
Citation: Pacheco-Blazquez, R.;

Garcia-Espinosa, J.; Di Capua, D.;

Pastor Sanchez, A. A Digital Twin for

Assessing the Remaining Useful Life

of Offshore Wind Turbine Structures.

J. Mar. Sci. Eng. 2024, 12, 573.

https://doi.org/10.3390/

jmse12040573

Academic Editor: Cristiano Fragassa

Received: 12 March 2024

Revised: 25 March 2024

Accepted: 25 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

A Digital Twin for Assessing the Remaining Useful Life of
Offshore Wind Turbine Structures
Rafael Pacheco-Blazquez 1,2,*,† , Julio Garcia-Espinosa 3 , Daniel Di Capua 1,2,† and Andres Pastor Sanchez 1

1 International Center for Numerical Methods in Engineering (CIMNE), Gran Capitán s/n,
08034 Barcelona, Spain; dicapua@cimne.upc.edu (D.D.C.); apastor@cimne.upc.edu (A.P.S.)

2 Department of Nautical Science and Engineering (CEN), Polytechnic University of Catalonia (UPC),
08003 Barcelona, Spain

3 Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid (UPM),
28040 Madrid, Spain; julio.garcia.espinosa@upm.es

* Correspondence: rafael.pacheco@upc.edu
† These authors contributed equally to this work.

Abstract: This paper delves into the application of digital twin monitoring techniques for enhanc-
ing offshore floating wind turbine performance, with a detailed case study that uses open-source
digital twin software. We explore the practical implementation of digital twins and their efficacy in
optimizing operations and predictive maintenance, focusing on controlling the real-time structural
state of composite wind turbine structures and forecasting the remaining useful life by tracking the
fatigue state in the structure. Our findings emphasize digital twins’ potential as a valuable tool for
renewable energy, driving efficiency and sustainability in offshore floating wind installations. These
aspects, along with the aforementioned simulations, whether in real-time or forecasted, reduce costly
and unnecessary inspections and scheduled maintenance.

Keywords: digital twin; wind turbine; offshore; industry 4.0; composite; marine structure

1. Introduction

The offshore floating wind turbine industry is positioned for significant expansion in
the forthcoming decades, driven by technological advancements and the increasing global
demand for sustainable energy sources. The need for reliable and cost-effective operations
of these complex systems highlights the critical role of predictive maintenance and real-time
monitoring. This paper introduces and demonstrates the open-source implementation of a
predictive digital twin customized explicitly for the operation and maintenance of wind
farms in offshore environments.

In the contemporary landscape of digital twin applications, inspiration is drawn
from various sectors, including power generation, manufacturing, meteorology, and urban
planning. In these fields, digital twins have proven to be indispensable for enhancing oper-
ational efficiency and reliability, as highlighted in the work of Tao et al. [1]. The objective of
this endeavor is to adapt and expand upon this conceptual framework within the domain
of offshore wind energy.

In recent years, the application of digital twin technology in wind power generation
has seen an increase. In particular, Azure and AWS have led the market with their com-
mercial applications of this technology for wind turbines. For example, research presented
in [2] highlights Microsoft Azure’s application of digital twin technology in power genera-
tion, with special emphasis on a predictive machine learning model. AWS has developed
cloud applications using their product AWS IoT TwinMaker; in [3], the online digital twin
is coupled with OpenFAST to evaluate the performance of the wind turbines (onshore
and offshore). However, in [3], the concept of a digital twin seems to be related to sensor
monitoring through the Grafana dashboard rather than the 3D model, although the 3D
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capability exists inside the commercial solution. And by closing the area of research to 3D
digital twin applications, other types of commercial applications in offshore wind turbines
are those implemented using the Unity3D render, e.g., ref. [4], which involves a wide range
of open-source technologies found in the background of this paper.

