hours) *

A The whole ice ridge was modeled as a CSCM
material (homogenous) 17

B The whole ice ridge was modeled as an
elastic–brittle material 17

C

The materials of the consolidated layer and
the keel (sail) were represented by the
elastic–brittle model and the CSCM
material, respectively

25

D
The materials of the consolidated layer and
the keel (sail) were represented by different
CSCM models

25

* The calculation condition is 48 processors, 3.0 Hz, 32 G memory.

In Table 2, the model A sets the whole first-year ice ridge (including the sail, consoli-
dated layer, and keel, ref Section 3.1.2) as a homogenous continuous surface cap (CSCM)
model (MAT 145 in LS DYNA, version: R11.0 MPP). This model was earlier used to model a
first-year ice ridge by [13] and is coupled with a continuum-damage-mechanics formulation
to provide strain-softening feature.

The Model B sets the whole first-year ice ridge (including the sail, consolidated layer,
and keel) as an elastic–brittle model; the elastic modulus and maximum failure criterion
need to be determined. When the strain of element reaches the maximum failure strain
of the elastic–brittle model, the element will be removed. The elastic–brittle model for
ice has been corroborated experimentally by numerous researchers [21–23] and has high
computational efficiency.

Model C sets the consolidated layer as an elastic–brittle model that is the same as
that of Model B, whereas the sail and keel are modelled using CSCM with weak strength
parameters.
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The Model D sets the consolidated layer as a CSCM model that is the same as that
of Model A, whereas the sail and keel are modelled using CSCM with weak strength
parameters. For model details, refer to Appendix A.1. The employed parameters for the
CSCM and elastic–brittle model are given in Appendix A.2.

Since this work mainly focus on the framework for structural analysis of icebreakers
during ramming of first-year ice ridges, the material model of an ice ridge is not dis-
cussed here; one can also adopt other ice-material models of the ice ridge based on the
specific scenario.

3.2.2. The Numerical Setup for Ship–Ridge Interaction

An icebreaker of the PC-2 ice class was employed for the ship–ice interaction analysis.
The principal dimensions of the PC-2 icebreaker are presented in Table 3. The bow of the
icebreaker is modeled by means of rigid shell elements, the ice ridge is discretized by means
of solid elements, as shown in Figure 4.

Table 3. The principal dimensions of the PC-2 icebreaker.

Main Dimension Symbol Value

Overall length LOA 161.0 m

Waterline length Lpp 149.0 m

Molded breadth B 29.0 m

Molded depth D 15.0 m

Designed molded draft d 8.5 m
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The morphology of the ice ridge in Figure 3 was applied in the ship–ice interaction
analysis. The length (in y-direction) of the ice-ridge model is 80 m, which is almost 4 times
the hull width. To obtain convergent results while retaining a reasonable CPU time, the
element mesh of the level ice is set to 400 × 400 × 400 mm3. The degrees of freedom in the
x and y directions (the coordinate system is defined in Figure 4) at the ice boundary are
fixed. The ship speed is set as 3 kn (constant speed).

The large deformation when the ship penetrates the ice ridge was simulated by
the element-erosion technique (CONTACT_ERODING_SURFACE_TO_SURFACE for the
contact between the ship and the ice ridge, and CONTACT_ERODING_SINGLE_SURFACE
for ice ridge alone [24]. The ship–ice friction coefficient was set to 0.15 [25].

The effect of sea water on the behavior of the ship and the ice ridge was simulated
with the Arbitrary Lagrangian Eulerian (ALE) approach. The equations of state (EOS) and
material models for sea water and air are implemented. An EOS according to the Gruneisen
model is suggested to simulate fluid domains in the current FE solver [26]. The numerical
set up for analysis of ship–ice interaction is shown in Figure 4a, the displacement and
rotation angle at the edge of ice ridge are fixed in the simulation setup (Figure 4b). The
preliminary results related to the effects of the water on the ship and the ice ridge can be
seen in Figure 5. It is observed that the bow of the icebreaker creates waves, and that the
waves are acting on the ice ridge.
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Figure 5. The water effect on the ship and the ice ridge (Only part of the ice ridge is shown).

3.3. The Validation of Ship–Ridge Interaction Model

Based on the simulation of ship–ice interaction, the ice resistance (resultant force) for
ship-ramming of a first-year ice ridge can be obtained, as shown in Figure 6.

It can be seen from Figure 6 that the ice resistance shows an increasing trend as the
icebreaker progresses during Phase I. The contact area gradually increases during the time
interval from 0 to 8 s. After 8 s, most of the bow part has entered into the ice ridge and
the ice resistance fluctuates within a relatively stable range during Phase II. Therefore, the
ice-load data during Phase II is averaged to represent the ice resistance, which is compared
with experimental values found in the literature [27]. It is also worth noting that the
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ice resistance decreases when the bow part gradually crosses the ice ridge, as shown in
Figure 7a. This is because the flexural failure of the consolidation layer of ice ridge causes
boundary element failure (Figure 7b), which in turn causes the ice resistance to decrease.
As the bulk of the bow structure enters the ice ridge, the ice resistance remains relatively
constant as the overall contact area remains constant.
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Wu et al. [27] examined the ice-breaking capability of R/V Xuelong 2 under full-scale
conditions. A series of tests were carried out in the fast-ice area near Zhongshan Station in
the Prydz Bay during the maiden Antarctic voyage of R/V Xuelong 2 (Figure 8). During
the in situ tests, R/V Xuelong 2 navigates at a speed of 0.9~6 kn in a level ice field. The
average ice thickness of the level ice field is 1.4 m ± 0.2 m.
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Figure 8. Ice trial of Xuelong 2.

