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Abstract: In this manuscript, we will apply the regularized meshless method, coupled with an error
estimation technique, to tackle the challenge of modeling oblique incident waves interacting with
multiple cylinders. Given the impracticality of obtaining an exact solution in many real engineering
problems, we introduce an error estimation technique designed to achieve reliable solutions. This
technique excels in providing dependable solutions that closely approximate analytical solutions. An
additional advantage is its capacity to identify the optimal number of points for both source and collo-
cating points, thereby enhancing computational efficiency. The validity of the proposed method will
be demonstrated through three numerical cases, presenting results that exhibit substantial agreement.

Keywords: error estimation; multiple cylinders; incident wave; regularized meshless method

1. Introduction

The interaction between waves and structures is a significant concern, particularly
when considering potential flow around essential shapes such as circular cylinders, elliptic
cylinders, and thin airfoils. Traditionally, textbooks have utilized the complex variables
method to derive exact solutions for these fundamental problems. Chen et al. [1] introduced
a series solution and addressed numerical instability in the potential flow problem around
circular, elliptical cylinders, and thin airfoils. This was achieved through the utilization of
the boundary integral equation along with a degenerate kernel. The primary breakthrough
highlighted in [1] was the effective utilization of the boundary integral equation to address,
for the first time, the potential flow problem around a cylinder. Expanding upon successful
experiences, the potential flow problem was extended from a single circular cylinder to
double circular cylinders through the application of the degenerate kernel of bipolar coor-
dinates [2]. With the aid of the degenerate kernel of bipolar coordinates, deriving the exact
solution in series form for the potential flow problem around double circular cylinders
becomes feasible. Hung et al. [3] designed a three-dimensional wave flume to simulate non-
linear wave behavior, utilizing the meshless generalized finite difference method (GFDM)
in combination with the second-order Runge–Kutta method (RKM). The model’s accuracy
was validated through various numerical benchmarks, covering scenarios of transient
extreme waves, irregular waves, and focused waves. The numerical results demonstrated
strong agreement with physical phenomena, emphasizing the effectiveness of employing
meshless GFDM in conjunction with the second-order RKM. The nonlinear regularized
long-wave (RLW) equation, a fundamental equation in shallow-water waves, proves profi-
cient in describing a variety of significant physical phenomena. The RLW equation can be
solved using the Caputo fractional derivative in combination with the Homotopy Perturba-
tion Yang Transform Method (HPTM) and Yang transform decomposition method (YTDM),
as outlined in the methodology proposed by [4]. We derived a series solution for the model
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by employing the method of fundamental solutions (MFS) [5]. A traditional limitation
of MFS was the challenge in determining the distance between the collocation point and
the source point. Engineers faced difficulties in assessing the correctness of results, as
different distances would lead to varied solutions. The study conducted by [5] focused
on the interaction of waves with multiple circular cylinders, employing the MFS along
with an error estimation technique. This technique proved instrumental in overcoming the
traditional drawback associated with MFS. Simultaneously, the error estimation technique
offers the ability to determine the optimal number of collocation points.

The technique of error estimation is frequently employed to evaluate the variability
within linear regression models. In his research, Singh [6] investigated the estimation of
error variance in linear regression models, wherein the variances display characteristics
resembling a multivariate Student-t distribution with unknown degrees of freedom. Liu
et al. [7] introduced an innovative estimator for error variance that is applicable to both
low- and high-dimensional models. In their work, Wang et al. [8] presented the natural
adaptive lasso as a method to address multiple variances within high-dimensional models.
Guo and Jacob [9] presented a natural lasso estimator for error variance and an associated
estimator to manage the coefficient vector in high-dimensional linear models. A significant
advantage of their approach lies in its ability to derive theoretical results without relying
on assumptions about the design matrix or true regression coefficients. This method’s
utility extends to the estimation of error variance in genomic selection. Genomic selection
necessitates managing large datasets, presenting a well-acknowledged challenge. As the
number of markers is typically greater than the sample size in genomic selection, the
conventional ordinary least squares estimation technique may be insufficient for accurate
modeling. Guha Majumdar et al. [10] proposed the Bootstrap-RCV and Ensemble method
to handle ultrahigh-dimensional data. In the realm of statistical research, where error
estimation has seen limited exploration, our work stands as a pioneering endeavor in
effectively integrating error estimation techniques with numerical methods. The key
advantage of our proposed error estimation technique is its adaptability to any numerical
method, enhancing the computational precision of the chosen approach.