The research in this paper showcases the possibility of implementing digital twin
technology; we specifically focus on 3D virtual representation to monitor structures, in-
tegrate predictive maintenance, and assess the life cycle of structures. The research was
implemented through an open-source platform available to the public, which is a solution
not quite explored in the field. The types of structures of interest here are offshore floating
wind turbines, especially those made of composites. The life cycle of the turbines was
assessed by means of an innovative real-time hydroelastic model, combined with advanced
fatigue techniques for composite materials; this allowed for deriving a suitable remaining
useful life that could be of interest in the predictive maintenance field.

2. Background

The application of digital twins to the specific field of wind turbine operation and
maintenance (O&M) can significantly impact cost reduction. While O&M expenses may
not be the primary economic costs, they make a substantial contribution to the overall
expenses. Recent surveys on onshore wind turbines have indicated a decreasing trend in
the average O&M costs in the last few decades. In Figure 1, data from the 2022 report on
the land-based wind market by Wiser et al. [5] demonstrate a decline in costs according
to the two fitted curves used in the forecast. Based on the current threshold, the most
likely scenario is for costs to remain stable or experience a slight increase. A significant
decrease seems less likely, especially since the costs theoretically cannot reach zero. Regular
updates on information in the coming years will be crucial for a better understanding of
the behavior of OPEX costs in such structures.
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Figure 1. OPEX Cost Trends. The “2022” label pertains to data acquired during the 2022 survey, not
to data collected in the years preceding the survey, adapted from [5].
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Therefore, given the current trends, there is limited room for improving efficiency in
terms of O&M. This underscores the importance of considering digital twin solutions to ob-
tain high-fidelity models that can be utilized for cost optimization if correctly implemented.

In the same report on onshore wind turbines, insights into the O&M costs per year are
provided concerning the age of the project (refer to Figure 2). The information is organized
into three-year ranges based on the commercial operation date. While the exact date is not
disclosed, it has been assumed based on the lower bound year of each range.
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Figure 2. Median O&M cost versus project age and the combined impact of digital twins and wind
turbines. Adapted from [5].

In Figure 2, the original data were transformed from the age of the project to an
age represented in a date scale. The data were then further subdivided into short, mid,
and long-term categories, each covering a range of 7 years. This subdivision mirrors the
original classification, which categorized the data into three ranges (1998–2005, 2006–2013,
and 2014–2021). This approach is motivated by the desire to gain insight into the different
project ages within the lifespan of an onshore wind turbine.

From Figure 2, it is evident that the median O&M cost is higher for the oldest wind
turbines and remains relatively similar for the newest wind turbines. This pattern is
consistent with technology trends, where new technologies often entail higher costs, which
gradually decrease as the technology matures. The reason for the cost stagnation in the
2014–2021 range compared to the 2006–2013 range may be attributed to two factors. First,
it is essential to recognize that costs cannot be reduced indefinitely. Second, the average
power generation of the turbines has increased, which is closely correlated with larger sizes
and, consequently, increased costs.

The trend displayed in Figure 2 indicates that the median cost for short-term-aged
wind turbines typically follows a positive, monotonically increasing pattern, while the
mid-term trend tends to be negative. However, it is worth noting that the 1998–2005 range
does not exhibit a decrease in cost.

The long-term trend can either show a mild decrease or appear saturated. The absence
of data for the largest onshore wind turbines in terms of mid- and long-term periods
leaves room for speculation regarding the potential role of digital twin technology for
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newer structures. This is why, in Figure 2, a chart illustrating the number of Google trend
searches for the keywords “wind turbine” and “digital twin” is included. The red area
represents searches normalized by their historical maximum number. It is evident that
interest in this topic has been high in the last decade, which aligns with the construction of
new wind turbines. It is also worth noting that, apart from the popularity of digital twin
technology in recent years, other factors such as regulatory changes, increased awareness
of environmental issues, and market dynamics might have had some impact in the past
decades.

Thus, despite the absence of data for the mid- and long-term periods of the 2014–
2021 wind turbines, it can be reasonably assumed that the popularization of digital twin
technology may have played a significant role in reducing the short-term costs of larger
and more powerful wind turbines, compared to the equivalent 2006–2013 curve.