The Lindqvist formulation is an engineering tool for the evaluation of ice resistance [28].
In this work, The Lindqvist solution is compared to the simulated ice resistance. The
detailed Lindqvist formulas are given in Appendix A. Table 4 presents the employed ship
and ice parameters presently being input to the Lindqvist formulation. The obtained ice
resistances based on the Lindqvist formulation and the related parameters are shown
in Figure 9.

Table 4. The employed ship and ice parameters applied as input to the Lindqvist formulation.

Parameter Symbol Value

Length of ship (m) L 149.0

Breadth of ship (m) B 29.0

Draught of ship (m) T 8.5

Stem angle (◦) ϕ 20

Waterline entrance angle (◦) α 40

Angle between the surface and a vertical vector ψ * 30

Bending strength of ice (kPa) σ 718.6

Equivalent ice thickness (m) H 1.5, 2.5

Elastic modulus of ice (GPa) E 2.0

Poisson ratio of ice ν 0.3
* ψ is defined by tan ψ = tan ϕ/sin α.

In Figure 9, the simulated ice resistance obtained based on the ship–ridge interaction
is compared with results from the in situ tests of Xuelong 2 and with the Lindqvist solution.
The consolidated layer of the ice ridge can be considered as being equivalent to level ice,
and the thickness of the equivalent level ice will then have a value bounded by 1.5 m and
2.5 m. Therefore, these two values of the ice thickness are employed as inputs for the
Lindqvist formulation. Although the sail is modeled in Figure 7a, the material properties
of sail is weak, it contributes little to the total ice resistance.
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It can be seen from Figure 9 that the simulated ice resistance at a speed of 3 kn is
almost 3600 kN, which lies between the values obtained from the Lindqvist formulation
with H = 1.5 m and the Lindqvist formulation with H = 2.5 m. The ice resistance obtained by
numerical simulation is around 3600 kN, which is more than twice the experimental value of
Xuelong 2 (about 1500 kN). Furthermore, the ice resistance obtained by Lindqvist solution
with 2.5 m thickness ice is almost two times the ice resistance obtained by numerical
solution in this work. The difference is due to the consolidated layer contributing the
most to the ice resistance, while the sail and keel contribute little to the ice resistance. The
thickness of consolidated layer is 1.5 m, which is closer to the half of 2.5 m. Therefore, the
ice resistance obtained by numerical simulation is lower than that of Lindqvist solution,
with 2.5 m thickness.

It is worth noting that the in situ tests of Xuelong 2 were carried out in the Antarctic.
Reference [29] showed a significant difference in the spatial scale of the variability of sea–
ice properties between the Arctic and Antarctic; this difference could cause different ice
resistance on the icebreaker. Furthermore, the main dimensions of Xuelong 2 are different
from those of the adopted PC-2 icebreaker. In particular, the width of Xuelong 2 is around
22.3 m, while the width of the adopted PC-2 icebreaker is 29 m. The difference in the
main dimensions of the ship also contributes to the discrepancy in the results for the
ice resistance.

In general, the ice resistance obtained by the numerical simulation in this work is
within a reasonable range. The difference in ice resistance between the in situ tests and
the numerical simulation is caused by many effects, such as ice type, ice properties, ship
dimensions, etc. Furthermore, the simulated ice resistance is close to that of the Lindqvist
formulation, which also may support the simulated ice resistance. As for the employed
PC-2 icebreaker in this work, it is still at the design stage, so the experimental data of the
as-built PC-2 icebreaker is not available currently. Due to the lack of experimental data of
ship ramming ice ridge, the current numerical results can not be verified by in situ tests.

It is also worth noting that the ice resistance obtained by the numerical simulation in
this work is consistent with the Lindqvist formulation when the ice thickness is 2.0 m. This
implies that the target ice ridge can be taken as level ice characterized by the equivalent
ice thickness.

Niiler [30] compared the ice resistance calculated using an equivalent ice thickness
with the actual resistance measured onboard a ship. He defined equivalent ice thickness as

Hv = c(hi +
(1 − ρp)µh2

k
tan αk

+ ksnhsn) (1)

where c is the ice concentration; hi is the thickness of the level ice, in m; ρp is the porosity of
the unconsolidated ice rubble in the ridge; µ is the frequency of occurrence of ridges within
the ice field, in m−1, assumed as 1/(ridge width) in this work; hk is the ridge keel height;
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ksn is the snow resistance coefficient; hsn is the snow cover thickness, in m; αk is the base
angle of ridge keel.