Numerous scholars and mathematicians have contributed to the development of
various numerical methods, including the finite difference method, finite element method,
boundary element method, and meshless method. These numerical techniques facilitate
engineers in effortlessly deriving solutions to problems. Derived from the boundary
element method, several meshless methods have emerged, with a key distinction being
that the meshless method relies solely on points, eliminating the need for elements. The
boundary knot method (BKM) [11–14], boundary particle method [15], Trefftz method [16],
and MFS [17–19] belong to one kind of boundary-discretization-type meshless methods.

Since its introduction by Kupradze and Aleksidze in 1964 [17], the MFS has garnered
significant attention in the field of model creation. Its advantages include avoiding the
need for cumbersome boundary discretization, eliminating singular or hypersingular
integrals on the boundary, evaluating the solution in the interesting domain without extra
quadrature, and requiring minimal input data preparation. Essentially, the MFS stands out
as an appealing solution for addressing complex geometry problems due to its meshfree
nature, rapid convergence, and adaptability to high-dimensional challenges. It is capable of
handling complex boundary conditions (B.C.s) and can accommodate abrupt changes in the
domain’s geometry [20]. By fine-tuning the location distance, the MFS can achieve a highly
efficient algorithm that surpasses the accuracy achievable with traditional methods. This
characteristic serves as both an advantage and a disadvantage. The challenge lies in the fact
that the optimal distance is unknown, necessitating users to engage in continual testing.
Determining the optimal location distance in advance can transform the conventional MFS
into a highly appealing and dominant numerical method. However, a major drawback
of the MFS is the requirement to establish the distance between the source point and the
collocation point. In our experience, varying distances can result in different solutions in
the field, posing a challenge in confirming the accuracy of a field solution when an exact
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one is unavailable. In addressing the limitations of MFS, Chen et al. [21] introduced a
novel meshless method, now called the Regularization Meshless Method (RMM). This
method can distribute observation and source points simultaneously along the physical
boundary without the need to consider the offset distance between source and observation
points. A crucial aspect involves the introduction of the subtracting and adding-back
technique [21–23], which effectively regularizes the singularity and hypersingularity of
the kernel functions. The diagonal terms of the influence matrices can be extracted when
the offset distance between source and observation points is zero, using the subtracting
and adding-back technique. The RMM has proven successful in addressing a range of
problems in many areas [24]. Conversely, numerous real engineering problems frequently
lack exact solutions, prompting engineers to depend on numerical solutions for decision-
making. To meet the demands of engineers, the numerical method may be required to
provide a high-precision numerical solution. We have devised an error estimation technique
to assist numerical methods in achieving high-precision numerical results. Employing
this error estimation technique provides four distinct advantages. Firstly, it provides
a dependable solution for approximating the analytical solution. Secondly, it aids in
determining the optimal number of points for both source and collocation points. Thirdly,
the error estimation technique enables the development of a scheme refinement for the
adaptive distribution of source points. Lastly, it can be seamlessly integrated with various
numerical methods. We effectively utilized the MFS in tandem with an error estimation
technique to tackle the challenge of water waves passing through multiple cylinders [5].
The primary drawback of MFS is the undetermined distance between the source point and
the collocation point. However, by integrating MFS with an error estimation technique,
conventional limitations can be overcome while retaining its inherent advantages. This
approach simultaneously offers insights into the optimal number of collocation points.

This paper represents our initial exploration of employing RMM in tandem with
an error estimation technique. Our goal is to tackle the challenges presented by waves
passing through two or four circular cylinders by utilizing the RMM in conjunction with
an error estimation technique. The inclusion of the error estimation technique enables
the determination of the optimal number of collocation points for the RMM. The results
obtained through the proposed method will be compared with those presented in [25]. The
paper is organized as follows: Section 2 begins with the problem statement for the water
wave problem with multiple cylinders. The derivation of RMM and the error estimation
technique will be introduced in the Section 3. Section 4 illustrates the accuracy of the current
method through numerical results. In conclusion, Section 5 delves into related works.

2. Problem Statement
Water Wave Problem

In this paper, we consider an irrotational, inviscid, and incompressible fluid, utilizing
the linearized water–wave theory to investigate small-amplitude waves. The velocity
potential Ψ(x̃, z, t) satisfies the Laplace equation, expressed as:

∇2Ψ(x̃, z, t) = ∇2Ψ(x, y, z, t) = 0, x̃ ∈ D. (1)

Considering the presence of m vertical cylinders mounted at z = −h and extending
upward to the free surface, the seabed boundary condition is as follows:(

∂Ψ
∂z

)
z=−h

= 0, z = −h, (2)

and the linearized condition on the free surface is:(
−ω2

g
Ψ +

∂Ψ
∂z

)
z=0

= 0, (3)
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where g, ω, and h represent gravitational acceleration, angular frequency, and water depth,
respectively. The boundary condition on the cylinder surface is fulfilled as:

∂Ψ
∂nx̃

= 0,−h ≤ z ≤ 0. (4)

By employing the technique of separating variables for both the spatial and time
domains, we have:

Ψ(x̃, z, t) = Re
{

uW(x̃) f (z)e−iωt
}

, (5)

where:

f (z) =
−igA

ω

cosh k(z + h)
cosh kh

, (6)

in which A and k are the amplitude of incident wave and wave number, respectively. Substi-
tuting Equations (5) and (6) into Equation (1), uW(x̃) satisfies the Helmholtz equation [5,26],
as follows: (

∇2 + k2
)

uW(x̃) = 0, x̃ ∈ D. (7)

The dispersion relationship is:

ktanhkh =
ω2

g
. (8)

By employing the superposition method, uW(x̃) can be decomposed into the incident
field of wave uinc(x̃) and the unknown scattering field usca(x̃) as:

uW(x̃) = uinc(x̃) + usca(x̃), x̃ ∈ D, (9)

in which θinc is the angle of incident wave. The incident wave adopts uinc(x̃) = eikr cos(θ−θinc).
Considering m cylinders, Equation (4) can be reformulated as:

tsca(x̃) =
∂usca(x̃)

∂nx̃
= 0, x̃ ∈ Bi, i = 1, 2, . . . m. (10)

The free surface boundary condition is fulfilled as:(
−ω2

g
usca(x̃) +

∂usca(x̃)
∂z

)
z=0

= 0. (11)

The two components of the first-order force, Fj, on the j-th cylinder surface are deter-
mined by integrating the pressure over the circular boundary, as illustrated below:

Fj = −ρgAr
k

tanhkh
∫ 2π

0
uW(x̃)

{
cos θj
sin θj

}
dθ, (12)

where r is the radius of the j-th cylinder.

3. Numerical Method
3.1. Meshless Formulation Using Radial Basis Functions (RBFs)

By employing the RBF technique of the dual formulation [27,28], the representation of
the solution can be expressed as follows:
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u(x̃i) =
N
∑

j=1
T(x̃i, s̃j)β j,

=


N0
∑

j=1
T(x̃i, s̃j)β j +

N0+N1
∑

j=N0+1
T(x̃i, s̃j)β j + . . . +

N
∑

j=N0+...+Nm−1+1
T(x̃i, s̃j)β j, x̃ ∈ D (interior type)

N1
∑

j=1
T(x̃i, s̃j)β j +

N1+N2
∑

j=N1+1
T(x̃i, s̃j)β j + . . . +

N
∑

j=N1+...+Nm−1+1
T(x̃i, s̃j)β j, x̃ ∈ D (exterior type)

(13)

t(x̃i) =
N
∑

j=1
M(x̃i, s̃j)β j,

=


N0
∑

j=1
M(x̃i, s̃j)β j +

N0+N1
∑

j=N0+1
M(x̃i, s̃j)β j + . . . +

N
∑

j=N0+...+Nm−1+1
M(x̃i, s̃j)β j, x̃ ∈ D (interior type)

N1
∑

j=1
M(x̃i, s̃j)β j +

N1+N2
∑

j=N1+1
M(x̃i, s̃j)β j + . . . +

N
∑

j=N1+...+Nm−1+1
M(x̃i, s̃j)β j, x̃ ∈ D (exterior type)

c (14)

where x̃i and s̃j represent the i-th collocation point and j-th source point, respectively.
β j are the generalized unknown coefficients obtained using the single and double-layer
potential approaches, respectively. N and N0 are the total number of source points and
the number of source points on the outer boundary, respectively. The kernel functions are
provided below:

T(x̃i,
⌢
s j) =

∂U(x̃i, s̃j)

∂ns̃
= − iπk

2
H1

1(krij)
nkyk
rij

(15)

M(x̃i, s̃j) =
∂2U(x̃i, s̃j)

∂ns̃∂nx̃
=

iπk
2

[kH1
2(krij)

ykylnknl

r2
ij

− H1
1(krij)

nknl
rij

] (16)

where H(1)
1 (krij) and H(2)

1 (krij) are the Hankel functions of the first kind of the first and
second order, respectively. rij is the distance between x̃i and s̃j, yk = (s̃j − x̃i), i =

√
−1.

nk is the kth component of the outward normal vector at source point s̃j, and nk is the kth
component of the outward normal vector at field point x̃i. It is noted that the double layer
potentials in Equations (13) and (14) have both singularity and hypersingularity when
s̃j approaches x̃i. For this reason, the MFS requires a controversial auxiliary boundary.
Although selecting an auxiliary boundary helps prevent singularity in the kernel function,
introducing an offset distance between the auxiliary boundary (B′) and the actual boundary
(B) poses new challenges. The offset distance cannot be arbitrarily determined. To address
this limitation, s̃j is distributed along the actual boundary using the regularization tech-
niques proposed below. The reason for opting for the double-layer potential, in contrast to
the single-layer potential utilized in the proposed method for the RBFs, is to exploit the
regularization offered by the subtracting and adding-back technique. This obviates the
requirement for an offset distance when assessing the diagonal coefficients of influence
matrices, as elaborated. If single-layer potential is employed, the regularization technique
of subtracting and adding back will be unsuccessful [29]. Hence, the single-layer potentials
cannot be selected as RBFs.