Within the domain of digital twin technology, another important metric is the carbon
footprint associated with operation and maintenance, due to its synergistic integration.
For example, an environmental review by Arvesen and Hertwich [6] sought to gain a better
understanding of climate change indicators such as energy intensity (EI) and greenhouse
gas (GHG) emission intensity as applied to onshore and offshore wind turbines.

To comprehend the significant differences between onshore and offshore wind tur-
bines, previous research by [7] highlighted the contributions of various elements to total
greenhouse gas emissions (refer to Figure 3). Focusing on O&M, offshore wind turbines
account for a total of 10%, in contrast to 5.3% for onshore wind turbines, which is nearly
double. This underscores that having precise control over emissions in tasks related to
O&M can potentially contribute to reducing this value.

Figure 3. Greenhouse gas emissions for offshore and onshore wind turbines, adapted from [7].

The size and power of wind turbines can also be considered as significant factors
that contribute to the climate change index, whether in terms of greenhouse gas (GHG)
emissions or energy intensity (EI). As shown in Figure 4, the difference between offshore
and onshore wind turbines is evident once more. For similar wind turbines with a power
value of 2 MW or 5 MW, offshore turbines exhibit a higher percentage compared to onshore
turbines. However, when power generation requirements increase, the GHG contribution
also rises. It is also important to note that there are other factors, such as the production
of materials that have a significant impact on GHG emissions, which will also increase
proportionally with the turbine size. This relationship is crucial because the design power
of new wind turbines is expected to increase substantially. Consequently, the application
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of digital twin technology is not only necessary to monitor this contribution but also to
leverage the recorded data to improve the designs of the next generation.

0 5 10 15 20

%

Offshore 5MW, 2011
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Figure 4. Contribution to the climate change index by a wind turbine type and power. Adapted
from [6]. Original data from [7,8].

3. Methodology

The research described in this paper was applied to an offshore floating wind turbine
(OFWT) as part of the H2020 FIBREGY project [9]. Within the FIBREGY project, one of the
tasks involved the life cycle management of fiber-based OFWTs.

This methodology is divided into two parts: first, introducing the digital twin platform
and its capabilities; and then, applying the digital twin in real-time to a wind turbine. The
second part focuses on applying the finite element method to calculate the remaining
useful life, specifically by calculating a fatigue index for composite materials through the
serial–parallel rule of mixtures.

3.1. Digital Twin Platform

The platform used to create a digital twin of an offshore wind turbine structure is the
so-called OSI4IOT [10,11]. OSI4IOT is an open-source web-based platform designed for
monitoring industrial assets and structures. The platform’s features are depicted in Figure 5,
and it incorporates several technologies, including web-based functionality, the integration
of digital twins (DT), a geographical information system (GIS), compatibility with the
Internet of Things (IoT), integration of assets through asset information models (AIMs),
and real-time simulation using the finite element method (FEM).

Figure 5. Various features are available within the OSI4IOT ecosystem.
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The OSI4IOT environment comprises various components as depicted in Figure 6.
This platform is operating-system-independent, thanks to its use of Docker technology in
its development. It consists of five distinct modules, with the core being the web app built
using React and integrated with Node-RED for data manipulation. The default protocol for
data communication from the sensors to the platform is MQTT, using Mosquitto technology.
Sensor data can be obtained from industrial microcontrollers to simpler microcontrollers
such as Raspberry Pi or sensors from mobile phones.

- Ecosystem

Figure 6. The open-source based ecosystem of OSI4IOT.

Data are ingested and stored in the Timescale database using the concept of buckets.
Once the ingested data are transformed, they can be displayed in a 3D interactive digital
twin model, on the Grafana dashboard, and can also be utilized to train a machine learning
model built using the TensorFlow environment.

The last component of the system involves external tools. The platform utilizes Blender
as its external modeling tool. For instance, Figure 7 illustrates the pipeline used by external
tools to generate the digital twin metadata for later creation in the platform. In this specific
case, the process focuses on studying a welding robot arm.