Adopted parameter values applied in Equation (1) are shown in Table 5. The equiva-
lent ice thickness Hv for the target ice ridge can then be obtained. The obtained value of Hv
is 2.05 m which is close to the equivalent ice thickness (almost 2.0 m) in Figure 9.

Table 5. The adopted parameters for calculation of equivalent ice thickness.

c hi (m) ρ µ (m−1) hk (m) ksn hsn (m) αk (◦)

1.0 1.5 30% 0.05 5 0.33 0 58

4. Local Loads and Structural Response
4.1. Local Models for the Structural Analysis

Since the bow is the main area affected by the sea ice, a local model of the bow (extract
from left side of real icebreaker) with a refined element mesh was built for the purpose of
structural analysis, as shown in Figure 10.
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For the local structural part, an elasto-plastic material model was adopted. When the
plastic strain reaches the maximum effective plastic strain (around 0.35), the correspond-
ing element of the local structure is deleted from the calculation. The adopted material
parameters for the local structure are shown in Table 6.

Table 6. The material parameters for the local structure (Temperature: −60 ◦C).

Parameter Symbol Value Unit

Density ρ 7850 kg/m3

Poisson ratio µ 0.3 -

Yield strength σs 384.5 MPa

Elastic modulus E 210 GPa

Shear modulus G 846 GPa

Strain hardening rate n 0.4 -

Strain rate parameter C 40.4 -

Strain rate parameter P 5 -

In order to verify the material model for the local structure, a tensile simulation
was carried out and compared with corresponding tensile tests [31]. A series of tensile
tests at low temperatures were carried out in our previous work [32]. Zhao et al. [32]
studied the mechanical properties of marine DH36 steel within the temperature range
from −60 ◦C to 10 ◦C. The specimen and the corresponding schematic diagram are shown
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in Figures 11a and 11b, respectively. Results from the tensile simulation based on the
material parameters in Table 6 were compared with related test data from the work of
Zhao et. al. [26]. In Figure 12a, the stress and strain in the middle region of the tensile model,
then the stress–strain curve can be obtained. A comparison of the stress-strain curve from
the simulation versus the test is shown in Figure 12b. It is seen that the adopted material
model performs well with respect to tensile behavior at −60 ◦C. Hence, the elasto-plastic
material model with related material parameters in Table 6 is employed in the structural
analysis. Furthermore, large deformations are represented within the Total Lagrangian
Description (TLD) framework.
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4.2. The Applied Ice Pressure on Local Ship Structures

Based on the numerical model in Section 3.1, the ice load induced by the ridge can
be simulated. Figure 13 shows the failure pattern of the ice ridge. It can be seen from
Figure 13b that crushing failure mainly takes place during the interaction process.
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The local ice pressure acting at the hull in the bow area can be obtained as represented
by the local contact pressure, PL. The time–space dependency of the local contact pressure
is predicted in this work. For a target monitoring point, the current simulation can predict
the time variation of the local contact pressure. Furthermore, the time history of the ice
contact pressure at any specified monitoring point can be predicted. For the purpose of
simplification, the high-pressure zone (HPZ) is chosen to illustrate the results obtained by
application of the proposed framework, as shown in Figure 14. Subsequently, the local
contact pressure is applied to the corresponding part of the local model of the ship hull. It
is worth noting that the load-patch size applied in the structural analysis corresponds to
the HPZ in the present analysis.
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It is worth noting that the local ice pressure is not the ultimate ice pressure whose
maximum value is around 5~80 MPa [5]. In this work, the peak ice-pressure history (around
8 s in Figure 14b) was extracted and translated into a triangular pulse load.

4.3. The Structural Analysis of Local Ship Structures
4.3.1. The Design Ice Pressure Based on Ship–Ridge Interaction

The triangular pulse load in Figure 14 is then applied to the local ship sub-structural
model, as shown in Figure 15. The degrees of freedom in the x, y and z directions at the
boundary of the local model are fixed, as shown in Figure 15a. The load area in Figure 15a
is chosen based on the ship–ice interaction event that gives rise to the highest stresses
(Von Mises stress in the local substructural models of the hull). Figure 15b illustrates the
extension of the load patch (3.2 m × 2.2 m) which corresponds to the contact area.

Based on the dynamic structural analysis, the corresponding response in terms of von
Mises stress level was obtained, as shown in Figure 16a. Figure 16b shows the potential
structural-failure points located at the backside of the loaded area. The shell side longi-
tudinal in Figure 16b bends under the external ice pressure, and this gives rise to high
stress levels.
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Figure 17 shows the strain-energy density within the local sub-structure. It can be seen
from this figure that the strain energy is continuously rising during the loading stage and
reaches its peak at around 0.45 s. After that, the strain energy decreases and approaches
zero which means that only elastic processes take place due to the present impact loading.
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4.3.2. The Ice Pressure under Dangerous Scenario

