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Abstract: Generative models offer design diversity but tend to be computationally expensive, while
non-generative models are computationally cost-effective but produce less diverse and often invalid
designs. However, the limitations of non-generative models can be overcome with the introduction
of augmented shape signature vectors (SSVs) to represent both geometric and physical information.
This recent advancement has inspired a systematic comparison of the effectiveness and efficiency of
generative and non-generative models in constructing design spaces for novel and efficient design
exploration and shape optimization, which is demonstrated in this work. These models are showcased
in airfoil/hydrofoil design, and a comparison of the resulting design spaces is conducted in this
work. A conventional generative adversarial network (GAN) and a state-of-the-art generative model,
the performance-augmented diverse generative adversarial network (PaDGAN), are juxtaposed
with a linear non-generative model based on the coupling of the Karhunen–Loève Expansion and
a physics-informed shape signature vector (SSV-KLE). The comparison demonstrates that, with an
appropriate shape encoding and a physics-augmented design space, non-generative models have
the potential to cost-effectively generate high-performing valid designs with enhanced coverage
of the design space. In this work, both approaches were applied to two large foil profile datasets
comprising real-world and artificial designs generated through either a profile-generating parametric
model or a deep-learning approach. These datasets were further enriched with integral properties
of their members’ shapes, as well as physics-informed parameters. The obtained results illustrate
that the design spaces constructed by the non-generative model outperform the generative model in
terms of design validity, generating robust latent spaces with no or significantly fewer invalid designs
when compared to generative models. The performance and diversity of the generated designs were
compared to provide further insights about the quality of the resulting spaces. These findings can aid
the engineering design community in making informed decisions when constructing design spaces
for shape optimization, as it has been demonstrated that, under certain conditions, computationally
inexpensive approaches can closely match or even outperform state-of-the art generative models.

Keywords: dimensionality reduction; design optimization; generative adversarial networks

1. Introduction

The design process is a critical phase for any industry, and it can be revolutionized
by incorporating state-of-the-art intelligent methods. This integration not only automates
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design processes but also aids designers in creating innovative and optimized solutions for
free-form functional surfaces, such as wings, turbine blades, and ship hulls. Optimizing
such surfaces often plays a crucial role in enhancing their functional performance; see,
for example, Refs. [1–4]. Effective design parameterization, facilitating high levels of
intuitiveness, flexibility, and representational accuracy, is a crucial prerequisite for such
shape optimization approaches. Intuitiveness is essential for enabling designers to articulate
the design logic, while flexibility is crucial for accommodating intricate design specifications.
Representational accuracy ensures that a concise set of design parameters can effectively
capture an expansive design space, encompassing physically optimal solutions across
a diverse range of design conditions and constraints [5,6]. However, using traditional
methods to create a design space that accommodates these three qualities often results in
prohibitively high dimensionality and increased complexity.

In the realm of engineering design, the methods and processes for generating appeal-
ing and optimized designs have continuously evolved, mirroring technological advances
and paradigm shifts in design approaches. For instance, the recent growth of generative
methods within engineering design disciplines has contributed significantly to the au-
tomation of the design generation process. These models have the ability to extract and
capture the underlying data distribution of the design space, enabling them to generate
conventional as well as novel design samples; see Refs. [7–9]. Notably, deep generative
models (DGMs), such as generative adversarial networks (GANs) [10], variational autoen-
coders (VAEs) [11], and deep reinforcement learning techniques, have found applications in
diverse domains, such as microstructural design [12], 3D modeling [13], and aerodynamic
shape design and optimization [14].

Despite these developments, conventional generative models, primarily focused on
learning the distribution of an existing design space, often encounter significant challenges
when applied in engineering design synthesis. These challenges relate to reduced diversity,
sub-optimal performance, and a lack of novelty, which can be primarily attributed to the
limitations of the employed design space [15–17]. To address these issues, researchers have
proposed a series of advanced algorithms [18–20]. Notably, Chen et al. [21] proposed the
performance-augmented diverse generative adversarial network (PaDGAN), incorporating
a loss function based on determinantal point processes (DPPs) [22,23]. This approach aims
to synthesize high-performance and diverse designs while extending the boundaries of the
existing design space for the generation of novel designs.

While generative approaches show promise, they often come with significant compu-
tational costs when dealing with complex designs. In contrast, non-generative approaches,
such as Principal Component Analysis (PCA)/Karhunen–Loève Expansion (KLE) [24,25],
can be tailored by appropriate methodological expansions and augmentations to approach
(and in some cases, even outperform) the performance of generative models while being
computationally more efficient, as will be described below. The dichotomy between genera-
tive and non-generative models becomes evident in their approaches to data representation
and design generation. Generative models focus on capturing the underlying data distribu-
tion and generating novel and diverse design samples, while non-generative models solely
focus on extracting latent features from the design space without explicitly modeling the
underlying data distribution. Classic non-generative methods face limitations in preserv-
ing intricate shape complexity and underlying geometric structures. This leads to latent
subspaces that may not permit the efficient generation of diverse and valid shapes during
shape optimization [26]. The compromised representational capacity impedes optimizers
and wastes computational resources in the exploration of infeasible designs and/or shapes
lacking novelty. Moreover, these techniques rely predominantly on geometric features,
neglecting crucial quantities of interest pertaining to physics and performance, which
actually drive the design optimization process. Consequently, along with the lack of a prior
probability distribution, the generated designs tend to be either close replicates of the origi-
nal dataset members or inter-member interpolants lying in their respective neighborhoods.
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Therefore, there is a wide variety of challenges to be addressed before contemporary design
process objectives can be met.

