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Abstract: This paper presents a comprehensive investigation into the design of a methane oxidation
catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which
has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power
model was coupled with a predictive physical base chemical kinetic multizone model (MZM) as a
combustion object. In this MZM simulation, a set of 54 species and 269 reactions as chemical kinetic
mechanism were used for modelling combustion and emissions. Aftertreatment simulations were
conducted using a 1D air-path model in the same GT-Power model, integrated with a chemical kinetic
model featuring 15 catalytic reactions, based on activation energy and species concentrations from
combustion outputs. The latter offered detailed exhaust composition and exhaust thermodynamic
data under specific operating conditions, effectively capturing the intricate interactions between
the investigated aftertreatment system, combustion, and exhaust composition. Special emphasis
was placed on the formation of intermediate hydrocarbons such as C2H4 and C2H6, despite their
concentrations being lower than that of CH4. The analysis of catalytic conversion focused on
key species, including H2O, CO2, CO, CH4, C2H4, and C2H6, examining their interactions. After
consideration of thermal management and pressure drop, a practical choice of a 400 mm long catalyst
with a density of 10 cells per cm2 was selected. Investigations of this catalyst’s specification revealed
complete CO conversion and a minimum of 89% hydrocarbon conversion efficiency. Integrating the
exhaust aftertreatment system into the air path resulted in a reduction in engine-indicated efficiency
by up to 2.65% but did not affect in-cylinder combustion.

Keywords: aftertreatment; MOC; hydrocarbons; combustion; multizone model; chemical kinetics;
emissions; engine

1. Introduction

Despite the increasing role of electrification in automotive powertrains, marine and
off-road applications are expected to continue relying on internal combustion engines
for the foreseeable future. This is due to their unique operational requirements, such as
high torque demand, long operating hours, packaging constraints, and limited access to
refuelling infrastructure. Primary challenges for powertrain development in the marine
and off-road sectors involve flexible inclusion of low-carbon alternative fuels while improv-
ing fuel efficiency and reducing atmospheric emissions [1]. Advanced low-temperature
combustion concepts (LTC) are currently at the forefront of developments to meet those
challenges. Reactivity-controlled compression ignition (RCCI) in particular is under intense
investigation by leading marine engine manufacturers, including Wärtsilä [2] and MAN En-
ergy Solutions [3]. RCCI retains the benefits of conventional dual-fuel ignition, resulting in
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improved fuel efficiency, lower emissions of nitrogen oxides (NOx) and particulate matter
(PM), and enhanced engine performance in these demanding applications [4–6]. Moreover,
RCCI enables gradual integration of green hydrogen or ammonia into existing natural
gas infrastructures, combining the simultaneous combustion of different fuels. Keeping
the existing infrastructure avoids extensive modifications and reduces environmental
impact [7–9].

Due to its lower combustion temperature, an RCCI engine produces more carbon
moNOxide (CO) and hydrocarbon (HC) emissions than a conventional diesel engine [10].
For example, Benajes et al. [11] performed dynamic emission tests to compare emissions
from a car engine operated in conventional diesel combustion (CDC) and diesel–gasoline
RCCI modes. Despite lower PM and NOX production, switching to RCCI mode increased
CO and HC engine-out emissions from 7.5 g/kWh to 14.7 g/kWh and from 4.9 g/kWh
to 7.9 g/kWh, respectively. Similar emission levels for diesel–gasoline RCCI were shown
by Kokjohn et al. [12] for steady engine operation at 0.6 MPa of indicated mean effective
pressure (IMEP), namely, 14 g/kWh and 6 g/kWh for CO and HC, respectively. It should
be noted that emission levels strongly depend on combustion controls such as diesel in-
jection strategy, fuel fractions, boost, and exhaust gas recirculation (EGR). However, a
reduction in CO and HC emissions usually is associated with an increase in NOX emis-
sions [13]. Pedrozo et al. [14] provided emission results for a diesel–natural gas (NG) RCCI
engine. At IMEP 0.6 MPa, HC emission levels were similar to other cited works at approxi-
mately 6 g/kWh, notably almost completely comprising methane. This unburned methane
emission—methane slip—is a potent greenhouse gas contributing to climate change [15];
so, its excessive emission can negate all of the other emission benefits of RCCI combus-
tion. Mortensen et al. [16] calculated that just 3% methane slip completely wastes NG’s
advantage over coal in terms of greenhouse gas warming potential over a 20-year term.

CO and HC emissions also directly reduce combustion efficiency, so different control
approaches have been proposed to reduce these emissions while keeping LTC’s PM and
NOx emission benefits. Beside fuel-mixing strategies, variable valve timing and variable
compression ratio are two technologies that can affect internal combustion engine emissions.
Variable valve timing optimises the engine’s valve timing, improving combustion efficiency,
reducing pumping losses, and enhancing power and torque. This leads to reduced NOx
and PM emissions while also enhancing fuel efficiency. A variable compression ratio allows
for the adjustment of the engine’s compression ratio during operation, thereby optimising
combustion based on load and operating conditions. This can lead to more complete
combustion while maintaining low NOx emissions [17,18]. Mikulski et al. [6] proposed to
adapt in-cylinder fuel reforming from homogenous charge compression ignition (HCCI)
technology for RCCI, aiming to reduce methane slip. Although such strategies are used
to improve emission control in RCCI engines, using an exhaust aftertreatment system to
convert CO and HC is inevitable if further tightening of emission legislation is considered.

Typically, the mitigation of HC and CO emissions in a lean environment involves the
use of an oxidation catalyst. Diesel oxidation catalysts (DOCs) are commonly used for
oxidising HC and CO in conventional diesel engines. DOCs also improve the efficiency of
the diesel particulate filter and selective catalytic reduction [19]. First-generation DOCs
with copper (Cu), nickel (Ni), or other metals were based on gasoline engine technology,
but they were phased out due to susceptibility to catalyst poisoning and poor thermal
stability. The second-generation ones used high loading of noble metals such as platinum
(Pt), palladium (Pd), and rhodium (Rh). They gave greater conversion efficiency of CO and
HC. However, they have been associated with high sulphate emissions. Third-generation
DOC catalysts use HC adsorption technology, with strong HC adsorption materials such
as molecular sieves. Most of the HC emissions during the cold start and warm-up stages
are adsorbed, and then desorbed and completely burned in the heating stage [20,21]. This
solution reduces the necessity of catalyst heating by combustion delay, which reduces the
engine’s thermal efficiency [22].
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LTC’s inherent characteristic of low exhaust gas temperature poses a challenge for
existing exhaust aftertreatment solutions. Hasan et al. [23–25] studied catalytic efficiency of
an HCCI engine aftertreatment system in various studies, reporting indicated low methane
conversion efficiency of a standard three-way catalytic converter. The efficiency was as
low as 16% at 0.4 MPa IMEP, compared to 92% for spark-ignition combustion. Hunicz and
Medina [26] analysed methane oxidation efficiency and, aside from the temperature effect,
they pointed out the poisoning effect of acetylene, which is produced by fuel reforming.
Prikhodko et al. [27] examined different DOC converters with different loadings and
precious metal proportions, working with a diesel–gasoline RCCI engine. The conversion
efficiency was 100% for CO and 80% for HC as soon as the exhaust temperature reached
190 ◦C in CDC operation, independent of the catalytic material. In contrast, the same
conversion efficiencies were not achieved until 300 ◦C in RCCI operation. The differences
in catalytic efficiency were ascribed to overall higher concentrations of CO and HC and
also to different hydrocarbon compositions.