Considering the extreme ice pressure (5~80 MPa) that is acting on the local structure, a
corresponding stress-response analysis of the local sub-structure is carried out. According
to ISO 19906 [5], the ice pressure on local areas can increase to a level around 25 MPa to
40 MPa. Here, a 25 MPa ice pressure is applied on local ship hull components, and the
resulting stress distribution for the local structural model is shown in Figure 18. It can be
seen from this figure that plastic deformations take place in parts of the sub-structure. The
peak of the induced von Mises stress is around 515.1 MPa, which exceeds the yield strength
of the ship hull material (384.5 MPa).
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state can represent a critical condition for the target local sub-structures.
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5. Discussion
5.1. The Comparison of Different Ice Ridge Material Models

The results in Appendix A.2.1 show that the elastic material model exhibits a good
performance for the undamaged state when performing simulation of uniaxial compression
of the ice ridge. Hence, the elastic material model is also employed for the purpose of ana-
lyzing the effect of the ice material model on the ship–ice interaction process (corresponding
to model B below).

Furthermore, in the above analysis based on the inelastic CSCM model, the ice ridge
was represented as having different material properties for the different parts of the ice
ridge. This is referred to as model D in the analysis below. As an alternative simplified
model, the ice ridge is set as having uniform material properties, and the CSCM is deployed
with the parameters presented in Table A2 (in Appendix A.2.1), as shown in Figure 20. This
model is referred to as model A in the analysis below.
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Figure 20. The numerical set up for ship–ice interaction (for an ice ridge with homogeneous mate-
rial properties).

Based on four different ice-ridge models (A, B, C and D), a comparison between the
results obtained by application of the different models is obtained.

Model A. The whole ice ridge was modeled as a CSCM material (homogenous).
Model B. The whole ice ridge was modeled as an elastic material.
Model C. The materials of the consolidated layer and the keel were represented by the

elastic model and the CSCM material, respectively.
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Model D. The materials of the consolidated layer and the keel (sail) were represented
by different CSCM models.

Based on the four ice-ridge models, the corresponding pressure contours for the ship
hull structure can be obtained, as shown in Figure 21 (The pressure contour of Model D is
already given in Figure 14a). For the four ice-ridge models, the obtained characteristics of
the local ice pressure within the HPZ are listed in Table 7. It can be seen from Table 7 that
there is a clear difference between the characteristics of the local ice pressure corresponding
to the four ice-ridge models.
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Table 7. Details of local ice pressure within the HPZ.

Model Size of HPZ
(m2)

Peak Pressure of HPZ
(MPa)

Load Period
(s)

A 0.94 × 0.95 16.48 0.2

B 0.85 × 0.7 17.0 0.3

C 1.2 × 0.98 3.12 0.2

D 0.92 × 0.86 1.27 0.6

Comparison between the peak ice pressure and the maximum von Mises stress within
the local sub-structure is shown in Figure 22. These two quantities exhibit a similar trend
when comparing results from the three different models. It can be seen from Figure 22 that
the peak ice pressure and maximum von Mises stress obtained by Model A and Model B
are obviously higher than those of Model C and Model D. Model A and Model B lead to a
higher lower-peak pressure and maximum stress than Model C and Model D. This is due
to the fact that Model A and Model B represent the keel part with the same mechanical
properties as the consolidated layer. From the perspective of polar ship design, Model A
and Model B could be good choices since the structural response obtained by these models
is most likely higher than the actual value, which implies a certain safety margin. Model C
and Model D are still suitable for structural assessment of polar structures for certain
ice conditions.
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Figure 22. Comparison of peak ice pressure and maximum von Mises stress within the local ship
sub-structure.

Figure 23 shows the comparison of the strain-energy density among the three models.
Similar to the trend for the peak stress, the strain-energy density predicted by Model A
and Model B is higher than that of the two other models. Model D results in the lowest
strain-energy-density value. Furthermore, the time span of the strain-energy density for
the four ice-ridge material models is also different. The span value is related to the load
period in Table 7.
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5.2. The Effect of Ridge Width on Structural Response

The results given in Ref. [7] show that the ridge width has a significant effect on the
ridge resistance. In this work, the effect of varying ridge widths on the structural response
is discussed. The ridge width (keel width in this work) is set as 10.1 m, 19.7 m, and 28.7 m
for the three different cases to be analyzed (see Figure 24).
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Figure 24. Variation of ridge characteristics applied for evaluation of structural response.

Figure 25 shows the simulated ridge resistance of the icebreaker for different ridge
widths. It can be seen from Figure 25 that the simulated ice resistance for the three ridge
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widths show good consistency up to 7.2 s. The simulated ice resistance for a ridge width
of 10.1 m reaches its peak at around 7.2 s. After that, the ice resistance decreases since
global bending failure of the ice takes place. The ice resistance for the other two ridge
widths reaches its peak at 8.6 s and 12.8 s, respectively. Figure 26 shows the simulated peak
ridge resistance of the icebreaker as a function of the ridge width. For the PC-2 icebreaker
employed here, the peak ridge resistance increases when the ridge width increases.
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Figure 26. The peak ridge resistance of the icebreaker for different ridge widths (obtained based on
model D).