3.2. Derivation of Diagonal Coefficients of Influence Matrices for an Arbitrary Domain Using the
Regularization Meshless Method (RMM)

As the collocation point x̃i approaches the source point s̃j, the potentials in
Equaions (13) and (14) become singular. For the interior and exterior problems with
multiple holes, Equations (13) and (14) require regularization through the subtracting and
adding-back technique [21], as follows:
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3.2.1. Interior Problem

For the interior problem, the regularization of Equation (13) is shown below:

u(x̃O
i ) =

i−1
∑

j=1
T(x̃O

i , s̃O
j )β j + . . . +

N0
∑

j=i+1
T(x̃O

i , s̃O
j )β j +

N0+N1
∑

j=N0+1
T(x̃O

i , s̃I
j )β j + . . .

+
N
∑

j=N0+...Nm−1+1
T(x̃O

i , s̃I
j )β j −

[
N0
∑

j=1
T(x̃I

i , s̃I
j )β j − T(x̃O

i , s̃O
i )βi

]
, x̃O

i ∈ Bp, p = 0
(17)

where x̃O
i is located on the outer boundary (p = 0), with the superscripts I and O denoting

the inward and outward normal vectors, respectively, T(x̃i, s̃j) and M(x̃i, s̃j) denote the
double layer potentials of the Laplace equation for the same domain. When the collocation
point x̃I

i locates the inner boundary (p = 1, 2, . . . , m), Equation (17) becomes:

u(x̃I
i ) =

N0
∑

j=1
T(x̃I

i , s̃O
j )β j +

N0+...+Np−1

∑
j=N0+1

T(x̃I
i , s̃I

j )β j +
i−1
∑

j=N0+...+Np−1+1
T(x̃I

i , s̃I
j )β j + . . .

+
N0+...+Np

∑
j=i+1

T(x̃I
i , s̃I

j )β j +
N
∑

j=N0+...+Np+1
T(x̃I

i , s̃I
j )β j

−
[

N0+...+Np

∑
j=N0+...+Np−1+1

T(x̃I
i , s̃I

j )β j − T(x̃I
i , s̃I

i )βi

]
, x̃I

i ∈ Bp, p = 1, 2, . . . , m

(18)

Similarly, the boundary flux is obtained as:

t(x̃O
i ) =

i−1
∑

j=1
M(x̃O

i , s̃O
j )β j + . . . +

N0
∑

j=i+1
M(x̃O

i , s̃O
j )β j +

N0+N1
∑

j=N0+1
M(x̃O

i , s̃I
j )β j + . . .

+
N
∑

j=N0+...Nm−1+1
M(x̃O

i , s̃I
j )β j −

[
N0
∑

j=1
M(x̃I

i , s̃I
j )β j − M(x̃O

i , s̃O
i )βi

]
, x̃O

i ∈ Bp, p = 0
(19)

when the collocation point locates the inner boundary, we obtain the following:

t(x̃I
i ) =

N0
∑

j=1
M(x̃I

i , s̃O
j )β j +

N0+...+Np−1

∑
j=N0+1

M(x̃I
i , s̃I

j )β j +
i−1
∑

j=N0+...+Np−1+1
M(x̃I

i , s̃I
j )β j + . . .

+
N0+...+Np

∑
j=i+1

M(x̃I
i , s̃I

j )β j +
N
∑

j=N0+...+Np+1
M(x̃I

i , s̃I
j )β j

−
[

N0+...+Np

∑
j=N0+...+Np−1+1

M(x̃I
i , s̃I

j )β j − M(x̃I
i , s̃I

i )βi

]
, x̃I

i ∈ Bp, p = 1, 2, . . . , m

(20)

3.2.2. Exterior Problem

Exterior problems with multiple holes need to be regularized using the regularization
of the subtracting and adding-back technique [21], as follows:

u(x̃I
i ) =

N1+...+Np−1

∑
j=N1+1

T(x̃I
i , s̃I

j )β j +
i−1
∑

j=N1+...+Np−1+1
T(x̃I

i , s̃I
j )β j + . . .