The simulation of temperature profiles is obtained using finite element software
(RAM Series), which exports both the mesh and nodal results in JSON files (mesh.json and
result.json). The mesh is then imported into Blender to prepare the metadata, including
sensors, assets, animations, and geometrical information. Subsequently, the digital twin
model is exported in .glTF format, which is a standard format compatible with the three.js
graphics and rendering library.
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Figure 7. Blender serves as the de facto external tool for generating the metadata and geometry data
required to construct the digital twin in the web platform.
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The results of the sensor data can be visualized through a Grafana dashboard, as de-
picted in Figure 8.

Figure 8. The platform incorporates Grafana technology for seamless integration. Grafana’s dash-
boards enable the visualization of data ingested from sensors.

Additionally, the platform supports the inclusion of virtual sensors. The term “virtual
sensor” refers to sensors that exist in the digital twin but not in the physical world. For in-
stance, MetOcean data from a buoy can be obtained through an API request, allowing data
related to waves, wind, and temperature to be retrieved. In the case of the wind turbine,
as illustrated in Figure 9, a virtual anemometer is created using the integrated Node-RED
module. This virtual anemometer retrieves wind speed and wind direction data for the
wind turbine through an API request to https://openweathermap.org/ (accessed on 24
March 2024).

Figure 9. Creation of a virtual sensor.

3.2. Remaining Useful Life

The methodology proposed in this paper is based on the finite element method and
combined with a fatigue assessment formulation [12].

3.2.1. Finite Element Method

The formulation utilized in the spatial discretization involves linear triangles [13] and
bilinear quadrilaterals [14] as shown in Figure 10.
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Figure 10. Illustration of the mechanical discretization. (a) DKT element. (b) QLLL element.

The through-thickness integration is shown in Figure 11, employing a layerwise
approach, given that the materials involved in the simulation are composites.

l
x3l

l
x3l+1

l
x3

lt

lt

l
x3

Figure 11. Thickness discretization layerwise for a laminate material.

Another crucial aspect to consider is a method that enables the real-time structural
response to be obtained. To achieve this, a reduced-order model (ROM) is integrated
according to [15], and the floating structure employed in the ROM hydroelastic analysis is
the public OC4 from the DeepCwind project. The fundamental concepts can be summarized
as follows:

1. Assume that the nodal response of the spatial discretization can be represented by a
modal basis, as follows:

u(x, t) =
∞

∑
i=1

qi(t) · ai(x) (1)

where u is the displacement field, q is the temporal variation of modal amplitudes,
and a is the modal basis.

2. The modal basis can be obtained from the eigendecomposition of the following
dynamic problem, where λ represents the eigenvalues.

Mü + Ku = 0 →
(

M−1K
)

ai = λiai (2)

3. Consequently, the entire dynamic equation is as follows:

M

[
∞

∑
i=1

q̈i(t) · ai(x)

]
+ C

[
∞

∑
i=1

q̇i(t) · ai(x)

]
+ K

[
∞

∑
i=1

qi(t) · ai(x)

]
= f (t) (3)

The approach is best described in Figure 12, where the OC4 deformation modes are
given. For a given spectrum, the characteristic modes are computed and stored. Then,
with a provided environmental load, the real-time solution can be determined based on the
precomputed modes.
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Mode 1

Mode 2
+

Real-Time

Figure 12. Procedure for obtaining a real-time response based on spectral modes.

3.2.2. Fatigue

The objective of this article is not only to provide a framework that can capture the
real-time hydroelastic response of an offshore floating wind turbine (OFWT) but also
to predict the life cycle of the OFWT. In order to monitor the life cycle of the structure,
a fatigue model proposed by Petiteau and Paboeuf [12] will be adapted to later obtain the
remaining useful life (RUL) index. This model is orthotropic and designed for composite
constitutive materials stacked layerwise. Each layer may consist of one or two materials,
where one layer represents just a core material and a layer with two materials represents
the combination of fiber and matrix materials, respectively.