While PCA/KLE techniques may be computationally efficient, their linear nature and
susceptibility to generating less diverse design spaces with a relatively high number of
invalid designs make them less effective when compared to other modern non-generative
models. For example, autoencoders have demonstrated their ability to produce diverse
design spaces with a low number of invalid designs while also capturing nonlinearities
within datasets [27–29]. To address the above-mentioned limitations of conventional linear
non-generative approaches, Khan et al. [26] introduced an augmented shape signature
vector (SSV) coupled with a KLE-based approach and managed to improve the original
design space representation by incorporating both geometric and physical information into
the design description. Enhanced performance was demonstrated in their study without
sacrificing computational efficiency. A further step in the same direction was performed in
Masood et al.’s study [30], where the effect of different shape-discretization methods was
highlighted, and by using a similarly augmented SSV, they showcased the positive impact
of an enhanced data representation, which tackled the problems of invalid designs and lack
of diversity.

These recent results provide the motivation to conduct a comparison between a
representative of the state-of-the-art generative models with the enhanced KLE-based non-
generative model mentioned above. Specifically, non-generative models are represented by
the SSV-KLE-based approach, which is an enhanced linear shape-supervised dimension
reduction approach (see Section 2.1), whereas PaDGAN (see Section 2.2) is the generative
model of choice. PaDGAN is a nonlinear method with a nominal two-fold advantage
over non-generative models: i.e., it captures nonlinearities and learns the underlying data
distribution. The comparison is performed on airfoil design spaces, which align very well
with this work’s research aims, as airfoil design requires rich design spaces with adjustable
parameters influencing performance. At the same time, due to their 2D nature, their
performance evaluation does not require prohibitively costly computations and therefore
permits a thorough investigation into how generative and non-generative models cope
with the intricacies of complex design spaces and performance-based shape optimization
within them. Thus, both the design space quality and design performance assessment,
which produce valuable insights into the respective models’ capabilities and limitations,
can be simultaneously covered. The effectiveness and efficiency of both generative and
non-generative models are significantly affected by the representation of the design dataset,
which plays a pivotal role in each model’s capacity to capture relevant features and patterns
within the design space. The aim here is to demonstrate that, with appropriate data
representation, non-generative models can achieve results on par with those of generative
models. The comparison is facilitated by the following major steps:

• The generation of datasets with varying shape signature vectors (with and without
augmentation with performance-based components).

• The performance of varying shape discretizations to quantify their effects as well as
identify the ones that lead to data representations with enhanced quality.

• The deployment of both generative and non-generative models on the created datasets.
• The performance a comprehensive analysis of latent space quality to evaluate the

efficacy of the implemented models in design optimization.

This paper is divided into two main sections: Section 2, where the employed models
and comparison criteria are discussed, and Section 3, containing the produced results and
their analysis, followed by a summary of main observations and future research directions
in Section 4.

2. Methods

This section begins with the presentation of the selected non-generative approach
in Section 2.1, followed by the employed generative model in Section 2.2. The dataset
generation process for the two datasets is described in Section 2.3, with the presentation of
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the quality metrics, which are employed in the models’ comparison, being presented in
Section 2.4.

2.1. Shape-Supervised Dimension Reduction (SSDR)

The non-generative SSDR employed in this work is adopted from Ref. [30], which
combines a Karhunen–Loève Expansion (KLE) approach with a shape signature vector
(SSV—see also Ref. [31]) that is augmented with physics-informed quantities (mainly
geometric moments; see Section 2.1.1) and considers varying discretization methods in
shape encoding. In this context, a rich and diverse space of foil-profile designs, denoted
by C, is assumed, with each design being represented or modified using a design vector
v ∈ V ⊆ Rn. The design space V is constrained by an appropriate set of bounds that limit
the space to geometrically and physically valid foil profiles.