+
N1+...+Np

∑
j=i+1

T(x̃I
i , s̃I

j )β j +
N
∑

j=N1+...+Np+1
T(x̃I

i , s̃I
j )β j

−
[

N1+...+Np

∑
j=N1+...+Np−1+1

T(x̃I
i , s̃I

j )β j − T(x̃I
i , s̃I

i )βi

]
, x̃I

i ∈ Bp, p = 1, 2, . . . , m

(21)
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Similarly, the boundary flux is obtained as:

t(x̃I
i ) =

N1+...+Np−1

∑
j=N1+1

M(x̃I
i , s̃I

j )β j +
i−1
∑

j=N1+...+Np−1+1
M(x̃I

i , s̃I
j )β j + . . .

+
N1+...+Np

∑
j=i+1

M(x̃I
i , s̃I

j )β j +
N
∑

j=N1+...+Np+1
M(x̃I

i , s̃I
j )β j

−
[

N1+...+Np

∑
j=N1+...+Np−1+1

M(x̃I
i , s̃I

j )β j − M(x̃I
i , s̃I

i )βi

]
, x̃I

i ∈ Bp, p = 1, 2, . . . , m

(22)

The detailed derivations of Equations (17)–(22) are given in Ref. [21]. According to the
dependence of the normal vectors on inner and outer boundaries [21], their relationships are:{

T(x̃I
i , s̃I

j ) = −T(x̃O
i , s̃O

j ), i ̸= j
T(x̃I

i , s̃I
j ) = T(x̃O

i , s̃O
j ), i = j

(23)

And: {
M(x̃I

i , s̃I
j ) = M(x̃O

i , s̃O
j ), i ̸= j

M(x̃I
i , s̃I

j ) = M(x̃O
i , s̃O

j ), i = j
(24)

In Equations (23) and (24), the expressions on the left and right sides of the equal sign
represent the kernels for the observation and source points, respectively, with the inward
and outward normal vectors. When the collocation point x̃i approaches the source point s̃j,
Equations (15) and (16) will be approximated by:

lim
rij→0

T(x̃i, s̃j) = T(x̃i, s̃j) =
nkyk
rij

(25)

lim
rij→0

M(x̃i, s̃j) = M(x̃i, s̃j) = 2
ykylnknl

r4
ij

− nkyk

r2
ij

− k2

2
i (26)

using the limiting form for small arguments and the identities from the generalized function,
as shown in the following [30]:

lim
rij→0

H(1)
1 (krij) =

krij

2
+

2
πkrij

i (27)

lim
rij→0

H(2)
1 (krij) =

(krij)
2

8
+

4

π(krij)
2 i (28)

The kernels in Equations (25) and (26) exhibit the same singularity strength as that
of the Laplace equation [21]. The expressions within the brackets in Equations (17)–(22)
encompass both the adding-back terms and the subtracting terms due to regularization
purposes. Following the application of the regularization technique, which involves the
subtracting and adding-back technique [24], we eliminate the singularity and hypersingu-
larity of the kernel functions. By collocating N collocation points to satisfy the boundary
conditions from Equations (17)–(22) for the problem, the linear algebraic system is obtained:
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
{ũ0}N0×1
{ũ1}N1×1
...
{ũm}Nm×1


N×1

=


[T00]N0×N0

[T01]N0×N1
. . . [T0m]N0×Nm

[T10]N1×N0
[T11]N1×N1

. . . [T1m]N1×Nm
...

...
. . .

...
[Tm0]Nm×N0

[Tm1]Nm×N1
. . . [Tmm]Nm×Nm


N×N



{
β̃0

}
N0×1{

β̃1

}
N1×1

...{
β̃m

}
Nm×1


N×1

(interior type)


{ũ1}N1×1
...
{ũm}Nm×1


N×1

=


[T11]N1×N1

. . . [T1m]N1×Nm
...

. . .
...

[Tm1]Nm×N1
. . . [Tmm]Nm×Nm


N×N



{
β̃1

}
N1×1

...{
β̃m

}
Nm×1


N×1

(exterior type)

(29)



{
t̃0
}

N0×1{
t̃1
}

N1×1
...{

t̃m
}

Nm×1


N×1

=


[M00]N0×N0

[M01]N0×N1
. . . [M0m]N0×Nm

[M10]N1×N0
[M11]N1×N1

. . . [M1m]N1×Nm
...

...
. . .

...
[Mm0]Nm×N0

[Mm1]Nm×N1
. . . [Mmm]Nm×Nm


N×N



{
β̃0

}
N0×1{

β̃1

}
N1×1

...{
β̃m

}
Nm×1


N×1

(interior type)


{

t̃1
}

N1×1
...{

t̃m
}

Nm×1


N×1

=


[M11]N1×N1

. . . [M1m]N1×Nm
...