Considering the above, RCCI with NG as a low-reactivity fuel is particularly challeng-
ing due to the high dissociation enthalpy of methane. Therefore, it is difficult to activate
the catalytic reaction under the low temperatures that are typical of RCCI exhaust. This
indicates that dedicated methane oxidation catalysts (MOCs) should be applied in RCCI
engines. An MOC’s design, precious metal composition, and sizing play a crucial role in
reducing methane emissions. Usually, MOCs are based on Pt and Pd, with Pd showing
the highest activity under lean conditions and in a low-temperature regime. Stakheev
et al. [28] tested Pt and Pd on aluminium oxide (Al2O3) catalysts in lean conditions and
with 5000 ppm methane concentration. For the best performing design, a Pt-based catalyst
had a light-off temperature of 510 ◦C, while a Pd-based one had a 360 ◦C light-off temper-
ature. The Pt catalysts used a Langmuir–Hinshelwood mechanism on metallic Pt, while
the Pd catalysts employed a Mars–Van Krevelen mechanism on Pd oxide particles. Pt and
Pd catalysts have a different relationship between their activity and metal particle size. Pd
catalysts became more active as particle size increased from 1 to 20 nm, while Pt catalysts
were mostly unaffected by particle size. These differences stemmed from distinct reaction
mechanisms: weaker Pd–O bonds and reduced support effects enhanced the activity of
larger Pd particles. Currently, the most investigated type of MOC for large dual-fuel gas
engines is Pd on Al2O3. However, the newest investigations show advantages of zeolite
support [14]. Sulphur poisoning is a particular challenge for state-of-the-art MOCs. Ac-
cording to Ottinger et al. [29], as little as 1 part per million (ppm) of sulphur dioxide (SO2)
in the exhaust inhibits the catalyst. Lehtoranta et al. [30] considered using an upstream
SOx trap to mitigate the problem, but the MOC still required 20 h regeneration intervals to
keep the methane (CH4) conversion efficiency above 70%, even with only 0.5 ppm of SO2
in the exhaust. Importantly, increased concentrations of H2 in the exhaust can dramatically
accelerate regeneration [31].

Pd-MOCs have been relatively well researched for conventional dual-fuel marine
engines, but that is not the case for NG–diesel RCCI because of the low TRL level of the
combustion concept. Fast, one-dimensional (1D) reactive simulation can be coupled with
engine and aftertreatment models for system level simulation to evaluate the feasibility
of such a paring. This model-based development method has been widely used in global
R&D. Tziolas et al. [32] investigated several close-coupled exhaust aftertreatment system
(EATS) layouts aimed at meeting future EURO VII diesel emission limits. The study
used a heavily predictive EATS model build in Exothermia Suite but coupled it with a
non-predicative, fast-running engine model (GT-Suite) of a diesel engine for fast transient
simulations. Such an approach is typical for legacy engines, because neither conventional
diesel combustion (CDC) nor spark-ignited (SI) flame propagation is particularly sensitive
to intake valve closing (IVC) conditions. Recently, a similar co-simulation approach was
used by Leon de Syniawa et al. [33] to develop a comprehensive, detailed kinetic MOC
model for SI compressed natural gas (CNG) engines. The baseline for the MOC model was a
platinum group metal (PGM) chemistry containing Pt and rhodium (Rh) with Ceria (CeO2).
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Importantly, the authors underscored the value of using a predictive combustion model
with detailed chemistry to capture the influence of non-legislative emission components
on aftertreatment performance [32]. The modelling assumed indirect coupling of a zero-
dimensional (0D) SI stochastic reactor model (SRM) with a 1D catalyst model. Indirect
coupling meant only composition of the exhaust was passed to the catalyst brick, while
the boundary conditions of intake and exhaust manifold pressure and temperature were
imposed in both models directly from the experimental data. At this point, one should note
that unlike CDC and SI combustion, the kinetically controlled nature of RCCI combustion
makes it very sensitive to IVC conditions. Even small fluctuations in intake and exhaust
path include a direct feedback loop in combustion, producing cycle-to-cycle variations
in exhaust composition and indicated efficiency. Consequently, inclusion of the MOC
brick’s backpressure will affect engine-out emissions and efficiency, yielding fully dynamic
two-way coupling between the predictive combustion, air path, and aftertreatment. This
is a significant methodological challenge, considering that commercial 1D solvers do not
offer a fully predictive approach to model RCCI combustion.

2. Motivation and Objectives

Summarising the above state of the art, NG–diesel RCCI offers ultra-low emissions
and near-zero NOx and PM emissions and is considered the next big thing for marine
propulsion. On the other hand, CH4 and CO emission levels, although much lower than
those of legacy methane-based combustion concepts, still pose a challenge and will require
aftertreatment if future emission legislation becomes more stringent. Coupling RCCI
with aftertreatment, particularly state-of-the-art MOC, is uncharted territory and contains
several knowledge gaps. Some insights suggest that the two technologies might not be
complementary. RCCI implies low exhaust temperature and potentially high formaldehyde
and nitrous oxide (N2O) emissions. Sulphur from the diesel fraction used as high-reactivity
fuel can still be transferred to the exhaust. These factors inhibit MOC performance. On
the other hand, the concept offers potential opportunities. An MOC can reduce RCCI’s
extensive calibration burden and aftertreatment regeneration can benefit from future H2-
NG mixtures that are expected to gradually enter marine bunkering streams.

A predictive 1D simulation framework can be used to resolve this conflict between
the challenges and opportunities at an early stage of concept development. The early
stage of development of both RCCI and MOC technology for large-bore engines creates
a methodological knowledge gap in this respect. To this end, the present work is a step
towards developing an integrated methodology capable of predicting the emission and
performance characteristics of cutting-edge marine dual-fuel engines working in low-
temperature RCCI mode with MOC aftertreatment. To this end, a fully predictive, in-house
University of Vaasa advanced thermokinetic multizone (UVATZ) combustion model [34,35]
is dynamically coupled with a 1D model (GT-Suite) of a prototype engine built to test
RCCI combustion on a representative geometry of Wärtsilä 31DF production engines.
The integrated combustion–air-path model has been thoroughly calibrated and further
coupled with a representative state-of-the-art MOC catalyst model built in the same GT-
Suite environment [36]. The MOC includes a well-established PGM chemistry model
created by Khosravi et al. [37], tuned to the detailed exhaust species portfolio of the UVATZ
code. This study’s primary objective is to determine the feasibility of this unique modelling
framework for integrated calibration of RCCI engines with aftertreatment. The objective is
achieved by performing steady-state simulations focused on convergence and fundamental
cross-interactions of the system’s components. With fundamental feasibility confirmed,
this study moves on to geometrical optimisation of the MOC and several case studies to
support the applied feasibility of the RCCI-MOC system.
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3. Methodology
3.1. The Test Engine and the Engine Model

The air-path and combustion models used in this study were identified based on the
Wärtsilä Mono single-cylinder research engine (SCRE) platform. The cylinder geometry
of the SCRE was selected from Wärtsilä’s 310 mm bore, dual-fuel production engine
specifications. Table 1 lists the main specifications of the test rig. The same engine, running
low-temperature RCCI combustion, has provided data for model validation.

Table 1. Specifications of the Wärtsilä Mono single-cylinder research engine.

Displacement and nominal speed 32.45 L/720 rpm

Stroke/bore 1.39:1

Air system External air compressor with air temperature
and pressure control (up to 10 bar)

High-reactivity fuel system Common-rail 2.0 with twin-needle injector and
multi-injection capability

Low-reactivity fuel system Low-pressure, multipoint, and upstream of the
intake valves

Valvetrain Four valves with variable intake valve closure
(VIC) and fixed exhaust valve opening (EVO)

Emission system Horiba Mexa-One (NOX, CO, THC, CO2, and
O2) and AVL415S (FSN-soot)

Indicative system
AVL Indicom and a cylinder pressure

transducer Kistler 6124A, with a 300-bar range
and 30 pC/bar sensitivity

Engine control Rapid prototyping platform

Test fuels ISO 8217 compliant LFO/LNG (MN = 80)

AVL Indicom software (version 2015) and a Kistler 6124A cylinder pressure transducer
with a 300-bar range and 30 pC/bar sensitivity were set up for measuring combustion-
related specifications and storing them. AVL Indicom enables real-time data analysis from
sensors. The Kistler 6124A transducer measures cylinder pressure with high precision.
Its 300-bar capacity covers most engine pressures, and its 30 pC/bar sensitivity ensures
detailed pressure change detection.