The vector v ∈ V facilitates the definition of a shape modification procedure
θ̄† = θ̄ + vθ̄, where θ̄ denotes the initial foil geometry, discretized into a set of points
that are encoded into this vector of point coordinates, whereas the vector θ̄† corresponds to
the resulting vector encoding of the shape after applying the modification procedure. For
the generation of the augmented SSV, the geometry, vθ̄, with a vector of physics-informed
quantities, µ(vθ̄), is combined to form the final unique SSV, ϑ:

ϑ = (vθ̄, µ(vθ̄)), p(ϑ) ∈ P ⊆ Rnp , (1)

where the function p(ϑ) incorporates both geometrical and physics-informed information,
and np = n + nµ, with n corresponding to the dimension of V , and nµ to the number of
physics-informed quantities employed in the augmentation. To reduce the computation
cost, quantities that are related to performance instead of actual performance metrics can
be used. In this work, the foil’s geometric moment invariants (see Section 2.1.1) are mainly
used, but performance metrics, namely, lift and drag coefficients, are also considered.

Finally, the KLE approach facilitates the determination of an appropriate set of or-
thonormal basis functions, {ϕi(ϑ)}κ

i=1, which will be used in the approximation of the
initial design space, i.e.,

p(ϑ) =
∞

∑
i=1

uiϕi(ϑ) ≈
κ

∑
i=1

uiϕi(ϑ), (2)

where {ϕi(ϑ)}κ
i=1 spans the latent space U , u = (u1, u2, . . . ui, . . . , uκ) is the vector of latent

parameters, and κ is the number of eigenvectors that retain the required percentage of total
variance in the given dataset. For the calculation of the eigenvectors/basis functions, the
approach discussed extensively in Refs. [25,26,30] is adopted in this work. The interested
reader may specifically study the full derivation of this approach for the case of airfoil
design spaces in Ref. [30].

Apart from the KLE method mentioned above, geometric moment invariants, which
are mainly used for the augmentation of the SSV (see Section 2.1.1), and the bounds,
(ulow, uhigh), employed for the resulting latent spaces (see Section 2.1.2), are also described.

2.1.1. SSV Augmentation—Geometric Moments

As mentioned before, SSV augmentation is performed with the use of a series of
physics-informed quantities that lead to significant quality enhancements in the resulting
latent spaces, as demonstrated in Ref. [26]. This approach addresses the limitations of
conventional dimensionality reduction approaches, which often fail to preserve the full
complexity of the shape and the underlying geometric structure. One obvious approach
for the application at hand is to use performance metrics, such as lift and drag coefficients,
to augment the SSV. However, such metrics can become computationally expensive, and
therefore, following the insights of Khan et al. [26] and Masood et al. [30], geometric mo-
ment invariants are introduced as physical information substitutes. This addition not only
encompasses additional integral geometric characteristics but also incorporates relevant



J. Mar. Sci. Eng. 2024, 12, 566 5 of 16

physical properties of the designs, as geometric moments exhibit strong correlations with
common performance metrics in airfoil design.

If Ω is used to denote the 2D domain, enclosed by a given 2D foil profile, the rth-order
moments can be calculated using the following general equation:

M(r) = Mp,q =
∫ +∞

−∞

∫ +∞

−∞
xp yq ρ(x, y) dxdy,

p, q ∈ {0, 1, 2, . . .}, p + q = r.
(3)

In this expression, the “density” function ρ(x, y) assumes the value 1 when (x, y) ∈ Ω
and 0 otherwise. However, as one may easily observe, the moments in Equation (3) depend
on the shape’s rigid motions, whereas the common relevant performance metrics, i.e., lift
and drag coefficients, are invariant to translations and uniform scaling. For that reason,
appropriate scale- and translation-invariant moments should be used if noise and non-
relevant information are to be blocked from entering the SSV. Moments that are invariant to
translations, rotations, and scaling were presented in Ref. [32]. Since rotational invariance
is unwanted, only the normalized version of central moments, which deliver the needed
invariance with respect to uniform scaling and translations, are employed. Specifically,
central moments are defined as

M̄(r) = M̄p,q =
∫ ∞

−∞

∫ ∞

−∞
(x − cx)

p(y − cy)
qρ(x, y)dxdy, (4)

where c = (cX , xy) corresponds to the centroid of Ω. Finally, normalization is performed to
eliminate the scaling influence. This can be carried out by dividing by any of the moments,
but picking a low-order one is computationally more stable. Hence, if M̄0,0 is picked for
normalization, the resulting moment reads

µ(r) = µp,q =
M̄p,q

(M̄0,0)
p+q+2

2

, (5)

with µp,q being the main quantities augmenting the SSV in this work. For a more detailed
discussion regarding geometric moments and their invariants, the interested reader may
refer to [26,30,32].