. . .
...

[Mm1]Nm×N1
. . . [Mmm]Nm×Nm


N×N



{
β̃1

}
N1×1

...{
β̃m

}
Nm×1


N×1

(exterior type)

(30)

where:

[T00] =


−[

N0
∑

j=1
T(xI

1, sI
j )− T(xO

1 , sO
1 )] . . . T(xO

1 , sO
N0
)

...
. . .

...

T(xO
N0

, sO
1 ) . . . −[

N0
∑

j=1
T(xI

N0
, sI

j )− T(xO
N0

, sO
N0
)]

 (31)

[T01] =


T(xI

1, sO
N0+1) . . . T(xI

1, sO
N0+N1

)
...

. . .
...

T(xI
N0

, sO
N0+1) . . . T(xI

N0
, sO

N0+N1
)

 (32)

[T0m] =


T(xI

1, sO
N0+...+Nn−1+1) . . . T(xI

1, sO
N)

...
. . .

...
T(xI

N0
, sO

N0+...+Nn−1+1) . . . T(xI
N0

, sO
N)

 (33)

[T10] =


T(xO

N0+1, sI
1) . . . T(xO

N0+1, sI
N0
)

...
. . .

...
T(xO

N0+N1
, sI

1) . . . T(xO
N0+N1

, sI
N0
)

 (34)

[Tm0] =


T(xO

N1+...+Nn−1+1, sI
1) . . . T(xO

N1+...+Nn−1+1, sI
N0
)

...
. . .

...
T(xO

N , sI
1) . . . T(xO

N , sI
N0
)

 (35)
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[T11] =


−[

N0+N1
∑

j=N0+1
T(xI

N0+1, sI
j )− T(xI

N0+1, sI
N0+1)] . . . T(xI

N0+1, sI
N0+N1

)

...
. . .

...

T(xI
N0+N1

, sI
N0+1) . . . −[

N0+N1
∑

j=N0+1
T(xI

N0+N1
, sI

j )− T(xI
N0+N1

, sI
N0+N1

)]

 (36)

[T1m] =


T(xI

N0+1, sI
N1+...+Nn−1+1) . . . T(xI

N0+1, sI
N)

...
. . .

...
T(xI

N0+N1
, sI

N1+...+Nn−1+1) . . . T(xI
N0+N1

, sI
N)

 (37)

[Tm1] =


T(xI

N1+...+Nn−1+1, sI
N0+1) . . . T(xI

N1+...+Nn−1+1, sI
N0+N1

)
...

. . .
...

T(xI
N , sI

N0+1) . . . T(xI
N , sI

N0+N1
)

 (38)

[Tmm] =


−[

N
∑

j=N0+...+Nn−1+1
T(xI

N0+...+Nn−1+1, sI
j )− T(xI

N0+...+Nn−1+1, sI
N0+...+Nn−1+1)] . . . T(xI

N0+...+Nn−1+1, sI
N)

...
. . .

...

T(xI
N , sI

N0+...+Nn−1+1) . . . −[
N
∑

j=N0+...+Nn−1+1
T(xI

i , sI
j )− T(xI

N , sI
N)]

 (39)

[M00] =


−[

N0
∑

j=1
M(xI

1, sI
j )− M(xO

1 , sO
1 )] . . . M(xO

1 , sO
N0
)

...
. . .

...

M(xO
N0

, sO
1 ) . . . −[

N0
∑

j=1
M(xI

N0
, sI

j )− M(xO
N0

, sO
N1
)]

 (40)

[M01] =


M(xI

1, sO
N0+1) . . . M(xI

1, sO
N0+N1

)
...

. . .
...

M(xI
N0

, sO
N0+1) . . . M(xI

N0
, sO

N0+N1
)

 (41)

[M0m] =


M(xI

1, sO
N1+...+Nn−1+1) . . . M(xI

1, sO
N)

...
. . .

...
M(xI

N0
, sO

N1+...+Nn−1+1) . . . M(xI
N0

, sO
N)

 (42)

[M10] =


M(xO

N0+1, sI
1) . . . M(xO

N0+1, sI
N0
)

...
. . .

...
M(xO

N0+N1
, sI

1) . . . M(xO
N0+N1

, sI
N0
)

 (43)

[Mm0] =


M(xO

N1+...+Nn−1+1, sI
1) . . . M(xO

N1+...+Nn−1+1, sI
N0
)

...
. . .

...
M(xO

N , sI
1) . . . M(xO

N , sI
N0
)

 (44)

[M11] =


−[

N0+N1
∑

j=N0+1
M(xI

1, sI
j )− M(xI

N0+1, sI
N0+1)] . . . M(xI

N0+1, sI
N0+N1

)

...
. . .