Changes were made to the injector piston alignment to accommodate RCCI-like early
injections of the high-reactivity fuel (HRF). A centrally mounted twin-needle injector,
enclosed within a high-pressure, common-rail fuel system, was optimized for the light fuel
oil (LFO) used as HRF [38]. For RCCI injections, the smaller of the two nozzles was used
to facilitate atomisation of the micro-injected quantities. With early injection timings, the
narrow-cone injector tip supported proper reactivity stratification without extensive wall
wetting. Natural gas, the low-reactivity fuel (LRF), was injected through a multipoint gas
injector located upstream of the intake valve. The SCRE incorporates a partially variable
intake/exhaust valvetrain.

Unlike a multicylinder engine, the SCRE did not feature a turbocharger, necessitating
specific solutions to regulate charge air temperature and pressure. The complete charge
air system comprises two compressors, two buffer tanks, a charge air dryer, and two
pressure-regulating valves. This setup serves to control the charge air pressure and tem-
perature while stabilising the airflow, thereby simulating the exhaust system of the actual
production engine.

For the purpose of this research study, the detailed engine air path has been modelled
in GT-Power software (version 2022) with the following assumptions. The intake and
exhaust geometry are modelled in full detail, including the mentioned buffer tanks for
exact flow calculations. Instead of modelling the complete gas regulating unit (GRU), a
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simplified configuration with a single injector component was used to regulate the pressure
in the gas supply system before delivering it to the engine through port fuel injection.
Other than that, the model included a standard map-based direct injector for the HRF and
a four-valve, rotational position-based valvetrain. Discrete variable valve actuation was
imposed by predefined valve profiles. Figure 1 presents the governing model’s subsystems.
Note that the actual test setup did not involve the exhaust aftertreatment, which has
been separately identified for the purpose of the present study. Section 3.3 provides the
corresponding details of the aftertreatment model.
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Figure 1. A 1D air-path model of the Wärtsilä SCRE layout in GT-Power.

In the GT-Power simulation, the modelling of turbocharger output conditions in-
corporated an orifice and an intercooler, as depicted in Figure 1, positioned between the
muffler and the exhaust air path. The orifice’s diameter has been optimised to ensure the
desired pressure output. Additionally, the intercooler has been fine-tuned to maintain the
turbocharger’s temperature at the desired level.

The baseline air-path model (without aftertreatment) underwent thorough calibration
against experimental data spanning 40 RCCI operating cases. Calibration involved conduct-
ing a three-pressure analysis (TPA) in GT-Power, as depicted in Figure 1. The measured
in-cylinder pressure was matched to the simulated value by adjusting the flow and friction
multipliers in the physical air-path model. More information on the TPA is available in the
source document [39].

The calibration results have been thoroughly discussed in another paper by Kakoee
et al. [34]. For transparency, they are synthetically reproduced in Figure 2, which illustrates
a 0% error line (y = x) representing the simulated output on the Y-axis and the experimental
output on the X-axis for four governing engine parameters. As the exact values of the
data were confidential, only the ratio of simulated and experimental data has been shown
as a cross-sign on the graphs. The calibration accuracy targets for the governing model
parameters are depicted by dashed lines. The targets were stringent, representing the
accuracy of steady-state measurement. Either device uncertainty or standard deviation,
whichever was higher, was adopted as the measurement error.
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Although calibrating the engine air-path model involved exploring various specifi-
cations, the four key parameters shown in Figure 2 were chosen to highlight the model’s
accuracy. Brake-specific fuel consumption stayed within a maximum error of 3 percentage
across all 40 operating points, and the BMEP error remained under 3%, ensuring precision
in each case. Divergence of the dashed lines in the figures indicates that in the higher value
of specifications, deviation from the ideal line was higher. BSFC and CA50 in all operating
points approximately had the same amounts of deviation in various loads, where higher
BMEP and air mass flow rate show high deviations.

Examining the air-path dynamics, the air mass flow rate, a crucial indicator for flow
accuracy, demonstrated deviations below or equal to 3%. Turning to combustion, the CA50
metric was selected to showcase simulation accuracy in predicting combustion phasing.
CA50 exhibited an error of approximately 1.7 CAD, below the 2 CAD threshold and within
the study’s acceptable error range.

The UVATZ model, introduced by A.Vasudev et al. [35], simulates in-cylinder combus-
tion. It was capable of simulating various low-temperature combustion concepts driven by
chemical kinetics; it was parameterised in this study for natural gas and diesel-fuelled RCCI
combustion. The UVATZ model considered the dominant factors influencing combustion,
such as fuel and thermal stratification, in-cylinder turbulence, intake valve closure (IVC)
temperature, and the composition and quantity of residual burnt gas. The combustor is
divided into 12 zones, as depicted in Figure 3. The last two disc-shaped zones represent the
cylinder head and piston boundary layers. The remaining 10 zones are annular, with zone
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1 adjoining the liner. This zonal arrangement captures the bulk inhomogeneity resulting
from compositional and thermal stratification, as shown schematically in Figure 3.
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Interactions between the zones are modelled through heat, mass, and work transfer.
Heat loss to the walls was accounted for using the correlation proposed by Chang et al. [40].
Transport of heat and mass between zones was modelled using gradient-based methods,
while turbulence effects were incorporated following the approach of Yang and Martin [41].
The turbulence submodel involved a single calibration constant ζu. Chemical reactions
were modelled using the mechanism developed by Yao et al. [42], which includes 54 species
and 269 reactions. The HRF is represented by n-dodecane (nC12H26), while the LRF is
defined as a mixture of CH4 and ethane (C2H6).

The stratification of HRF was described by a simplified injection model, where the
nC12H26 mass was assumed to be linearly distributed across the zones, with the liner
zone having the highest concentration. This distribution was imposed at the moment of
injection, and the enthalpy of evaporation was considered proportional to the mass of HRF
in each zone. The specific profile gradient, ζ∇, was adjusted to match the case-dependent
requirements. The UVATZ model was implemented in C++ and used the thermochemical
libraries of Cantera. The simulations were performed using the robust CVODES solver,
with each closed-cycle simulation typically taking around three minutes to complete.

3.2. The Aftertreatment Model

As explained in the Section 2, this study focused on the coupling effects of engine
gas exchange, RCCI combustion, and working conditions of the MOC, rather than the
optimisation of catalytic efficiency. The primary catalyst materials and design used in
diesel oxidation were chosen for current investigations. One should note that this catalyst
chemistry has been thoroughly validated [37].

Figure 4 illustrates the catalytic brick. Its dimensions were carefully chosen for optimal
performance, based on engine cylinder size, operating conditions, gas dynamics research
data, and general requirements for the RCCI-tailored MOC [33,34]. A round-profile sub-
strate brick with a diameter of 300 mm was used, which was close to the engine’s exhaust
geometry. The baseline brick length was set to 400 mm with 5 mm discretisation in the
longitudinal direction for calculations. Catalyst cells were considered square, with a density
of 2/cm2 and a wall thickness of 0.015 cm. These dimensions provided subsonic gas flow
velocity and protected the system against backflows under all conditions. Variable cell den-
sities and brick lengths were examined to study their effects on gas dynamics and catalytic



J. Mar. Sci. Eng. 2024, 12, 594 9 of 33

chemistry. The catalyst’s substrate was covered with a 0.01 cm thick washcoat layer. The
PGM physical properties have two adjustment factors: loading of the site element, i.e., the
mass of the washcoat in the unit of volume, and atomic weight. These two specifications
were 97 gr/ft3 and 167.2 g/mol, respectively. The PGM in question was based on Khosravi
et al.’s catalyst selection, which was a monolith commercial one and consists of platinum
(Pt) and palladium (Pd) with 4:1 mass ratio [37].
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Figure 4. Catalyst brick specifications selected for MOC/DOC aftertreatment system.

The initial temperature of the catalyst brick’s wall during the simulations was adjusted
to 10% below the last part of the exhaust air path. The substrate material was cordierite,
selected from GT-Power’s library, with temperature-dependent specific heat, while the
washcoat alumina specific heat was considered constant. This approach also was used in
Khosravi et al. in an investigation of a DOC PGM catalyst [37].

The reaction mechanism used in this study was selected from the same work; however,
it needed to be tailored to include specifics of the exhaust compositions of the RCCI
engine. The implemented chemistry model is presented in Tables 2 and 3, and detailed
considerations regarding its final formulation can be found in Appendix A.