In Figure 13, the characteristic stresses, σp and σs, of a laminate layer are presented.
These local stresses include the parallel component aligned with the fiber orientation and
the serial component orthogonal to the fiber orientation.

σ
p
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�

σ
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γ s

τ
��

τ
��

τ

s
�

τ

�
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Figure 13. Diagram of stresses for a composite.

The methodology by Petiteau and Paboeuf primarily focuses on transverse fatigue
because the directions perpendicular to the fibers are the weakest. Consequently, a failure
envelope rule is proposed for the two weakest stress components: serial stress, σs, and
in-plane shear stress, τps (refer to Figure 14). The fatigue mechanism employs a similar
approach to fluency rules, where the fatigue limit decreases due to the loss of mechanical
properties. As the loss region expands, the mechanical limits for in-plane shear and serial
stress are reduced. The model also accounts for non-symmetric behavior in compression
and tension states, although the in-plane shear is considered symmetric.
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Figure 14. Illustration of the fatigue mechanism.

The fatigue limit variation is characterized by the S-N curves. However, in the case of
orthotropic composite materials, a separate curve must be established for each combination
of fiber and matrix, volumetric fraction, and ply orientation. As a result, the extensive
experimental characterization required for numerous combinations becomes costly and can
be a limitation for the current application of this methodology. On the other hand, the serial–
parallel theory [16] or in short, SPROM, a non-linear constitutive technique, is introduced
to obtain the orthotropic behavior of composites based on the isotropic properties of the
constituent materials that make up the laminate (fiber and matrix). By employing this
approach, it is necessary to characterize only the S-N curves in the parallel (0◦) and serial
(90◦) directions.

The serial–parallel rule of mixtures (SPROM) can be succinctly described as follows:

1. Similar to the behavior described in Figure 13, the behavior of a laminate ply is char-
acterized by its serial and parallel components, where stresses (σ) and deformations
(ε) can be described as follows:

σ =

[
σp
σs

]
, ε =

[
εp
εs

]
(4)

2. Compatibility equations, also known as the Reuss–Voigt hypothesis [17,18], are de-
fined as follows:[

σs
]

composite =
[
σs
]

matrix =
[
σs
]

fibre ,
[
εp
]

composite =
[
εp
]

matrix =
[
εp
]

fibre (5)

3. The theory employs the rule of mixtures (ROM), where ϕ represents the volumetric
fraction.

σcomposite = ϕ · σfibre + (1 − ϕ) · σmatrix (6)

4. Consequently, the transverse serial stress of the fiber must be equal to that of the
matrix (Equation (5)). Combined with Equation (6), this poses a minimization problem.
This results in a formulation where both the serial and parallel stresses depend on the
deformation of the matrix phase. If the constitutive model is elastic, then the classical
orthotropic constitutive matrix is obtained. The advantage of the SPROM is that it
allows for simulating damage (non-linear constitutive models) based on the damage
rheology of its fiber and matrix phases.

The S-N curves can also be utilized to construct the constant fatigue life (CFL) diagram,
which provides information about the maximum number of cycles (N) for a given mean
stress (σm), alternating stress (σa), and amplitude ratio (R) as shown in Figure 15.
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Figure 15. Illustration of a constant fatigue life (CFL) diagram, adapted from [19].

The amplitude ratio, mean stress, and alternating stress are defined in terms of the
minimum stress (σmin) and maximum stress (σmax).

σm =
σmax + σmin

2
(7)

σa =
σmax − σmin

2
(8)

R =
σmin

σmax
=

σm − σa

σm + σa
(9)

The Palmgren–Miner rule, as described in [20,21], is employed to evaluate the cumula-
tive damage experienced by the material.

D =
k

∑
i=1

ni
Ni

(10)

where D represents the damage index, i is the index of a cyclic interval, k is the total number
of cyclic intervals, ni stands for the number of cycles, and Ni represents the total number of
cycles until fatigue rupture.