...

M(xI
N0+N1

, sI
N0+1) . . . −[

N0+N1
∑

j=N0+1
M(xI

N0+N1
, sI

j )− M(xI
N0+N1

, sI
N0+N1

)]

 (45)
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[M1m] =


M(xI

N0+1, sI
N1+...+Nn−1+1) . . . M(xI

N0+1, sI
N)

...
. . .

...
M(xI

N0+N1
, sI

N1+...+Nn−1+1) . . . M(xI
N0+N1

, sI
N)

 (46)

[Mm1] =


M(xI

N1+...+Nn−1+1, sI
N0+1) . . . M(xI

N1+...+Nn−1+1, sI
N0+N1

)
...

. . .
...

M(xI
N , sI

N0+1) . . . M(xI
N , sI

N0+N1
)

 (47)

[Mmm] =


−[

N
∑

j=N0+...+Nn−1+1
M(xI

N0+...+Nn−1+1, sI
j )− M(xI

N0+...+Nn−1+1, sI
N0+...+Nn−1+1)] . . . M(xI

N0+...+Nn−1+1, sI
N)

...
. . .

...

M(xI
N , sI

N0+...+Nn−1+1) . . . −[
N
∑

j=N0+...+Nn−1+1
M(xI

i , sI
j )− M(xI

N , sI
N)]

 (48)

3.3. Error Estimation Technique

Given the challenges in obtaining exact solutions for realistic engineering problems,
the introduction of an error estimation technique becomes crucial for assisting engineers in
acquiring numerical solutions that approximate analytical solutions. To achieve this, we
define an auxiliary problem with a geometry and type of boundary condition identical to
the original problem. The analytical solution of the auxiliary problem can be readily derived
by linearly combining the complementary solutions. The subsequent sections elaborate
on deriving the analytical solution in the auxiliary problem and formulating the proposed
error estimation technique. In general, the discretization error can be generated from the
difference between the exact solution and the numerical result, but finding a mathematical
formulation for the exact solution of engineering problems is difficult. Therefore, an
alternative problem, which is substituted for the original problem, referred to as the
auxiliary problem, is solved by implementing the RMM. The domain contour and the BC
type in the auxiliary problem are the same as those in the original problem. Further, the
exact solution to the auxiliary problem, similar to the real analytical solution to the original
problem, can be easily derived with the aid of a linear combination of the complementary
solution set of the GE. Once the quasi-analytical solution is available, it becomes easy to
determine the magnitude of the discretization error in the RMM.

3.3.1. Producing the Exact Solution for the Auxiliary Problem

Given that the original and auxiliary problems share the same geometry, the base
function for the exact solution of the auxiliary problem can be selected from the base
functions of the exterior domain. The exact solution for the exterior auxiliary problem with
multiple cylinders can be denoted as uq(x̃) and can be expressed as a linear combination of
the set functions, as follows:

uq(x̃) =
m

∑
i=1

Mi

∑
j=1

φi
j(x̃i)ci

j, x̃ ∈ D. (49)

where x̃ is an arbitrary point in the domain, m is the number of cylinders, φi
j(x̃i), Mi

and ci
j represent the exterior basis of the complementary solution, the number of terms

for the Trefftz basis function, and the unknown coefficient on the i-th cylinder boundary,
respectively. The position of x̃ is described using global coordinates, while the position
of x̃i is described using local coordinates relative to the global coordinates, where the
superscript i of x̃i is the i-th cylinder. The coordinate systems for global coordinates and
local coordinates are depicted in Figure 1. The set of complementary solutions is {H(1)

0 (kr),

H(1)
m (kr)cos(mθ), H(1)

m (kr)sin(mθ)}, where m = 1, 2, . . ., ∞ for the exterior domain, and
{J0(kr), Jm(kr)cos(mθ), Jm(kr)sin(mθ)}. where m = 1, 2, . . ., ∞, for the interior domain.
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Oj, respectively.