Table 2. Hydrocarbons, hydrogen, and CO oxidation specifications in presence of PGM catalyst.

Catalyst Reactants Products Pre-Exponential Activation
Energy Concentration Expression

PGM CO + 0.5O2 CO2 1.183 × 1012 −81.33 {CO} × {O2}/(G (1) × G (2))

PGM C2H6 + 3.5O2 2CO2 + 3H2O 1.266 × 1019 −129.4 {C2H6} × {O2}/(G (1) × G (2))

PGM H2 + 0.5O2 H2O 98,300 15.31 {H2} × {O2}/(G (1) × G (2))

PGM CH4 + H2O CO + 3H2 1.20 × 1016 106 {CH4} × {H2O} × G (3)2/G (2)

PGM CH4 + 2O2 CO2 + 2H2O 9.00 × 1016 −80 {CH4} × {O2} × G (3)2/G (1)

PGM C2H6 + 2H2O 2CO + 5H2 7.00 × 1017 118 {C2H6} × {H2O} × G (3)5/G (2)

PGM CO + H2O CO2 + H2 5.60 × 1017 67.5 ({CO} × {H2O} − {H2} × {CO2}/G (4)) × G (3)2/G (2)

PGM C2H4 + 3O2 2CO2 + 2H2O 1.01 × 1019 −119.4 {C2H4} × {O2}/(G (1) × G (2))

PGM C2H4 + 2H2O 2CO + 4H2 7.50 × 1017 108 {C2H4} × {H2O} × G (3)4/G (2)
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Table 3. General and inhibition function in system of modelled reaction.

G Functions Description General and Inhibition Function

G (1) CO and CO2 inhibition (1.0 + 248.0 × exp(−614.9/T) × {CO})2

G (2) hydrocarbon inhibition (1.0 + 2.02 × 10−17 × exp(2.82 × 104/T)
× ({DF} + {DF}))2

G (3) conversion factor (8.314 × T)/P

G (4) water–gas shift equilibrium
constant

exp(−1 × (−41034 + 44.19 × T −
0.005553 × T2)/8.314/T)

3.3. Model Coupling Assumptions

The UVATZ model has been coupled with a 1D air-path model in GT-Power for
predictive simulations of the RCCI engine. The coupling was achieved by using GT-
Power’s external cylinder object. The UVATZ model was integrated into a dynamically
linked executable, enabling the division of responsibilities between the two models. The
air-path dynamics and gas exchange phase of the four-stroke cycle were handled by GT-
Power, while the closed part of the cycle, specifically the combustion phase, was handled
by the UVATZ model. Figure 5 illustrates the exchange of information between the two
models. At intake valve closure (IVC), the UVATZ model received an input file detailing
the mixture’s thermodynamic state, geometric parameters, and solver settings.
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It is important to highlight that the predictive cylinder’s wall temperature has been
used, providing boundary conditions for the UVATZ heat loss model (Woshini-Chang [40]).
Specifically, the UVATZ model’s heat loss calculations used surface temperatures of the
cylinder head, piston, and liner. Following the combustion phase, the simulation results,
such as the cylinder-averaged histories of the thermodynamic state and species concentra-
tion (from the chemical kinetic mechanism), were transferred back to GT-Power through an
output file.
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This coupling procedure allowed for streamlined postprocessing within GT-Post (GT-
Suite’s postprocessing tool), simplifying the analysis of the results from both the combustion
and aftertreatment models. An “aftertreatment inlet” subassembly was created to pass
the output species concentration to the catalyst brick. The cycle-averaged mass flow,
temperature, and species concentrations were transferred from the explicit circuit to the
quasi-steady (QS) circuit, the recommended flow circuit for the aftertreatment chemistry
solver. The transferred species included CO2, CO, H2O, CH4, C2H6, C2H4, N2, O2, H2, and
nC12H26, which were supposed to be collected in the QS inlet circuit. The temperature
in the QS circuit came as direct result of the physical simulation taking into account the
heat losses in the exhaust components. The exhaust wall temperature was calculated
dynamically within the cylinder.

One should note that exhaust backpressure in the SCRE was regulated with a back-
pressure valve to mimic the conditions of the production engine with a turbocharger.
Accordingly, an adjustable orifice was added before the aftertreatment block. Furthermore,
a charge air cooler with controllable efficiency mimics the temperature drop behind the tur-
bocharger. Both objects are within the “turbocharger conditioning” block visible in Figure 1.
The parameters were tuned case-dependently to represent the pressure/temperature drop
in a production version of the Wärtsilä 31 engine. The end environment conditions were
set to ambient to prevent backflow through the catalyst.

3.4. The Scope of the Research

The coupled system-level model has been used to perform simulations to determine
the feasibility of the RCCI—MOC marine engine. Figure 6 summarises the creation of
this GT-UVATZ aftertreatment modelling framework. The entries in blue are the enabling
methods and those in green are the resultant simulations presented in the Section 4.
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The simulation plan for this study involved three dedicated campaigns (Figure 6).
Campaigns 1 and 2 secure that independently validated submodels incorporating the frame-



J. Mar. Sci. Eng. 2024, 12, 594 12 of 33

work were valid for the present study. To this end, campaign 1 evaluated the performance
and thermal state of the coupled engine model and validated the simulation result against
the corresponding experimental data from the Wärtsilä RCCI test campaign (refer to the
Section 3). Analysis of the simulated exhaust components allowed for the formulation
of a proper system of reactions to be embedded into the MOC model. This was carried
out in campaign 2 resulted from fundamental considerations supported by preliminary
simulations. The completed engine aftertreatment model with proper chemistry was used
in campaign 3, where the final solution was assessed involving geometric optimisation
of the aftertreatment block. This entailed model-based sensitivity analysis on MOC cell
density and brick length.

Three experimental operating points were selected as the baseline for the simulations.
All of them represent partial-load RCCI operation, where methane slip has been considered
problematic. Table 4 provides relevant data characterising these operating points. Note that
all points have ultra-early diesel start of injection (SOI), characteristic of RCCI. Injection
commences close to IVC to assure proper premixing of natural gas and diesel. All test point
data in Table 1 were relativised against reference values (ref) for confidentiality reasons.
The reference values correspond to the standard IMO (International Maritime Organization)
Tier III low-load calibration points for the commercial version of the Wärtsilä W31DF, a
multicylinder, lean-burn, NG–diesel engine.

Table 4. Selected operating points from SCRE test campaign used as baseline for study.

Case Scope Load [%] λ [–] BR [pp] SOI [◦CA
bTDC] Tint [K] Pint [bar]

A Investigation 11 ref + 1.8 ref − 41.9 ref + 65 ref ref + 0.5

B Validation and
investigation 25 ref + 1.0 ref − 10.9 ref + 65 ref ref + 1.3

C Investigation 50 ref + 0.8 ref + 2.4 ref + 65 ref − 5 ref + 3.5

Testing aftertreatment performance across a variety of RCCI operating conditions
entailed significantly different calibrations for each of the three test points. SOI remained
fixed, but intake charge pressure (Pint), temperature (Tint), and air–fuel ratio (λ) were all
varied. Note that the natural gas/diesel blend ratio (BR) definition used here was based on
energy content.

4. Results and Discussion
4.1. Validation of the Engine Aftertreatment with the Predictive RCCI Combustion Model

The predictive RCCI combustion model has been thoroughly calibrated in earlier
studies [4,35]. The latest version of the UVATZ model dynamically coupled with GT-Power
was thoroughly investigated in Kakoee et al. [34], proving predictive capabilities with
errors below 4% for key combustion parameters. Due to the model’s predictive nature, the
engine air path and combustion object did not require recalibration for the present study.
The addition of the aftertreatment had little impact on the upstream conditions, so only
one case outside of the calibration space (Case B, Table 2) has been chosen to discuss the
model’s validity in terms of parameters relevant to this aftertreatment coupling study.