A stress history is recorded, and a cycle-counting algorithm is employed to evaluate
the damage to a laminate layer at the Gauss point level. In marine applications, it is com-
mon to use a rainflow algorithm with three points or four points to count the cycles, and
utilize the cumulative damage estimation to determine the remaining useful life (RUL) [22].
In this case, the cumulative damage estimation can be obtained using Equation (10). The ac-
cumulated damage is linear, although there are formulations that incorporate a non-linear
additive effect [23], particularly in the context of wind turbines.

As fatigue is calculated at the Gauss point level, for each ply of the laminate, it is
crucial to employ a real-time cycle-counting strategy (refer to Figure 16). To address this
challenge, various algorithms have been proposed either in incremental form [24] or in
combination with memory-reducing techniques [25].
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Figure 16. A cycle-counting algorithm is used to determine the number of cycles based on the
stress history.

3.2.3. Summary

In Figure 17, the methodology is summarized. The primary objective of this paper is to
demonstrate the monitoring of an offshore wind turbine. To effectively track the life cycle of
the structure, the concept of remaining useful life (RUL) will be utilized. The methodology
to obtain the RUL is described as follows:

1. Utilizing a finite element method approach to obtain the stress history at the Gauss
point level.

2. Implementing a cycle-counting algorithm, such as the rainflow algorithm, adapted to
avoid excessive data storage and to enable real-time cycle prediction.

3. Applying a fatigue damage model, such as the Palmgren–Miner rule, to establish the
RUL metric.
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Figure 17. Methodology implemented to obtain the remaining useful life (RUL).

Therefore, the stresses at each Gauss point are tracked, which are then post-processed
using an optimized cycle-counting algorithm. This returns the number of cycles at different
ranges, which is used to obtain the RUL index for the given constitutive properties of the
material model (CFL diagram). In this case, a simple Palmgren–Miner rule is used to obtain
the index of damage that goes from 0% to 100%. This information is obtained at each Gauss
point and integrated through the thickness to be seen for each element. This damage index
can be used together with a threshold to perform maintenance once a region has undergone
a significant damage threshold.

4. Showcase

The methodology outlines the platform ecosystem and the theoretical background for
generating the remaining useful life index, specifically based on the fatigue damage index.
To illustrate the application of the methodology, a case study will be employed, focusing on
a mono-tower. In Figure 18, the digital twin of the mono-tower is depicted on the left, while
the real dual-tower offshore floating wind turbine from the FIBREGY project is shown on
the right.
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(a) (b)

Figure 18. Case under study. (a) Mono-tower. (b) Dual-tower.

The model used for the case study is the mono-tower wind turbine with the Deep-
Cwind OC4 floating structure [26].

4.1. Environmental Load Monitoring

Utilizing the virtual anemometer as explained in the methodology section, the wind
speed and wind direction data can be obtained. The virtual sensor collects MetOcean data
at a latitude of 41.4224 and a longitude of 2.347. The wind load for the previous hour is
displayed in Figure 19. It is important to note that for this analysis, the heading is neglected,
and the load is considered one-dimensional.
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Figure 19. The wind load, the stress history for the region with maximum fatigue, and the remaining
useful life.

The wind speed is between −1 m/s and 5 m/s. The stress is also plotted for the
region associated with the highest fatigue damage. In this case, the damage is calculated
for each element by storing the maximum through-thickness value of the different Gauss
points. Alternatively, if memory constraints are an issue, the damage could be stored per
region of interest, e.g., ref. [26] focused on the analysis of different regions where high-
stress and vibrations could be of importance, particularly the joints between bars and the
pontoon/columns.

The remaining useful life is obtained from the Palmgren–Miner rule. However, in this
case, as it is based on only one hour of simulation, the amount of damage is insignificant.

The web platform’s digital twin also displays a real-time diagram of stresses. In
Figure 20, one can see the von Mises stress distribution in the structure, which allows
for tracking possible failures if any element exceeds the elastic limit. The “one-hour-ago”
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snapshot clearly shows a null distribution of stresses, corresponding to the time when the
wind speed is, on average, zero. The “now” snapshot displays the distribution of stresses
at the end of the load history.