2.1.2. Latent Space Bounds

Design space bounds are generally easy to determine, especially when their generation
is performed by parametric models that employ parameters with physical meaning. These
bounds are of utmost importance, as they limit the design space to regions producing
valid geometrical profiles, hence excluding regions that would produce infeasible and/or
invalid designs, which would obviously impede the design optimization process. However,
determining the bounds of latent parameters is a daunting task, as latent parameters have
no physical interpretation. Nevertheless, setting appropriate bounds for the latent space
is still a crucial step, as regions with infeasible or invalid shapes need to be excluded or
minimized so that optimizers are not trapped in irrelevant design regions. At the same
time, overly tight bounds may negatively effect the design space since they undermine the
potential of generating rich spaces with novel designs. Specifically, in this work, although
it is relatively easy to derive bounds for the parameters of the v vector in V , the same
cannot be said for the latent vector u ∈ U . Although various methods are proposed in
the pertinent literature, it is still hard to determine the values of (ulow, uhigh) in a way that
would guarantee the satisfaction of all design requirements, i.e., a diverse and rich design
space with no invalid/infeasible designs.

One approach entails the projection of the original design space bounds to the latent
space which, although feasible, may over-constrain the latent space and exclude large
useful regions. Another approach, which is computationally inexpensive and is commonly
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used in the pertinent literature, involves the use of the standard deviation for the mean
design, placed at the center of the latent space. This approach achieves a good compromise
between the aim of contracting regions with invalid designs and the requirement for a
rich and diverse design space. Specifically, this approach involves the eigenvalues {λi}κ

i=1
identified when calculating the basis functions in Equation (2).

ui ∈
[
−α

√
λi, α

√
λi

]
, i = 1, . . . , κ (6)

where α is a whole number ranging from 1 to 3 and determines the number of standard
deviations around the mean space, which will be used in the definition of the design space.
It should also be noted here that the variance is represented by the sum of all eigenvalues,
i.e., σ2 = ∑∞

i=1 λi, which is also used for the determination of the number of eigenvectors
sufficient for capturing the required percent of the total variance, i.e.,

κ

∑
i=1

λi ≥ β
∞

∑
i=1

λi = βσ2, λi ≥ λi+1,

where β% is the required variance in the latent space.

2.2. PaDGAN: Performance-Augmented Diverse Generative Adversarial Network

Traditional GANs [33] consist of two neural networks, a generator G and a discrimina-
tor D, that are trained simultaneously in an adversarial mode with the following objective
function, including both generator and discriminator loss terms:

min
G

max
D

J(D, G) = Ex∼PV(x)
[log D(x)] +Ez∼Pz [log(1 − D(G(z)))] (7)

where x represents a sample of real data, drawn from the data distribution PV , and z is
a random noise vector drawn from the noise distribution Pz, while D(x) represents the
discriminator’s output when evaluating the real data distribution, and D(G(z)) is the
discriminator’s output when evaluating the generated data. In other words, G aims to
minimize the objective, whereas D aims to maximize it.

Conventional GANs do not perform well when the real-world functional performance
of designs and their physical feasibility for fabrication are taken into consideration [15].
Besides that, GANs often suffer from mode collapse [19], which means that G focuses on
producing a limited set of designs deceiving D without being able to produce the full range
of possible designs. In other words, G becomes fixated on a few dominant modes in the
training data and fails to capture the full diversity of the data distribution, resulting in a
lack of diversity and novelty in generated designs.

To address these issues, the PaDGAN algorithm [21] measures diversity and quality
during training by incorporating a loss function that is based on a performance-augmented
determinantal point process (DPP). DPPs are probabilistic models that are designed to
efficiently subsample large sets of data and are well aligned with the objective of promoting
design diversity without sacrificing quality. To model diversity and quality simultaneously,
the performance-augmented DPP loss gives a lower value for both high-performance and
diverse designs. Specifically, considering a DPP kernel matrix LB for a generated set of
designs, B, each element can be written as

LB(i, j) = k(xi, xj)(q(xi)q(xj))
γ0 , (8)

where k(xi, xj) is the similarity kernel between two designs, xi and xj, and q(x) is the
performance function evaluated for x. The exponent γ0 is added to control the contribution
of the design’s performance: i.e., a value of γ0 = 0 will obviously eliminate performance
contributions, while a large exponent value will promote high-quality designs and under-
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mine the diversity term’s effect. Now, using Equation (8), the performance-augmented
DPP loss function can be written as

LPaD(G) = − 1
|B| log det(LB) = − 1

|B|

|B|

∑
i=1

log λi, (9)

where λi is the ith eigenvalue of the kernel matrix LB for the design set B. Finally, by
including this loss term in the initial GAN objective function (see (7)), the PaDGAN
objective function is derived:

min
G

max
D

J(D, G) + γ1LPad(G), (10)

where γ1 controls the contribution of the performance-augmented DPP loss of the generator.

2.3. Dataset Generation

This study utilized two datasets, which were both derived from the publicly available
UIUC foil design database [34]. In both cases, the approximately 1600 foil profiles residing
in the UIUC database are enriched with a large number of artificial designs that are
produced either by perturbations of the parametric model described below (dataset D1) or
synthesized by the Bézier-GAN approach described in Ref. [35] (dataset D2).