4.2. Performance Results and Exhaust Thermal State

The UVATZ model coupled with the GT-Power engine model can predict the heat
release rate and resulting in-cylinder pressure using only basic inputs, as set out in Table 3.
All of the other combustion indicators can be derived from those two fundamental quanti-
ties. Figure 7 shows the simulated results for Case B against the corresponding experimental
results (in-cylinder pressure) postprocessed with TPA (HRR). The model’s high accuracy
and its phenomenological correctness is evident from Figure 7. The root mean square (RMS)
error in pressure was below 1 bar and the corresponding deviation in HRR is 37J. Both
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errors were within the cycle-to-cycle variations in the experimental results. Note that the
model is able to reflect the phenomenology of the process, with distinguishable negative
temperature coefficient (NTC) reactions (preignition), followed by the autoignition of fuel-
rich zones (the first peak in HRR) and the reactivity stratification-controlled combustion of
the bulk of the in-cylinder mixture (the main HRR peak).
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These features are better captured in Figure 8b, which shows the cumulative heat
release (CHR) around the combustion event. The experimental and simulated CHR traces
in Figure 8b coincide within the error of experimental procedure. The experimental CHR’s
(TPA air-path model [34]) increased before combustion and its decline after combustion
was unrealistic and came from the fact that the mixture’s composition during combustion,
characterised by the ratio of specific heats (γ), cannot be acurately determined experimen-
tally. Instantaneous gamma in the model is calculated explictly from kinetic-driven detailed
composition, so the simulated CHR exibits the correct trends.

Figure 8a depicts the corresponding differences in specific heat ratio. The close match
of simulated values to those extrapolated from the experimental data (RMS = 0.0271)
confirmed that the mixture composition was well reproduced by the model. As mentioned,
combustion indicators like a crank angle of 10% and 50% mass of fuel burned (CA10
and CA50, respectively) can be further derived from the CHR. CA10 was observed at
−4 CAD aTDC (after top dead centre) for the coupled model, and at −5.5 CAD aTDC for
the experimental case. CA50 was at 2.5 CAD aTDC for both the simulation and experiment.
The accuracy of these simulation results has been considered more than sufficient for the
purpose of the present study, considering that cycle-to-cycle variations in experimental
CA10 were of the order of ±1 CAD.
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Figure 9 shows how the discussed uncertainties in combustion estimation transfer to
general engine performance factors and thermodynamic variables relevant for aftertreat-
ment performance. The accuracy in reproducing the instantaneous mixture composition
comes from the combined accuracy of the air-path model and the combustion model, which
co-determine exhaust composition. This can be demonstrated synthetically by volumetric
efficiency (VE) and in-cylinder lambda (λ), which were reproduced by the model with an
error below 1%. The resulting error in the net heat release rate (NHR) was within a similar
range. The largest errors from all synthetic estimators were for maximum pressure (Pmax)
and indicated mean effective pressure (IMEP). Nevertheless, their accuracies were only
slightly above the 1% threshold; typical experimental tolerances in these values are set
between 2% and 4%.

The thermal stability of the GT-UVATZ model is an important consideration for
aftertreatment studies. To this end, two main factors, namely, exhaust temperature and the
mass flow rate at the exhaust runner, were considered and compared with the TPA results.
Figure 10 illustrates the normalised mass flow rate (a) and the exhaust temperature (b). It is
evident that the mass flow rate for the GT-UVATZ model and TPA results align closely in
the exhaust branch, with an RMS error of 0.0737 kg/s, with less than 4% error in all points.
The exhaust temperature error (Figure 10b) is higher, but the point-to-point percentage
error is less than 5%, and the RMS error for the exhaust temperature is 23 K. It should be
noted that exact exhaust temperature is usually hard to determine experimentally because
the flow is unsteady and sensor readings are influenced by the pipe wall heat transfer. The
average exhaust gas temperature measured experimentally in Case B was actually closer to
the UVATZ-simulated results than to the TPA results. All of the above findings indicate
that the GT-UVATZ model exhibits good thermal stability, with tolerable discrepancies in
exhaust temperature.
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4.3. Engine-Out Exhaust Composition

The design of the aftertreatment chemistry submodel required a detailed analysis of
exhaust gas composition. In the adopted modelling approach, composition was determined
by the combustion kinetic mechanism employed and by the operating point conditions
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(lambda, blend ratio, etc.). Figure 11 provided the predicted exhaust composition in a
control volume before the entering the catalyst block in case B operation point mentioned
in Table 4. The simulation was run in ambient conditions in the exhaust towards converged
results to provide a greater insight into the model’s validity. Combustion was ultra-lean,
so there was an abundance of oxygen present in the exhaust. Nitrogen and oxygen are
excluded from Figure 11 for scalability reasons, likewise for other species with a converged
molar fraction lower than 0.005%.
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It is apparent from Figure 11 that the main exhaust components reached saturation
after around 12 s of simulation and the model in the mid-load condition converged at
6 s (18 engine cycles). Apart from nitrogen and oxygen, H2O was the main compound
present in the exhaust in converged conditions, and its amount was roughly 1.8 times
higher than CO2. Around 15% (energy-based) of diesel was used to support autoignition at
this operating point; therefore, slightly more CO2 was created compared to pure methane
combustion stoichiometry (2:1). As expected from RCCI, the main toxic exhaust compo-
nents came from incomplete combustion and pertain to CO and unburned CH4. Note that
the difference between CO and CH4 observed as the simulation proceeded was the result
of the combustion model converging. RCCI combustion is very sensitive to IVC conditions,
including the amount and composition of residuals. Therefore, the residuals trapped in the
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cylinder caused a feedback loop between exhaust composition and the ensuing combustion.
The model covered this phenomenon, which was better seen in the scale of intermediate
hydrocarbon formation (C2H4). Both C2H4 and C2H6 (Figure 11b) influenced the combus-
tion convergence, even though their concentrations were an order of magnitude smaller
than that of CH4. Both species were primarily a result of breaking the methane oxidation
pathway. The amount of C2H4 was lower than C2H6 as the latter was also present in small
amounts (below 1% on a mass basis) in the simulated natural gas. Apart from the discussed
species, the SK54 combustion mechanism predicted distinguishing amounts of aldehydes
and formic acid as the most prominent groups. Their cumulative concentration in the ex-
haust at the discussed operating point was comparable to that of N2O. All of those species
can have a poisoning effect on catalyst performance [43,44]. However, as the experimental
results cannot verify their amounts in simulated engine-out and aftertreatment engine-out
flows, they will not be further included in the design of MOC chemistry for this initial
feasibility study. Poisoning effects will be the topic of a separate publication.

Figure 12 provides a data reference for Figure 11’s results, comparing the simulated
saturated values with the available measurement data from the corresponding case realised
on the test bench.
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It is shown that the results were of the same order of magnitude, and that the over-
estimation in simulated CO and THC data was compensated for by the corresponding
difference in CO2. One should note that the model was calibrated on a different engine,
and emissions were not explicitly tuned in this campaign. In that respect, the size of
the boundary layer heavily influenced the unburned hydrocarbon results in the UVATZ
model. The boundary layer size is hard-coded here and was not subjected to tuning, which
might explain the overestimation of THC. Finally, one should note that explicit accuracy in
emissions was not a target for this category of models, as they do not capture the detailed
geometrical effects of the combustion chamber. Nevertheless, the model was fully pre-
dictive and captured proper trends for emission formation between different engine sizes
and different operating points in the RCCI regime. The above discussion substantiates the
feasibility of the obtained emission results from the perspective of the combustion concept
and the aftertreatment design.
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4.4. Functional Validation of the Aftertreatment Model

This section gives a detailed analysis of partial results obtained from the aftertreatment
system, employing the adopted chemistry model. Case B was the primary focus, serving as
a validation benchmark for the engine-out model results discussed in Section 4.1. Figure 13
presents contour depictions of the complete engine air path, providing a comprehensive
functional validation of the thermal state for the converged simulation. The exhaust
registered the highest temperatures, exceeding 650 K, after the cylinder, with a minor drop
along the exhaust path caused by heat loss. A significant shift in temperature was evident
after the turbocharger conditioning section, where it decreased from 670 K to 552 K. This
notable drop underscores the significant influence of the intercooler in achieving realistic
exhaust temperature conditions. The backpressure caused by the turbocharger block was
also evident. The system outlet temperature and pressure were determined by the preset
ambient conditions.
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Temperature management within the aftertreatment block is important for its effective
operation. Figure 14 depicts the inlet temperature of the catalyst brick during steady-state
engine operation, with the outlet temperature gradually increasing to converge with the
inlet temperature. Notably, the temperature at the inlet is within the functional range
for the MOC, i.e., above the light-off threshold yet below the 640 K boundary of thermal
durability [33].
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Figure 14. Mass-averaged temperature at inlet and outlet of catalyst brick: mid-load case; L = 400 mm
and cell density = 2 (1/cm2).