(a) (b)

Figure 20. Two snapshots of the FEM mesh for the von Misses stress. In accordance with the load
history from Figure 19. (a) One hour ago. (b) Now.

The highest stresses are found in the unions, the dynamic or cyclic nature of the problem
suggests that the joints in the floating structure are more likely to experience failure. The tower
is modeled using a carbon-epoxy composite to replicate the methodology used for the dual-
tower design, resulting in non-symmetric behavior in compression and tension. In Figure 21,
the non-symmetric fatigue can be noted due to this effect. It results from considering a non-
symmetric CFL diagram, as shown in Figure 15. In the “one-hour-ago” snapshot, the fatigue
is almost zero, although the color appears grayish rather than white. However, for the “now”
snapshot, the fatigue increases to almost 0.1%.
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Figure 21. Two snapshots of the mesh for the RUL results. In accordance with the load history from
Figure 19. (a) One hour ago. (b) Now.
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At the same time, the values obtained from the accelerometers, strain gates, inclinome-
ters, and optic fibers could be displayed by means of a Grafana dashboard similar to the
one shown in Figure 22. It is important to note that, in this model, the displayed values are
not gathered from real sensors. Instead, they are derived from virtual sensors based on the
mesh deformation and displacement at specific locations where real sensors are placed.

Figure 22. Sensor data displayed in a Grafana dashboard. The displayed measures of interest include
strains, accelerations, and a safety factor calculated based on the ratio between the allowable stress
and the maximum stress recorded.

4.2. Predictive Maintenance

In the current example of the mono-tower, the remaining useful life is defined based
on the maximum damage observed throughout the structure’s life. The recorded values are
too low to trigger any warnings or alerts. To activate the warning and subsequent alert ,
a threshold is set, e.g., at an accumulated damage of 50%.

The current methodology can potentially be employed for predictive maintenance if
the wind, current, temperature, and wave load forecasts are accurate enough. For instance,
the reduced hydroelastic order model discussed in the methodology [15] could, in theory,
be used to calculate simulations for a future time period before the forecasted time elapses,
i.e., only if t-seconds of simulation can be computed before the t-second forecast elapses.
This would represent a true real-time application. In standard FEM simulations, achieving
such real-time capabilities is generally not feasible due to computational limitations.

In this specific case, wind forecasts can be obtained using the same virtual sensor ap-
proach, but in this context, it would involve predicting future wind conditions, as depicted
in Figure 23. This would be a valuable feature for real-time predictive maintenance.

Subsequently, Figure 24 displays the current state in blue at the joints of the floating
structure, based on historical data for the last 20 min, and the forecasted state in orange for
the next 10 min. This visualization is a valuable tool for predictive maintenance.

Lastly, the forecast data can also be displayed in the Grafana dashboard, as demon-
strated in Figure 25. This integration allows for the comprehensive monitoring and analysis
of forecasted conditions, contributing to predictive maintenance strategies.
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Figure 23. Forecast obtained via openweathermap.
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Figure 24. Predicted wind speed, stress and RUL.

Figure 25. Virtual sensor data and forecasted data (accelerations shown in the dashed green line).

5. Implementation

The described methodology will be applied to an existing double-tower floating wind
turbine called W2POWER from EnerOcean. This turbine has its towers reconverted to
carbon fiber material as part of the H2020 FIBREGY project [9], and the reconversion is
showcased in Figure 26.
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(a) (b)

Figure 26. The W2POWER structure, real footage and reconversion. (a) The W2POWER floating
wind turbine from EnerOcean. (b) Reconverted carbon tower.