Table 8 presents the local contact pressure for different ridge widths. It can be seen
from this table that the peak pressure in the HPZ for a ridge width of 10.1 m is lower than
that for a ridge width of 19.7 m and for a ridge width of 28.7 m. Still, there is little difference
between the peak pressure for a ridge width of 19.7 m and a ridge width of 28.7 m. The
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size of the HPZ increases for increasing ridge widths. The load period does not show any
clear trend as a function of the ridge width.

Table 8. The local contact pressure for different ridge widths.

Width
(m)

Size of HPZ
(m2)

Peak Pressure of HPZ
(MPa)

Load Period
(s)

10.1 0.44 × 0.78 0.917 0.3

19.7 0.915 × 0.855 1.27 0.6

28.7 0.88 × 1.3 1.24 0.4

Figure 27 presents the structural response for different ridge widths. Figure 27a shows
that the maximum structural stress for a ridge width of 10.1 m is significantly lower than
for the cases with a ridge width of 19.7 m and with a ridge width of 28.7 m (still the peak
pressure is almost the same for these to latter cases). This trend is consistent with the fact
that the peak ridge resistance changes with the ridge width.
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In Figure 27b, the span of the strain-energy density curves for different ridge widths is
consistent with the respective load periods in Table 8. The peak value of the strain-energy
density also exhibits the same trend for increasing ridge widths. In general, the peak ridge
resistance, the peak pressure at the HPZ, the maximum structural stress and the peak
strain-energy density show the same trend for increasing the ridge widths.

5.3. The Effect of Ship Speed on Structural Response

According to the “Polar Ship Guide” published by China Classification Society (CCS) [33],
the recommended speed limit for a PC-2 icebreaker is 8 kn. Hence, an 8 kn speed limit is
chosen to study the effect of ship speed on the absorbed strain energy.

Figure 28 shows the failure pattern for the ice ridge based on this speed. It is found
that the crushing failure mainly occurs during the ship–ridge interaction process. Table 9
presents the local contact pressure corresponding to different ship speeds. The size of the
HPZ and the peak pressure in the HPZ for the case with a speed of 8 kn are both larger than
the values for a speed of 3 kn, while the load period for a speed of 8 kn speed is shorter
than that for a speed of 3 kn.
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Table 9. The local contact pressure with different ship speeds.

Speed
(kn)

Size of HPZ
(m2)

Peak Pressure of HPZ
(MPa)

Load Period
(s)

3 0.915 × 0.855 1.27 0.6

8 1.6 × 1.8 12.24 0.2

Based on the simulated ice pressure at HPZ, the structural analysis is carried out, as
shown in Figure 29. The peak structural stress for a speed of 8 kn is around 433.8 MPa
and located at the frame behind the HPZ. The peak structural stress at 8 kn is significantly
higher than at 3 kn (for which it is around 56 MPa).

The obtained strain-energy density for a local sub-structure corresponding to a speed
of 8 kn is compared with that for a speed of 3 kn, as shown in Figure 30. Apparently, the
strain-energy density at 8 kn is much higher than that at 3 n. Furthermore, the time span
of the strain-energy density for the two speeds is also different, which is related to the
associated load period. In general, ship speed has a significant effect on the structural
response of ship structures during ramming of first-year ice ridges.
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6. Concluding Remarks 
The determination of ice-ridge forces on ships in relation to ship strength is of signif-

icant practical importance in relation to the safety and economy of icebreakers sailing in 
ice-covered regions. A framework for the structural analysis of icebreakers ramming first-
year ice ridges is proposed in this work. An application example illustrating structural 
analysis of an icebreaker during the ramming of a first-year ice ridge is carried out accord-
ing to the proposed framework. The obtained results lead to the following conclusions: 

(1) Four ridge models are introduced in this work. Among them, the simulation effi-
ciency of model B is much better than it is for the other models since it requires few mate-
rial parameters. Model D can simulate the situation after ice ridge failure but requires a 
large number of material parameters. 

(2) The strength of the keel is lower than that of the consolidated layer of the ice ridge. 
It is recommended to differentiate between the material parameters of the keel and the 
consolidated layer when analyzing the structural response of ship structures ramming 
into ice ridges, while a homogeneous ice-ridge model could be an adequate choice for 
strength design of other types of structures in polar areas. 

(3) The width of the ridge affects the ice resistance and the structural response of 
polar ship hulls. The peak ice resistance, peak structural stress, and strain-energy density 
increase with increasing widths of the ridge. 

(4) Ship speed has a significant effect on local ice loads and structural response. The 
strain-energy density that is obtained for the case with 8 kn speed is clearly higher than 
that obtained for the case with 3 kn speed. Safe ship-speed design deserves to be studied 
as part of future work in this area. 