2.3.1. Parametric Model

The parametric model for airfoil/hydrofoil generation, initially presented in Ref. [2]
and subsequently extended to encompass a broader range of designs in Refs. [36,37],
has been extensively used in the generation of D1. The parametric model proposed by
Kostas et al. in Ref. [36] was selected, as it is specifically designed to meet the particular
requirements of design optimization, i.e., the guaranteed generation of valid foil geometries
using parameters with physical interpretations and high representational capacity, as it
can approximate, within Kulfan tolerance [6,38], all profile designs residing in the UIUC
database. The adopted foil parametric model in this work generates each foil profile instance
as a cubic NURBS curve of order 4 with 13 control points from a nondimensionalized design
vector p ∈ P ⊂ R17 with P ∈ [0, 1]17, as is depicted in Figure 1. For a detailed description
of the construction and parametric definition of the foil profile, readers are encouraged to
refer to Ref. [36].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
p1

p2

p9

p5

p6
p3

p10

p4

=0o

b6
b5

b4
b3 b2

b1

b0

b12b11

b9 b10
b8

b7

p11

p7

p8 p12

p13

p14

p16
p17

p15

Figure 1. A profile instance generated by the parametric model introduced in Ref. [36]. The
17 parameters (p1, . . . , p17) are used to define the coordinates of the 13 control points bi, i = 0, . . . , 12
depicted in the same figure; the figure is adapted from Ref. [30].

The process is initiated by approximating the foil profile designs in the UIUC database
with the above-mentioned parametric model, which results in approximately 1600 pa-
rameter vectors p. Subsequently, for each design vector, five random perturbations are
generated within ±5% of the original design vector’s parametric values. Hence, following
the exclusion of a small number of inappropriate or nearly identical designs found in the
UIUC database, a core set comprising 1263 foil designs was identified for processing. For
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each of these base designs, as mentioned above, five random shape perturbations were
generated, resulting in a total of 1263 + 5 × 1263 = 7578 foil designs constituting the first
design dataset, D1.

2.3.2. Augmented Airfoil

The second dataset, D2, is once again based on the UIUC airfoil database, but this
time, the additional artificial designs are produced by employing BézierGAN [39], which
was trained using the UIUC dataset, as described in Ref. [35]. Specifically, BézierGAN
produces smooth curves by synthesizing the control points, weights, and parameterization
of rational Bézier curves that correspond to artificial foil profiles. In the last stage, these
profiles were discretized to generate the corresponding SSVs needed in this work. This
second dataset contains a total of 38,802 foil designs.

2.3.3. Discretization

For both datasets, D1 and D2, the geometric component of the SSVs is produced by
discretizing the corresponding smooth profile curves, which can generally be represented
by parametric NURBS curves. The process of discretization involves transforming the
continuous foil profile representation into a polygonal approximation, which can then be
stored as a vector of point coordinates for further processing. However, as demonstrated
by Masood et al. [30], this discretization, i.e., the point distribution on the profile curve, has
a significant impact on the quality of the produced latent space. Therefore, the following
four distinct discretization methods for producing N points on the foil profile are explored
in this work:

1. Uniform Parametric Spacing: N parametric values, t1, . . . , tN , uniformly distributed
over the curve’s parametric domain are selected. The resulting N points, {p(ti)}N

i=1,
are subsequently used in the curve encoding; see Figure 2a.

2. Cosine Spacing: A re-parameterization of all NURBS curves using the cosine function
is performed. This re-parameterization results in the concentration of the generated
curve points near the leading and trailing edges of the profile; see Figure 2b.

3. Curvature-Based Spacing: In this approach, the profile’s curvature is utilized to
determine the distribution of parametric values. More precisely, parametric points
are distributed to ensure an equal curvature integral across all parametric intervals.
Consequently, this method leads to a significant point concentration near regions of
high curvature, e.g., the leading edge region; see Figure 2c.

4. Uniform Point Spacing: Finally, this approach discretizes the profile by computing
segments of equal arc length on the curve; see Figure 2d.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

(a) Uniform parametric spacing (b) Cosine spacing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

(c) Curvature-based spacing (d) Uniform point spacing

Figure 2. NACA 2410 foil discretized using 4 different point distribution schemes.

Obviously, apart from the point distribution, their number, N, plays an equally
significant role in both the shape’s encoding and the evaluation of the design’s perfor-
mance. Therefore, taking into account the requirements of the computational package
XFOIL [40,41], used in analyzing foil performance, along with the need for an accurate
geometric representation of the dataset, a value of N = 200 is used, which achieves a
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generally low approximation error, and it is also sufficient for performing the evaluation
in XFOIL.

2.4. Quality Analysis Metrics

In this section, the quality metrics are defined, which will be used in assessing the gen-
erated latent spaces using the two approaches described in Sections 2.1 and 2.2. These met-
rics are employed in Section 3, where a systematic comparison is performed.