The floating wind turbine is monitored through the GIS of OSI4IOT, as seen in
Figure 27. You can observe the leaflet where the wind turbine is located, specifically
in the Oceanic Platform of the Canary Islands (PLOCAN) in Spain. The GIS of OSI4IOT
supports three types of states: the default state, warning state (in orange), and alert state
(in red). These states are defined based on various metrics. For example, when specific
metrics, such as damage calculated using Equation (10), exceed a defined threshold (e.g.,
P%), a warning is issued. If the warning persists for a designated period of time (tw), it
transitions into an alert state, indicating more severe issues that require immediate atten-
tion. Both warning and alert states prompt immediate notifications through the platform’s
notification system.

Default

Warning

Alarm

Figure 27. The geographical representation of the W2POWER wind turbine deployment using
OSI4IOT GIS, showcasing its location in the Oceanic Platform of the Canary Islands (PLOCAN)
in Spain.

While converting the wind turbine to composite material, various types of sensors
will be integrated into the OFWT structure. These sensors include a buoy provided by
PLOCAN, an anemometer, and other sensors placed along the mooring lines. The sensor
data are collected and transmitted to the OSI4IOT platform through a microcontroller using
the MQTT protocol. This sensor information can be stored to be used later in statistical
analysis or machine learning models to improve the prediction of necessary maintenance
inspections. Moreover, combining the data with the elemental RUL definition at different
regions of interest in the structure can be used to correlate the necessary inspections or
repairs with a set of reference RUL values. Therefore, knowing the present RUL state,
the forecast can be obtained to decide—based on the reference RUL value—if a necessary
inspection or repair is likely to be scheduled in a particular part of the structure.

The digital twin can be found in Figure 28. The process to create this digital twin is
presented in Figure 7. Initially, a finite element model (FEM) was developed to analyze the
response of the wind turbine to various types of loads, including air pressure loads, wind
turbine loads, mooring loads, current loads, and wave loads. This model involves a cou-
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pling between OpenFAST and SeaFEM solvers. SeaFEM utilizes a modal matrix reduction
method for its hydroelastic analysis [15]. The reduction order method (ROM) allows for
real-time solutions once the modes of the floating structure are computed. The real-time
FEM solution is of great importance because it aims to predict fatigue by calculating the
structural response for a 6 h window based on the current environmental conditions.

The second part of creating the digital twin involves exporting the mesh and the
precomputed modal results from the hydroelastic analysis; a profound analysis of the
hydroelastic FEM model and its results can be found in [27]. The mesh is exported with its
connectivity and coordinate matrices in JSON format. It is then imported into Blender using
an open-source add-on available in the platform’s GitHub repository. The modal results
are also exported in JSON format for each node. In Blender, sensors, assets, animations,
and metadata are designed. Afterward, everything is exported in glTF format, which can
be read using the three.js library. Finally, in the platform’s digital twin creator, the glTF file
and the results in JSON format are uploaded to generate the corresponding digital twin.

Figure 28. A comparison between the real floating wind turbine and its digital twin.

6. Conclusions

The paper comprehensively explores the potential of utilizing digital twin models to
enhance wind turbine performance, emphasizing cost reduction and sustainability within
the framework of 7D-BIM technology.

In the methodology section, the platform’s capabilities are introduced, with a sig-
nificant focus on the formulation for the real-time calculation of remaining useful life,
particularly regarding fatigue in composite structures. The showcase section demonstrates
the practical application of the platform to the offshore wind turbine industry, with a
specific case study involving the W2POWER structure.

The application of digital twin technology to offshore floating wind turbines presents
several unique advantages. Firstly, the platform’s data ingestion capability is invaluable
for prioritizing inspection schedules. It allows for a data-driven approach to determine
which structures require immediate attention and which can wait. Second, it facilitates the
reduction of costly and unnecessary inspections for structures lacking real-time monitoring.
This not only optimizes resources but also helps prevent prolonged inspection intervals.
Third, digital twin technology enables the reliable tracking of a structure’s lifespan and
supports efforts to extend it. Finally, it allows for the dynamic adjustment of inspection and
maintenance plans through forecasting and predictive maintenance, enhancing efficiency
and cost-effectiveness. These advantages underscore the transformative potential of digital
twins in optimizing offshore wind turbine performance and sustainability.
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