Furthermore, due to the lack of in situ data on the collision between ships and ice 
ridges, the results from the present study cannot be compared with measurements of ice-
ridge forces acting on the hull surface. Rather, the objective has been to provide a compar-
ative study between results obtained for the different cases. Verification and possibly cal-
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6. Concluding Remarks

The determination of ice-ridge forces on ships in relation to ship strength is of sig-
nificant practical importance in relation to the safety and economy of icebreakers sailing
in ice-covered regions. A framework for the structural analysis of icebreakers ramming
first-year ice ridges is proposed in this work. An application example illustrating structural
analysis of an icebreaker during the ramming of a first-year ice ridge is carried out according
to the proposed framework. The obtained results lead to the following conclusions:

(1) Four ridge models are introduced in this work. Among them, the simulation
efficiency of model B is much better than it is for the other models since it requires few
material parameters. Model D can simulate the situation after ice ridge failure but requires
a large number of material parameters.

(2) The strength of the keel is lower than that of the consolidated layer of the ice ridge.
It is recommended to differentiate between the material parameters of the keel and the
consolidated layer when analyzing the structural response of ship structures ramming into
ice ridges, while a homogeneous ice-ridge model could be an adequate choice for strength
design of other types of structures in polar areas.

(3) The width of the ridge affects the ice resistance and the structural response of
polar ship hulls. The peak ice resistance, peak structural stress, and strain-energy density
increase with increasing widths of the ridge.
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(4) Ship speed has a significant effect on local ice loads and structural response. The
strain-energy density that is obtained for the case with 8 kn speed is clearly higher than
that obtained for the case with 3 kn speed. Safe ship-speed design deserves to be studied
as part of future work in this area.

Furthermore, due to the lack of in situ data on the collision between ships and ice
ridges, the results from the present study cannot be compared with measurements of
ice-ridge forces acting on the hull surface. Rather, the objective has been to provide
a comparative study between results obtained for the different cases. Verification and
possibly calibration of the present calculation models should be carried out as part of future
research work. The local ice pressure has strong randomness, which will be analyzed by
means of probabilistic methods as part of future studies.
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Appendix A. The Material Model of Ice Ridge

Appendix A.1. The Continuous Surface Cap Model

At present, there does not exist any perfect ice material model due to the complex
physical properties and microstructure of ice. In this work, the CSCM is employed for
the material found in consolidated ice ridges. Within the proposed framework, it is also
possible to implement alternative material models for the ice.

The CSCM model provided reasonable results for the purpose of demonstration of the
proposed framework. Note that the framework is not limited to this particular modelling
technique and there are other ways of modelling ice ridges.

As for the CSCM, this material model is a smooth or continuous surface cap model
and is available for solid elements. Furthermore, the damage during the post-failure stage
was also embedded in the CSCM based on a Continuum Damage Mechanics model [24].

The CSCM model is based on the work of Lemaitre [34] and Dufailly and Lemaitre [35].
The failure surface of the smooth cap model is defined as

Ff (J1) = α − λ exp(−βJ1) + θ J1 (A1)

where J1 is the first invariant of the deviatoric stress tensor; and α, θ, λ, and β designate
model parameters used to match the triaxial compression. The isotropic hardening or cap
surface of the model is based on a nondimensional functional form

Fc(J1, κ) = 1 − [J1 − L(κ)][|J1 − L(κ)|+J1 − L(κ)]

2[X(κ)− L(κ)]2
(A2)

where κ denotes the hardening parameter that controls the motion of the cap surface, and
L(κ) and X(κ) define the geometry of the cap surface. The smooth cap model, shown in
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Figure A1, is formed by combining the failure and hardening surface functions to form a
smoothly varying function given by

f (J1, J′2, κ) = J′2 − F2
f · FC (A3)

where J′2 denotes the second invariant of the deviatoric stress tensor.
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Considering the complex morphology and properties of ice ridges, an equivalent
ice-ridge model applying the CSCM material model is employed in this work.

The softening mechanism of the CSCM model in the tensile and low-to-moderate
compressive regimes is accounted for by the following expression [24]:

σd
ij = (1 − d)σvp

ij (A4)

Here, a scalar damage parameter, d, transforms the viscoplastic stress tensor without
damage, denoted σvp, into the stress tensor with damage, denoted by the superscript
d. Damage accumulation is based upon two distinct formulations, which we call brittle
damage and ductile damage. The initial damage threshold is coincident with the shear
plasticity surface, so the threshold does not have to be specified by the user.

(a) Ductile Damage. Ductile damage accumulates when the pressure, P, is compres-
sive and an energy-type term, τC, exceeds the damage threshold, τ0C. Ductile damage
accumulation depends upon the total strain components, εij, as follows:

τC =

√
1
2

σijεij (A5)

The stress components, σij are the elasto-plastic stresses (with kinematic hardening)
calculated before application of damage and rate effects.