1. Design Validity: Ensuring shape validity is a critical aspect for a robust latent de-
sign space. Space validity aims at eliminating, to the extent possible, invalid shapes,
such as self-intersecting or undulating profiles, from the design space. Obviously, self-
intersections can lead to ambiguous or erroneous interpretations, and high design valid-
ity is essential for maintaining fidelity and interpretability in the reduced-dimensional
representation. Self-intersections can be easily checked with a line–line self-intersection
algorithm applied to polygonal approximations of the profiles. To check undulations,
unwanted inflection points in the curvature graph can be identified.

2. Design Diversity: Diversity pertains to the richness/variability of the latent space
designs. Assessing diversity in a latent space offers insights into the space’s capability
to represent a broad spectrum of profiles, ultimately preventing the undesirable case
where the space contracts into a small region with very similar designs. A diverse
latent space signals the underlying model’s capacity to capture the inherent complexity
and variability present in the data. The similarity kernel in Equation (8), computed
for a large number of random designs in the latent space, can be used to this end.

3. Design Performance: Finally, the functional performance of the designs residing in the
latent space is obviously of utmost significance, especially when performance-based
optimization is being considered. The lift-to-drag ratio CL/CD for a given set of posi-
tive angles of attack was used in this work to capture the aerodynamic/hydrodynamic
performance of each profile design. High values indicate the achievement of large lift
forces without imposing a drag penalty, whereas lower values will generally indicate
less preferable designs. For the evaluation of both coefficients, the XFOIL computa-
tional package was employed, which is a widely used and validated computational
tool for airfoil analysis.

3. Results and Discussion

In this part, the results of a systematic comparison between the latent spaces gen-
erated by the enhanced non-generative model (SSV-KLE-based approach described in
Section 2.1) and the performance-augmented generative model (PaDGAN model described
in Section 2.2) are presented. At the same time, for reference reasons, the corresponding
results of a conventional GAN model (see Equation (7)) are also presented. Latent space
assessment is performed using the metrics described in Section 2.4, with all discretization
approaches being applied in the comparison.

3.1. Latent Space Generation

For all methods, the initial step involves the determination of the shape signature
vector (SSV) which will be used for each design encoding. For the SSV-KLE-based ap-
proach, seven distinct SSVs are considered: one based solely on point coordinates, with
the remaining six being augmented with performance-informed components (either di-
rectly via the lift-to-drag ratio or indirectly via geometric moments). In addition, for
the point distribution, four different shape discretizations are considered. Therefore,
seven latent spaces for each discretization are ultimately produced. Table 1 includes
these seven latent spaces (U ) based on the SSV, which was used to produce them using the
SSV-KLE-based approach.
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Table 1. Design vectors and corresponding latent spaces for each considered geometry discretization
for the SSV-KLE-based approach. For the latent space symbols, d denotes the discretization type
(1: uniform parametric; 2: cosine; 3: curvature-based; and 4: uniform point spacing), and Di the
employed dataset (D1 or D2).

SSV Description SSV Latent Space

Geometry only p(ϑ−1) U (−1)
d (Di)

Geometry and 2nd-order moments p(ϑ2) U (2)
d (Di)

Geometry and 3rd-order moments p(ϑ3) U (3)
d (Di)

Geometry and 4th-order moments p(ϑ4) U (4)
d (Di)

Geometry and 2nd- to 3rd-order moments p(ϑ2−3) U (2−3)
d (Di)

Geometry and 2nd- to 4th-order moments p(ϑ2−4) U (2−4)
d (Di)

Geometry and performance (CL/CD) p(ϑP) U (P)
d (Di)

With regard to latent spaces constructed by the GAN and PaDGAN, SSVs with geo-
metric information, i.e., profile point coordinates, are only employed, as PaDGAN already
encapsulates a performance-informed layer, as can be observed in Equations (8) and (10).
Augmented SSVs cannot be utilized with the GAN model, and similarly to PaDGAN, only
varying discretizations of the foil geometry are considered. Therefore, the corresponding
latent spaces included in Table 2 are differentiated only by the point distribution method
used in the profiles’ discretization.

Table 2. Corresponding latent spaces for each considered geometry discretization for the GAN and
PaDGAN approaches. As before, subscripts denote the discretization type, while Di can be either
D1 or D2.

SSV Description GAN Latent Space PaDGAN Latent Space

Uniform parametric spacing U [1]
1 (Di) U [2]

1 (Di)

Cosine spacing U [1]
2 (Di) U [2]

2 (Di)

Curvature-based spacing U [1]
3 (Di) U [2]

3 (Di)

Uniform point spacing U [1]
4 (Di) U [2]

4 (Di)

3.2. Design Space Quality Comparisons

The analysis conducted here aims to quantify and compare the suitability of the
resulting subspaces for design exploration and optimization. In this context, their ability to
effectively capture the underlying shape structure, using the latent parameter vector u, and
whether they can generate valid and diverse geometries are evaluated. At the same time, the
quality of the design space in terms of the target functional performance is also measured.
The three quality metrics described in Section 2.4, validity, diversity, and performance, are
used to assess the capacity of the space to generate valid profiles (validity) with a wide range
of varying shapes (diversity) while targeting high-performance profiles (performance).