It can be concluded that as the simulation progressed over a longer timeframe, it is
apparent that the inlet/outlet temperature eventually became saturated due to exhaust
and catalyst walls reaching converged temperatures. The inflection in the temperature
timeseries, observed within the initial 3 s of simulation, was the result of the combustion
convergence. The cylinder was initiated with elevated cylinder wall temperature through
the first few cycles. This was to avoid sustainable misfire, as RCCI combustion is very
sensitive to in-cylinder temperature stratification. While the cylinder thermal solver recal-
culated the wall temperature to a realistic level, the combustion efficiency reduced, which
was evident from the engine-out emissions in discussed in Section 4.1. These saturate after
approximately 4 s of simulation, causing the catalyst inlet/outlet temperature gradient to
stabilise its slope, affected only by the exhaust pipe preheating.

Figure 15 illustrates the mole fraction of species considered in the catalytic reaction
before and after the catalyst brick. It is evident that the conversion efficiencies of individual
hydrocarbons are different. In the given operating conditions, the conversion efficiency
of CH4 was roughly 57.5%, (Figure 15a), while C2H4 and C2H6 converted at a 43.8% and
45.6% rate, respectively, (Figure 15b,c). The simulation converged with a cumulative THC
conversion efficiency of 56.4%.

The results of intermediate hydrocarbon conversion in Figure 15 do not correlate
directly to the activation energies of the catalytic reactions in Table 4, as they are the
superposition of other factors. Species concentration plays an important role. The oxidation
reaction of C2H4 had a significantly lower activation energy and pre-exponent coefficient
but its precatalytic concentration was roughly half that of C2H6, which explains the similar
conversion efficiencies. It should also be noted that although the conversion of C2H6
and C2H4 to other products was easier than CH4 conversion, these results show that
CH4 conversion was greater than that of the other two hydrocarbons. The reason for this
phenomenon is related to species concentration, where CH4 needs more activation energy
than the other two hydrocarbons. Interestingly, C2H4 has a similar activation energy as CO,
but in both reactions for CO in Table 2, CO has a 104 lower order in the pre-exponential
factor and is completely and almost immediately converted to CO2. The adopted catalyst
model yields results that are trend-wise comparable with the available literature, such as
the results of Khosravi et al., which show approximately 100% of CO conversion in all test
cases in the presence of various PGM types [37]. In a natural gas engine investigated by
Mortensen et. al, it was observed in early engine operation that the conversion efficiency
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of wet methane (the same condition as in the current study) started at 70% and gradually
decreased [16]. The same methane conversion trend also occurred in the current study,
as depicted in Figure 15. A similar trend was identified in a marine industry application,
where methane conversion in a PGM catalyst aftertreatment system varied from 70% to
50% in early methane engine operation [30].
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One can conclude from the above discussion that the engine–catalyst model coupling
can be considered functionally valid. However, modelling aftertreatment simulation
in GT-Power has certain limitations. Simplifications in chemical kinetics may lead to
inaccuracies in predicting catalyst reactions. Spatial and temporal resolutions may not
capture intricate details, affecting accuracy during rapid transients. Catalyst aging and
poisoning effects might not be fully represented, and interactions with engine control
systems may not account for dynamic coupling. Variability in the fuel composition and the
challenge of experimental validation, especially under transient conditions, add complexity.
Recognising these limitations is crucial for the accurate interpretation of simulation results
and for refining models for more robust predictions in real-world scenarios.
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4.5. MOC Performance at Representative RCCI Operating Points

The functionally validated model discussed above was further used to research the
aftertreatment performance in all three investigated RCCI operating points listed in Table 3.
The research focus was on conversion efficiency, light-off temperature, and the effect on
overall engine performance.

4.6. Results with Baseline MOC Geometry

Figure 16a,b show the catalyst outlet mass flow rate and inlet temperature. Both
were instrumental in examining the thermal stability and potential backflow conditions.
Notably, the temperature at the catalyst inlet ultimately reached a stable point. While minor
fluctuations were observed in the temperature, the mean temperature remained stable
throughout the integrated engine and aftertreatment system. Additionally, the convergence
temperatures for all three case studies aligned with the desired inlet temperatures, mirroring
functionally accurate results. The mass flow rate also exhibited a degree of stability at the
catalyst brick outlet, surpassing the stability observed in temperature conditions.
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Figures 16c and 17d illustrate CO and THC conversion efficiency. In all cases, as
illustrated, CO was entirely converted into other species, predominantly CO2. Notably,
the low-load case achieved 100% conversion, albeit slightly higher than the other cases,
highlighting a direct correlation between CO conversion efficiency and its concentration in
the exhaust, as well as catalyst temperature. In contrast, the conversion of THC exhibited a
non-monotonic trend. The conversion efficiency stabilised after some time, reaching 68.1%
for the low-load case and 56.8% and 37.8% for the mid- and high-load cases, respectively. It
is noteworthy that these conversion efficiencies were attained using a coarse catalyst mesh
with a 2 (1/cm2) cell density and a length of 400 mm. This difference in THC conversion
can be related to higher average total hydrocarbon produced at higher loads.
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mise conversion efficiency. To address this, Figure 18 compares the pressure drop across 
all three load conditions. The pressure drop remained consistently below 10 mbar for all 
three cases [45,46]. Higher pressure drops, averaging around 6 mbar, were noted for the 
high-load scenario, while drops of only 1.2 mbar were observed for the low-load case. The 
mid-load case displayed an intermediate pressure drop of approximately 2.5 mbar. 
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The geometric configuration of the catalyst played a pivotal role in assessing the
functional viability of the exhaust aftertreatment. Striking the right balance between mesh
size and length was crucial, as overly fine meshes or excessive length can lead to undesirable
pressure drops along the catalyst brick. Conversely, overly coarse meshes can compromise
conversion efficiency. To address this, Figure 18 compares the pressure drop across all
three load conditions. The pressure drop remained consistently below 10 mbar for all
three cases [45,46]. Higher pressure drops, averaging around 6 mbar, were noted for the
high-load scenario, while drops of only 1.2 mbar were observed for the low-load case. The
mid-load case displayed an intermediate pressure drop of approximately 2.5 mbar.

Given the stable condition of the inlet temperature and the low pressure drop observed
in the baseline model, it can be inferred that the integration of the aftertreatment system in
this simulation study is feasible. Building upon this feasibility, the subsequent discussion
delves into the geometric sensitivity of the installed catalyst brick.
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4.7. Sensitivity of MOC’s Geometrical Parameters

The findings concerning conversion efficiency, temperature, and pressure drop indicate
that the three engine-load case scenarios exhibited different trends in conversion efficiency
and thermal and pressure management. A geometry sensitivity analysis has been carried
out for all three cases. It was conducted on catalysts of three different lengths—300 mm,
400 mm, and 500 mm. Each length was swept across cell densities ranging from the baseline
2 (1/cm2) to 20 (1/cm2). The analysis considered conversion efficiency, pressure drop, inlet
temperature, and simulated engine efficiency, aiming to select the best catalyst geometry.

Figure 17 shows these quantities at the low-load operating point (Case A). It shows
that THC conversion efficiency exceeds 60% for all catalyst lengths and cell densities,
almost reaching 100% for cell densities above 15 (1/cm2). Although the pressure drop
(Figure 17c) remains within an acceptable range at these higher cell densities, the catalyst
inlet temperature falls below its 500 K light-off limit when the baseline brick length of
300 mm is considered. Although Figure 17b indicates that temperature does not significantly
impact THC conversion, this decrease may pose a problem at the low-load operating
point [28,32]. The light-off limit was reached between 10 and 12 cells/cm2 for the two
longer catalysts. The limitation in terms of inlet temperature is depicted by the yellow area;
the threshold limitation for the minimum THC efficiency of 70% is depicted by the yellow
area in Figure 17a.