(b) Brittle Damage. Brittle damage accumulates when the pressure is tensile and when
an energy-type term, τt, exceeds the damage threshold, τ0t. Brittle damage accumulation
depends upon the maximum principal strain, εmax follows:

τt =
√

Eε2
max (A6)

The viscoplastic rate effect (embedded in the CSCM model) is also consider in this
work. At each time step, the viscoplastic algorithm interpolates between the elastic trial
stress, σT

ij , and the inviscid stress (without rate effects), σ
p
ij , to set the viscoplastic stress

(with rate effects), σ
vp
ij [24]:

σ
vp
ij = (1 − γ)σT

ij + γσ
p
ij (A7)
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where
γ =

∆t/η

1 + ∆t/η
(A8)

This interpolation depends upon the effective fluidity coefficient, η, and the time
step, ∆t. The effective fluidity coefficient is calculated based on five user-supplied input
parameters and interpolation equations:

Tensile pressure : η = ηs +

 −J1√
3J′2

PST

[ηt − ηs] (A9)

Compressive pressure : η = ηs +

 J1√
3J′2

PSC

[ηc − ηs] (A10)

where
ηs = Rst × ηt (A11)

ηt =
η0T
.
ε

NT
(A12)

ηc =
η0C
.
ε

NC
(A13)

where,
PSC is the shear-to-compression transition parameter,
PST is the shear-to-tension transition parameter,
η0C is the rate effect parameter for uniaxial compressive stress,
η0T is the rate effect parameter for uniaxial tensile stress,
NC is the rate effect power for uniaxial compressive stress,
Nt is the rate effect power for uniaxial tensile stress,
Rst is the ratio of effective shear stress to tensile stress fluidity parameters.
When the rate effect is considered in the CSCM model, the main parameters affected

by the rate effect should be given, which mainly includes η0C, η0T , NC, Nt. Regarding
the tensile behavior, as mentioned above, experimental results show brittle failure and a
negligible influence of strain rate on the strength of ice, so the rate effect on the tensile
strength of ice is not considered in this work [37].

Appendix A.2. The Material Parameters and Validation of Ice Ridge

A considerable knowledge gap was found to exist with respect to the mechanical
properties of the consolidated layer of first-year ridges. So far, the most comprehensive
studies on the uniaxial compressive strength of ice samples from first-year ridges have been
published by Shafrova and Høyland [38]. Table A1 lists the main mechanical properties
and ice strength of first-year ice ridges which are obtained based on ref. [20].

Table A1. The main physical and mechanical properties of first-year ice ridges [20].

Consolidated layer (2004
lab tests, Barents Sea)

porosity (%) salinity (ppt) density (kg/L) ice strength (MPa)

5~10 4.4 0.88 3.94 (±1.62)

The CSCM material model is employed in order to simulate the properties of the
first-year ice ridge. During the ship–ridge interaction process, mainly crushing failure takes
place in the consolidated layer of the ice ridge, while shear failure takes place within the
keel part. To validate the ice model, uniaxial compression tests of the consolidated layer
and punch-through shear tests of the keel are simulated, respectively.

Furthermore, the verification of the ice model is related to the primary failure modes of
ice during the process of ship–ice interaction. Within the proposed framework, other types
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of material verifications can also be accommodated depending on the characteristics of each
specific ship–ice interaction scenario. As an example, this may correspond to validation of
the crushing and flexural strength properties of level ice when the ship is navigating in a
level-ice field.

Appendix A.2.1. Uniaxial Compression Tests for Consolidated Layer of Ice Ridge

As we have primarily focused on compressive behavior of an ice ridge (especially the
consolidated part), the ice material model performance is verified against experimental
data obtained from uniaxial compression tests in this section.

Bonath et al. [39] carried out 410 small-scale uniaxial compression tests at different
strain rates and ice temperatures. The specimens were taken from the consolidated layer
of six different first-year ridges in the sea around Svalbard. The physical and mechanical
properties of the first-year ice ridges are estimated based on these test results [39].

A uniaxial compression model of the ice is applied to verify the ice material model
in this work. According to the research by Bonath [39], the shape of the ice specimens
was a rectangular prism with 170 mm height and a square base with 70 mm side length.
The same dimensions of the ice specimens are applied here for simulation of compressive
strength (Figure A2).
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Figure A2. The FEM model for simulating compressive loading.

The CSCM ice material model based on the parameters in Table A2 above was applied
for the uniaxial compression model. The value of the CSCM material parameters are
determined by related field tests of ice ridges (shear modulus) [39] and by empirical values
found in the literature (compression surface terms) [40].

For the purpose of comparison, an elastic model based on the maximum effective
strain as a failure criterion is also introduced. When the strain in an ice element reaches
the ε f max value, the element is deleted, which solves the problem of accounting for large
deformations of ice elements.
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Table A2. The material parameters of the CSCM applied for the consolidated layer of ice ridge [37,40].