Validity is measured in terms of the percentage of invalid shapes present in the latent
space. Ideally, latent spaces that eliminate or at least minimize the percentage of invalid
designs are obviously preferred. Diversity is assessed by measuring the similarity for all
pairs of designs stemming from each latent space, while performance comparisons are
performed with the lift-to-drag ratio estimated with the XFOIL computation package. The
actual calculation is performed by averaging the resulting values for multiple randomly
generated samples with 10,000 designs each.

Although varying SSVs (with and without augmentation) along with different dis-
cretizations were tested, the presentation begins by focusing on the cosine spacing, aug-
mented with fourth-order geometric moments for the SSV-KLE-based approach, which
consistently yielded good results across all quality metrics for both models and datasets.
As illustrated in Figure 3a, the SSV-KLE-based approach achieves the best results in terms



J. Mar. Sci. Eng. 2024, 12, 566 11 of 16

of validity, as it produces a highly robust latent space with only 0.01% invalid designs
for the D1 dataset and a slight higher value (0.46%) for D2. The corresponding latent
space for the PaDGAN approach results in 1.01% invalid designs, which is approximately
twice the value achieved by the non-generative SSV-KLE-based approach. Finally, the
non-enhanced GAN model produces a latent space with a significantly larger percentage of
invalid designs—7.91%. In light of the results, it becomes evident that, with appropriate de-
sign encoding, the non-generative model (SSV-KLE-based approach) can easily outperform
both generative models (GAN and PaDGAN) in terms of robustness.
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Figure 3. Plots for all Quality Analysis Metrics, as discussed in Section 2.4, with cosine spacing and
SSVs with 4th geometric moments when augmented SSVs are required. The horizontal line within
each box represents the average value, which is also marked at the top of each box.

The diversity score evaluates the latent space’s capability to generate novel designs.
To obtain a fair assessment, all invalid designs in the set of 10,000 sampled designs from each
latent space are removed. Subsequently, the remaining designs are divided into 10 subsets
and the maximum diversity for each subset is calculated. As depicted in Figure 3b, the latent
space generated by the non-generative model (SSV-KLE-based approach) exhibits a lower
diversity compared to the generative models. Specifically, the average diversity scores for
D1 and D2 datasets are −15.04 and −24.96, respectively, while the generative models, GAN
and PaDGAN, achieve higher average diversity scores of −7.82 and −2.44, respectively.
Although the non-generative model with the parametric dataset shows lower diversity, the
distance from the generative models is relatively small, especially when considering the
former’s linear nature compared to the nonlinear characteristics of the latter models.

While higher diversity in the latent space increases the possibility of discovering
optimal designs, it is important to note that having a space with higher diversity does
not guarantee the inclusion of high-performing designs in the latent space. Therefore,
the combination of performance indicators and quality metrics is more indicative of the
appropriateness of each latent space. For the performance indicator, invalid designs are
once again removed to ensure that subsequent aerodynamic evaluations are performed
on valid and meaningful designs. To assess the performance indicator of each latent
space, the CL/CD ratio is evaluated for a fluid flow with the Reynolds number (Re) set
to 500,000 and the Mach number (Ma) set to 0.00 at an angle of attack of 3 degrees. This
performance indicator metric provides insights into the aerodynamic efficiency of the
airfoil designs represented in the latent space under specific flow conditions. As illustrated
in Figure 3c, the average performance achieved by both non-generative and generative
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models is comparable for both datasets. Notably, the SSV-KLE-based approach coupled
with D2 results in an average performance indicator of 91.64, which is the best among all
tested latent spaces. Interestingly, the GAN model achieves the least favorable average
performance value of only 50.95. Nevertheless, the average value of this performance
indicator provides only an indication of which latent space may yield the best designs.
However, one cannot rely solely on this metric, as it might not capture the nuances and
variability within the design space. To gain a more comprehensive understanding, it is
crucial to consider additional metrics and analyses that further explore the distribution and
diversity of designs within each latent space.

A noteworthy observation obtained from Figure 3c is that the enhanced generative
model, i.e., PaDGAN, exhibits a widely spread design distribution. This suggests a higher
diversity in the design space, which is attributed to the inclusion of the DPP kernel and
its loss (9), in addition to the traditional GAN loss function. However, for the second
dataset (D2), the non-generative model exhibits a non-balanced distribution of designs
above and below the average value, which indicates a more narrow high-performing region
and a more diverse low-performing region. In contrast, when the same model is used with
the first dataset (D1), a more balanced distribution is obtained, with designs distributed
uniformly around the average value of (84.38). Intriguingly, even in this dataset, the
average performance value (82.39) of the SSV-KLE-based approach outperforms, once
again, the enhanced generative model (PaDGAN).