Backpressure increased the pumping work of the engine, so even the least dense and
shortest catalyst exerted an indicated efficiency penalty of 2.1%. The penalty increased
to 2.65% for the 500 mm long catalyst with the highest density (Figure 17d). However,
this efficiency deterioration was considered acceptable. Regarding the limitations arising
from inlet temperature and THC conversion efficiency, depicted by the yellow areas, a cell
density between 3 and 10 (1/cm2) seems feasible for all considered catalyst lengths.

Figure 19 applies the same criteria to assess the mid-load scenario, Case B. Figure 19a
shows that the THC conversion efficiency threshold of 70% was achieved with a minimum
catalyst length of 300 mm and a cell density of 4 (1/cm2). The efficiency could exceed 80% if
the same cell density was used in the two longer catalysts. Figure 19b shows that there was a
moderate temperature drop with longer catalysts and a greater cell density, but it remained
above 500 K. Equally, indicated efficiency penalty rose but was still below 3% in all cases
(Figure 19d). One should note that the penalty in the single-cylinder model (without
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turbocharger) was attributed almost exclusively to higher pumping losses and should be
treated as indicative only. Increased backpressure in an actual engine usually causes the
turbocharger to operate at a more efficient operating point of the map. Turbocharger tuning
can effectively reduce the penalty to less than 2% per 0.1 bar of increased backpressure [47].
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Comparing the criteria for indicated efficiency penalty, the high-load case (Figure 20d)
demonstrated a more favourable scenario than the mid-load condition. As illustrated in
Figure 20d, the maximum efficiency drop was 2.9%, applicable to the longest catalyst with
a high cell density. The 70% THC conversion rate was feasible in the high-load scenario
for a 300 mm long catalyst with a cell density of 7 (1/cm2), as depicted in Figure 20a. This
same 70% minimum conversion threshold with 400 mm and 500 mm long catalysts was
reached at cell densities of 5 (1/cm2) and 4 (1/cm2), respectively.



J. Mar. Sci. Eng. 2024, 12, 594 25 of 33

J. Mar. Sci. Eng. 2024, 12, 594 25 of 33 
 

 

This same 70% minimum conversion threshold with 400 mm and 500 mmlong catalysts 
was reached at cell densities of 5 (1/cm2) and 4 (1/cm2), respectively. 

 
Figure 20. (a) THC conversion; (b) catalyst inlet temperature; (c) pressure drop; and (d) indicated 
efficiency drop for high-load case (Case C) in various geometries and cell densities, yellow area 
illustrated un-desired domain. 

Weighing the above geometrical considerations against commercially available 
MOCs gave additional insight into the technological constraints. A chosen typical heavy-
duty, on-road MOC, 152 mm long with a diameter of 266 mm, had a mesh density of 600 
cells per square inch, equal to 93 cells per cm2 [48]. The catalysts’ lengths in the current 
study were 300 mm, 400 mm, and 500 mm, each had a 300 mm diameter, and the maxi-
mum cell density varied from 40 to 20 (1/cm2). With this selection, the effective area was 
approximately the same as the commercial MOC catalyst [47] while avoiding the limita-
tions explained for the three case studies. Therefore, a catalyst brick with a length of 400 
mm and a cell density of 10 (1/cm2) has been selected for the marine engine application 
considered in this study. 

4.8. Benchmark RCCI with and without MOC 
The selected MOC brick configuration (400 mm in length and with cell density of 10 

cells/cm2) has been benchmarked against the RCCI engine without an MOC. Bearing in 
mind the earlier remarks concerning a turbocharger’s effect in mitigating the pumping 
losses caused by increased backpressure, brake efficiency was obtained by applying the 
calculated backpressure on the GT-Power model of a corresponding one-cylinder produc-
tion version of the SCRE considered here for reactive simulation. The model was operated 
at corresponding load points, with the burn rates imposed from the fully predictive SCRE 

Figure 20. (a) THC conversion; (b) catalyst inlet temperature; (c) pressure drop; and (d) indicated
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illustrated un-desired domain.

Weighing the above geometrical considerations against commercially available MOCs
gave additional insight into the technological constraints. A chosen typical heavy-duty,
on-road MOC, 152 mm long with a diameter of 266 mm, had a mesh density of 600 cells per
square inch, equal to 93 cells per cm2 [48]. The catalysts’ lengths in the current study were
300 mm, 400 mm, and 500 mm, each had a 300 mm diameter, and the maximum cell density
varied from 40 to 20 (1/cm2). With this selection, the effective area was approximately the
same as the commercial MOC catalyst [47] while avoiding the limitations explained for the
three case studies. Therefore, a catalyst brick with a length of 400 mm and a cell density of
10 (1/cm2) has been selected for the marine engine application considered in this study.

4.8. Benchmark RCCI with and without MOC

The selected MOC brick configuration (400 mm in length and with cell density of
10 cells/cm2) has been benchmarked against the RCCI engine without an MOC. Bearing
in mind the earlier remarks concerning a turbocharger’s effect in mitigating the pumping
losses caused by increased backpressure, brake efficiency was obtained by applying the cal-
culated backpressure on the GT-Power model of a corresponding one-cylinder production
version of the SCRE considered here for reactive simulation. The model was operated at
corresponding load points, with the burn rates imposed from the fully predictive SCRE
simulations. As previously highlighted, the model involved a BMEP and lambda controller
to ensure that both cases were simulated at the same calibration, despite different boundary
pressures. With the above assumptions, Figure 21 compares the results of the RCCI engine,
with and without an MOC.
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The main difference became apparent in the 720 degree, gross indicated efficiency.
Figure 21b illustrates this change by comparing gross indicated efficiency across all three
engine loads in both engine air-path models. All quantities have been normalised with
the mid-load case efficiency without a catalyst (WO-MOC). The efficiency is reduced by
around 2% for all cases with a catalyst (W-MOC).

Figure 21a depicts CA50, revealing negligible differences across all three engine-loads.
The benefits of employing the MOC manifest in significantly reduced emissions, as

depicted in Figure 21c,d. This figure provides indicated specific emissions of THC and CO
in both W-MOC and WO-MOC air-path models. The quantities have been normalised with
iTHC and iCO thresholds in EU Stage V limits. Substantial reductions in both iTHC and
iCO emissions with the catalyst are evident in all three cases. CO emissions in the W-MOC
scenario register at zero for all engine loads (Figure 21d).

Indicated total hydrocarbons emissions (iTHC) without the catalyst exhibited values
above the threshold in the low- and mid-load cases (Figure 21c). Integration of the MOC
reduced these values well below EU Stage V limits. It is noteworthy that the elevated
temperature in the high-load scenarios resulted in considerably lower THC emissions
compared to in other cases.

5. Conclusions

This study highlighted the efficacy of advanced kinetic-based combustion models for
comprehensive engine and aftertreatment simulations. It demonstrated that a coupled
multizone model with detailed reaction kinetics and aftertreatment integration can converge
in under 12 s for steady-state simulations. Convergence times can vary based on initial
conditions and combustion variability. This research study also found that the model



J. Mar. Sci. Eng. 2024, 12, 594 27 of 33

accurately captured the impact of aftertreatment-induced backpressure on combustion.
Despite the simulation running at a speed of three minutes per cycle—slightly slower than
a standalone combustion model—it achieved high accuracy within a 5% error margin for
performance metrics and emissions.

Moreover, this study underscored the critical role of hydrogen in driving the spon-
taneity of methane reactions and the importance of oxygen in catalytic processes.

The analysis of catalyst brick geometries identified a 400 mm long oxidation reactor
with a cell density of 10 (1/cm2) as optimal, achieving significant hydrocarbon conversion
rates and maintaining an acceptable pressure drop below 0.1 bar, thus offering flexibility in
design. However, the introduction of aftertreatment systems was found to compromise
engine performance, with efficiency penalties ranging between 2.45% and 2.65% across
different load points; while more than 98% of carbon oxides were converted, unburned
hydrocarbon reduction was about 70%.