Parameter Symbol Value

Density (Kg/m3) ρcl 887

Shear modulus (MPa) G 1538

Bulk modulus (MPa) K 3333

Compression surface terms
α 1.0

θ 0.396

Cap ellipticity ratio R 8.957

Initial intercept of the cap surface XD 10.0

Maximum plastic volumetric strain W 0.093

Linear shape parameters D1 86.0

Quadratic shape parameters D2 0.03

Ductile shape softening parameter B 1.0

Fracture energy in uniaxial compression Gfc 0.327

Brittle shape softening parameter D 1.0

Fracture energy in uniaxial tension Gfs 0.0372

Fracture energy in pure shear Gft 0.0372

Rate effects parameter for uniaxial compressive stress η0C 10.976

Rate effect power for uniaxial compressive stress NC 0.093783

The non-linear behavior of the ice ridge under compression makes it difficult to
determine an elastic modulus by mechanical tests. In the literature, the elastic modulus can
be referred to as the effective modulus or tangent modulus [41]. Figure A3 illustrates this
concept. The tangent modulus in ref. [39] is employed as elastic modulus in this work. The
material parameters in Table A3 are employed for this elastic model.
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Table A3. The material parameters of the elastic model for the consolidated layer of the ice ridge [39].

Density
(kg/m3)

Elastic Modulus
(MPa) Poisson’s Ratio Maximum Effective

Strain at Failure

887 2160 0.3 5 × 10−5~5 × 10−3

The results corresponding to compression for the model of consolidated layer obtained
based on numerical simulation above are compared with results from the literature [39],
as shown in Figure A4. The stress in Figure A4 is the nominal stress which is equal
to Force/Area. It is assumed that the stress state of the consolidated layer corresponds
to the undamaged state before the nominal stress reaches the peak, and after that, the
consolidated layer enters the damaged state. The comparison between the test data and
the model predictions indicates that the CSCM shows good performance when predicting
the compressive behavior of the consolidated layer of ice ridge in the undamaged and
the damaged state, while the elastic model fails to represent the damaged state of the
consolidated layer of the ice ridge.
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Appendix A.2.2. Punch-through Shear Tests for the Keel of Ice Ridge

The punch-through shear tests were introduced to verify the material model of the
keel in the ice ridge. In punch-through shear tests, a plate is pushed down through a
pre-cut consolidated layer, forming a plug in the rubble underneath. The consolidated layer
beneath the plate is separated from the rest of the keel field to reduce the loading capacity
and separate the contribution from the consolidated layer [40]. The material model of the
consolidated layer is consistent with Table A2, and the material model of the keel is derived
from relevant results found in the literature [40], as shown in Table A4.
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Table A4. The parameters of the CSCM material model for the keel [40].

Parameter Symbol Value

Density (Kg/m3) ρk 541

Shear modulus (MPa) G 17.31

Bulk modulus (MPa) K 37.5

Compression surface terms
α 0.016

θ 0.182

Cap ellipticity ratio R 9.44

Initial intercept of the cap surface XD 0.595

Maximum plastic volumetric strain W 0.05

Linear shape parameters D1 0.001

Quadratic shape parameters D2 0.65

Ductile shape softening parameter B 20

Fracture energy in uniaxial compression Gfc 0.4

Brittle shape softening parameter D 1

Fracture energy in uniaxial tension Gfs 0.065

Fracture energy in pure shear Gft 0.065

Rate effects parameter for uniaxial compressive stress η0C 10.976

Rate effect power for uniaxial compressive stress NC 0.093783

Figure A6 presents the punch-through shear-test model represented by means of FEM
elements. All parts in Figure A6 are modeled by solid elements with homogenous material
models. The sea water is dealt with by means of the Arbitrary Lagrangian Eulerian (ALE)
approach, which is designed to simulate buoyancy forces acting on the keel. Nodes at the
edge of keel geometry are constrained with respect to any displacement in the horizontal
and the out-of-plane direction. The consolidated layer is fixed from the anchor location
toward the outward horizontal direction. Figure A6 shows a comparison between results
from field tests and the simulation of punch-through shear tests. It is seen that the simulated
force obtained by the punch-through shear-test model agrees with the test results, which
verifies the material model and the related material parameters.
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Appendix B. The Lindqvist Formulation for Ice Resistance

The Lindqvist formulation [28] is a commonly used calculation approach for ice
resistance in ice-covered areas for icebreakers, as shown in Equations (A14)~(A17).
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H1.5√

E
12(1−ν2)gρw

(tan ψ + µk
cos ϕ

sin α cos ψ
)(1 +

1
cos ψ

) (A15)

Rs = (ρw − ρi)gHB

{
T(B + T)

B + 2T
+ µk[0.7L − T

tan ϕ
− B

4 tan α
+ T cos ϕ cos ψ

√
1

sin2 ϕ
+

1
tan2 α

]

}
(A16)

Rt = (Rc + Rb)(1 +
1.4V√

gH
) + Rs(1 +

9.4V√
gL

) (A17)

where,
Rc is the crushing resistance,
Rb is the bending resistance,
Rs is the immersion resistance,
Rt is the total resistance,
σ is the bending strength of ice,
H is the ice thickness,
E is the elastic modulus of ice,
ν is the Poisson ratio of ice,
µk is the friction coefficient associated with ship-ice interaction,
ρw is the density of sea water,
ρi is the density of ice,
V is the ship speed,
L is the length of the ship,
T is the draught of the ship,
B is the breadth of the ship,
ϕ is the stem angle,
α is the waterline entrance angle,
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ψ is the angle between the surface and a vertical vector, tan ψ = tan ϕ/sin α
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