Finally, Figure 3d, which depicts kernel density estimates, provides some further
insights into these results. The generative models, GAN and PaDGAN, exhibit a less
concentrated distribution over the region of high-performing designs. As for the non-
generative model, it exhibits an almost uniform distribution when D2 is used with a high
concentration over symmetric and high-performing designs when D1 is employed; observe
the two distinct peaks when D1 is used.

To assess the computational cost for both models, the models’ construction was per-
formed on the same PC equipped with a dual 24-core 2.7 GHz Intel Xeon Gold 6226 CPU
and 128 GB of memory. For D1, the PaDGAN model required approximately 199.08 h,
while the SSV-based KLE approach concluded its construction in 9.98 h. Similarly, for D2,
PaDGAN required 199.91 h, whereas the SSV-based KLE approach was constructed in
59.09 h. These results clearly demonstrate that the SSV-based KLE approach poses signifi-
cantly lower computational requirements when compared to the generative approach.

Effect of Discretization

As previously discussed, the distribution of points along the curve significantly in-
fluences the quality of the achieved latent space. In this comparison, the focus is on the
D1 dataset for both generative and non-generative models. By examining Figure 4a, one
may clearly notice a distinct influence of different discretization methods on the validity
of the latent space. For example, the non-generative model employing the uniform point
spacing exhibits a notable increase in invalid designs (3.14%). For the PaDGAN approach,
the latent space with uniform parametric spacing produces the worst-performing latent
space with a significantly elevated percentage of invalid designs, reaching 10.01%. These
results highlight the sensitivity of all models, especially generative ones, to the employed
point distribution.

With regard to diversity, a rather mild effect of the discretization scheme is observed
when generative models are considered; see Figure 4b. However, the effect of the discretiza-
tion scheme on the SSV-KLE-based approach is pronounced, with average diversity values
ranging widely from −33.39 to −9.26. The PaDGAN approach achieves the highest value
when curvature-based spacing is employed, with an average diversity score of −2.44.

Furthermore, in terms of the performance indicator, Figure 4c depicts the impact
of the discretization scheme on performance values, as performance values vary for D1
in all models, although less so for the SSV-KLE-based approach. Notably, curvature-
based spacing with PaDGAN achieves the highest performance, with an average value



J. Mar. Sci. Eng. 2024, 12, 566 13 of 16

of 114.05, suggesting its favorable performance and diversity characteristics in the case of
generative models. This is another indicative example of generative models’ sensitivity to
the discretization type.
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Figure 4. The effect of eachdiscretization scheme on the three Quality Analysis Metrics. The horizontal
line in boxes represents the average value, which is also marked at the top of each box.

Finally, Figure 5 visualizes the substantial impact of discretizations on probability
density distributions. Specifically, as seen in Figure 5a, the uniform parametric spacing
produces latent spaces with similar distributions for all models. However, when curvature-
based spacing (Figure 5c) and uniform point spacing (Figure 5d) are used, a significant
shift toward high-performing regions is exhibited for PaDGAN, while the SSV-KLE-based
method produces an increased number of designs in the vicinity of the symmetrical design
region. The GAN model also exhibits changes but to a lesser extent.
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Figure 5. Probability density distribution for each discretization in D1.

4. Conclusions and Future Work

In this work, the performance and efficiency of generative and non-generative models
in the field of engineering design synthesis were compared, while at the same time, it was
demonstrated how recent enhancements in these models can effectively revolutionize the
process. The presented approaches are primarily useful during the conceptual and initial
design phases, where designers need to quickly explore a wide range of potential designs
and be able to cost-effectively assess their performance with respect to application-specific
criteria before moving on to the detailed design phase. However, even in later stages,
design spaces of reduced dimensions can facilitate the design optimization process and
speed up the design process. The PaDGAN model, specifically designed for engineering
design synthesis applications, is compared with a non-generative linear KLE-based ap-
proach. This study illustrates that the employed discretization in the shape representation
significantly affects the performance of both approaches, emphasizing the importance of
the representation of the design dataset. Additionally, augmenting profile encodings with
integral shape characteristics and physics-informed parameters significantly improves the
quality of the resulting latent spaces and the efficacy of the KLE-based approach.

In summary, this study demonstrates that non-generative models, which are linear
and cost-effective, can achieve results on par with those of generative models.

Design spaces for airfoils and/or hydrofoils have been employed in this comparison,
and although they are important design elements for both aviation and marine industries,
they are only 2D designs in nature. An obvious future extension of this work would address
the 3D shape synthesis of more complicated functional surfaces, such as wings, blades,
propellers, and others, and conduct optimization with appropriate objective functions
and constraints to provide a more insightful comparison between these models. At the
same time, the models presented in this work can find applications as conceptual design
assistants, which could be implemented as design wizard applications in modern CAD
engineering software packages, by building a generic parametric model coupled with a
surrogate model to predict the qualities of interest (QoIs) and then formulate distinct design
exploration modes to cater to different levels of designer involvement [17].
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