Moving forward, it has been planned to make the developed UVATZ RCCI model
faster and to improve its predictive capability. Our step-by-step approach to adding more
details to the model helps to prepare a detailed and accurate engine model which has high
accuracy in predicting combustion and emission specifications considering the effectiveness
of various engine system parts such as various types of aftertreatments, turbochargers, etc.
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Nomenclature

A/F air/fuel
AFR air flow rate
BR blend ratio
BSAC brake-specific air consumption
BSFC brake-specific fuel consumption
BTE brake thermal efficiency
CAD crank angle degree
CAX crank angle corresponding to X% energy released
CFD computational fluid dynamics
CHR cumulative heat release
CMP compression
DOC diesel oxidiser catalyst
EGR exhaust gas recirculation
EXH exhaust
EATS engine aftertreatment system
GTP GT-Power
IMEP indicated mean effective pressure
IMO International Maritime Organization
IP indicated power
ISAC indicated specific air consumption
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ISFC indicated specific fuel consumption
ITE indicated thermal efficiency
IVC intake valve closing
LFO light fuel oil
LTC low-temperature combustion
MN methane number
MOC methane oxidiser catalyst
MZM multizone model
NG natural gas
NHR net heat released
OEMs original equipment manufacturers
PGM platinum group metal
pp percentage points
PRR pressure rise rate
PWR power
RCCI reactivity-controlled compression ignition
ROHR rate of heat release
SCRE single-cylinder research engine
SOC start of combustion
SOI start of injection
TDC top dead centre
TR trapping ratio
THC total hydrocarbons
VE volumetric efficiency
UVATZ University of Vaasa advanced thermokinetic multizone

Symbols
P pressure
Pt platinum
Pd palladium
Rh rhodium
Pmax maximum pressure
T temperature
λ air–fuel equivalence ratio
ζt interzonal mixing intensity
ζ∇ gradient of high-reactivity fuel stratification

Appendix A. Reaction Matrix and Thermodynamic Analysis

The main text determined that the most abundant reactive NG–diesel RCCI engine
exhaust species were H2, H2O, CO2, CO, CH4, C2H6, C2H4, and O2. They were consid-
ered for the catalytic reactions study; possible reactions involving these species have been
listed in Table A1 [49]. The table shown the activation energy for each reaction, indicating
whether the reactions can occur spontaneously or not. If not, the reactions were facilitated
by the presence of other species. Specifically, the majority of reactions occurred sponta-
neously when there was sufficient hydrogen in the exhaust gas. However, in the absence of
hydrogen, the direction of the reactions could be altered. Obviously, oxygen was the most
significant species in the oxidation reaction matrices R2, R9, R13, and R15.

One noteworthy reaction is R6, known as the Boudouard reaction. This was partic-
ularly important due to possible production of soot outside of the engine cylinder. This
reaction was spontaneous and exothermic at all temperatures but requires elevated temper-
atures to occur. In addition to the Boudouard reaction, the water–gas shift reactions R10
and R11 played a crucial role in soot production. Both required the presence of hydrogen,
which can be supplied through another water–gas shift reaction, R7.
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Table A1. Possible reactions for system of species [49].

Reaction ∆H
(

kJ
mol

)
Reaction Type

R1 CO + 3H2 ↔ CH4 + H2O −206.1 CO methanation

R2 CO + 0.5O2 ↔ CO2 −283 CO oxidation

R3 CO2 + 4H2 ↔ CH4 + 2H2O −165.0 CO2 methanation

R4 2CO + 2H2 ↔ CH4 + CO2 −247.3 Inverse methane CO2 reform

R5 CH4 + 2O2 ↔ CO2 + 2H2O −802 Water–methane shift

R6 2CO ↔ C + CO2 −172.4 Boudouard reaction

R7 CO + H2O ↔ CO2 + H2 −41.2 Water–gas shift

R8 CH4 ↔ 2H2 + C +74.8 Methane cracking

R9 H2 + 0.5O2 ↔ H2O −241 H2 burning

R10 CO + H2 ↔ C + H2O −131.3 Carbon moNOxide reduction

R11 CO2 + 2H2 ↔ C + 2H2O −90.1 Carbon dioxide reduction

R12 C2H6 + 2H2O ↔ 2CO + 5H2 +340 Ethane conversion to CO

R13 C2H6 + 3.5O2 ↔ 2CO2 + 3H2O −1434 Ethane oxidation

R14 C2H4 + 2H2O ↔ 2CO2 + 4H2 +210 Ethylene conversion to CO2

R15 C2H4 + 3O2 ↔ 2CO2 + 2H2O −1322 Ethylene oxidation

Figure A1 depicted the spontaneous behaviour of various reactions. It shown that
oxidation reactions R5, R13, and R15 were highly spontaneous and occur rapidly, converting
hydrocarbons directly into final products. One should note that these three reactions did
not occur in the absence of oxygen in the exhaust gas, for example in fuel-rich conditions.
All other reactions were observed to be exothermic and spontaneous, except for methane
cracking (R8), ethane–water (R12), and ethylene–water (R14) reactions, which required
activation energy to occur. These three reactions were spontaneous in the reverse direction.

Hydrogen played a crucial role in this reaction matrix. With an abundance of hydrogen,
reactions R1, R3, R4, R7, R9, R10, R11, and R8 occur in forward direction, and R12 and R14
occur in the reverse direction. Therefore, hydrogen concentration was a key controller of
these reactions. Hydrogen can be supplied by the water–gas shift reaction (R7), which is
both spontaneous and exothermic.

Examination of the available species and the potential reactions in Table A1, and of the
equilibrium constants in Figure A1, explained the inhibitory roles of various species. The
main combustion products CO2 and H2O played inhibitory roles in the oxidation of three
main hydrocarbons (R13, R15, and R5) by increasing the concentration of products. Even
though CO did not directly contribute to oxidation reactions, it was converted to CO2 via a
spontaneous reaction (R2) with an excess of oxygen, further enhancing its inhibitory effect.
The water–gas shift reaction (R7), which was also spontaneous, increased the inhibitory role
of CO and H2O while producing H2. In turn, with the presence of CO and CO2, hydrogen
participated in reactions R1 and reverse reactions R12 and R14, yielding methane, ethane,
and ethylene. Reaction R6, followed by reversed reaction R8, showed another inhibitory
role of CO. Finally, it can be stated that CO, H2O, and CO2 were the main inhibitory species
in methane removal from the exhaust. These inhibitory mechanisms should be considered
when choosing an appropriate aftertreatment catalyst.
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Figure A1. Logarithmic equilibrium constant of various possible reactions.

The engine exhaust valve temperature and pressure in this study were approximately
550 K and 5 bar, respectively. This temperature prompted analysis of other possible species,
using the same analysis as A. Kakoee et al. [37] involving the Gibbs equation. Figure A2
depicts the concentrations of various species.

H2O, CO2, CO, CH4, C2H4, and C2H6 were considered species at equilibrium with
the mentioned possible reactions. In this analysis, equilibrium referred to the amount
of the mole fraction of mentioned species at each pressure and temperature. The initial
values for these species were selected as follows: 1, 0.5, 0.18, 0.05, 0.014, and 0.0033, respec-
tively, for H2O, CO2, CO, CH4, C2H4, and C2H6. The pressure of the system of reactions
was 5 bar. H2O and CO2 are the most bolded species according to their concentrations.
According to this figure, as mentioned soot emissions were possible with the presence
of C that can be released from R6, the Boudouard reaction, a spontaneous reaction. The
concentrations of C and C2H6 were approximately the same due to chemical equilibrium.
The Boudouard reaction was a spontaneous reaction that completely consumes the output
CO and converted it to mainly CO2 and C. Although the initial mixture did not contain
hydrogen, its concentration increased from approximately 350 K. This phenomenon can
cause the occurrence of all of those reactions in the presence of this species, as tabulated
in Table A1. As depicted in the Figure A2, CH4 completely converted at 800 K. Around
this temperature, a turning point occurred for approximately all species. The depicted
concentrations were the final outputs of the species with 15 possible reactions before going
through the aftertreatment system.
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