In the auxiliary problem, the boundary conditions at the positions of the M number of
collocation points on the boundary are specified with the same values as in the original
problem. The undetermined coefficient, ci

j, can be determined by matching these boundary

conditions at those positions. It is noted that M ≥ M, where M is the total number of

terms of the Trefftz bases, M =
m
∑

i=1
Mi. Therefore, the approximate solution of the auxiliary

problem closely resembles the exact solution of the original problem. Each function φi
j(x̃i)

of the complementary solution set satisfies the governing equation, given by:

L[φi
j(x̃i)] = 0. (50)

Because of the linear property of the differential equation operator in the GE, the exact
potential uq(x) satisfies the GE, as shown below:

L[uq(x̃)] =
m

∑
i=1

Mi

∑
j=1

L[φi
j(x̃i)]ci

j = 0. (51)

The B.C.s of the auxiliary problem is given as:
uq(x̃) =

m
∑

i=1

Mi
∑

j=1
φi

j(x̃i)ci
j

tq
(x̃) =

m
∑

i=1

Mi
∑

j=1

∂φi
j(x̃i)

∂nx̃i
ci

j

, x̃i ∈ Bi, i = 1, 2, . . . m. (52)

The relationship between the two exact solutions of the original problem and the
auxiliary problem is shown below:

ue(x̃) = uq(x̃) + RM(x̃), (53)

where ue(x̃) is the exact solution of the original problem, and the remainder function

RM(x̃) =
∞
∑

j=M+1
φj(x̃)cj satisfies the GE and exhibits exponential convergence as:

∣∣∣∣∣∣RM(x̃)
∣∣∣∣∣∣= O(r−M), r > 1, (54)

where r =||x||. Therefore, the difference between the two spatial solvers is derived as:∣∣∣∣∣∣ue(x̃)− uq(x̃)
∣∣∣∣∣∣=∣∣∣∣∣∣RM(x̃)

∣∣∣∣∣∣= C(r−M), r > 1, (55)
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where C is a bounded constant.

3.3.2. Error Analysis for the Auxiliary Problem

The numerical solution for the auxiliary problem can be determined using the RMM.
By comparing the exact solution with the numerical solution, the error norm can be de-
termined. In this paper, the error norm is represented by the relative root mean squared
(R.M.S.) error, as shown below:

R.M.S =

√√√√ 1
Nt

Nt

∑
i=1

[u(x̃i)− uq(x̃i)]
2/

√√√√ 1
Nt

Nt

∑
i=1

[uq(x̃i)]
2 , (56)

where u(x̃i) is the numerical solution of the auxiliary problem, and Nt is the number of field
points. The error curve for the auxiliary problem can be derived through error convergence
analysis using the RMM. Optimal parameters can be determined from the neighboring
region of the corner in the error curve based on specified criteria that balance computational
cost and accuracy. These optimal parameters include the total number of Trefftz bases, Mopt,
and the total number of source points, Nopt. A flowchart detailing the process is depicted
in Figure 2 for obtaining the optimal number (Nopt) of the RMM by employing the error
estimation technique. The RMM is also a stable numerical method, and more accuracy can
be obtained by using more computational nodes. However, an excessive number of source
points do not significantly improve the calculation accuracy. Therefore, establishing an
objective criterion for the optimal number of collocation points is important. By employing
error estimation techniques, the RMM can achieve a balance between computational cost
and accuracy.
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3.3.3. Solving the Original Problem Using the RMM

Adopting optimal parameters, the RMM can yield optimal solutions for the domain of
interest in the original problem.

4. Illustrative Examples and Discussions

In this section, we choose a basic example to validate the correctness of the proposed
method. Subsequently, the RMM, in conjunction with the error estimation technique, will
be utilized to solve the problem of water waves passing two and four vertical circular
cylinders. The results obtained from the proposed method will be compared with those of
reference [25]. The results of the three cases are as follows:

Case 1: Concentric circles’ domain subjected to Dirichlet B.C.

The problem involving a domain containing concentric circles subjected to Dirichlet
B.C. was considered. The wave number k is π. The exact solution is given by:

u = e
ik(x+y)√

2 . (57)

We define the auxiliary problem and implement the RMM method to solve it. By
selecting different values of M in the auxiliary problem, the curves of the R.M.S error
for these different values are shown in Figure 3a. The error curve is used as a good
indication of the error trend, and it approximates the real error. Referring to Figure 3a, it is
evident that M = 60 yields the best results. The convergent analysis of N is illustrated in
Figure 3b. After considering both convergent results and CPU time, the optimal number
of collocation points is determined to be Nopt = 512 points. The distribution of outer and
interior collocation points by adopting Nopt is shown in Figure 4. With the adoption of the
optimal number of collocation points, Nopt, the distribution of numerical field solutions is
depicted in Figure 5.
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Case 2: Water wave past two vertical cylinders

The problem of normal incidence waves through two vertical cylinders was considered,
and in this case, the wave number k is set to π. The results of the convergence analysis
are depicted in Figure 6. In Figure 6a, the convergence analysis for different values of M
using the RMM is presented. Notably, there is no significant difference in the convergence
results for different values of M, as observed in Figure 6a. In our experience, M = 60 can
be considered suitable. The convergence analysis for the optimal number of collocation
points, N, is depicted in Figure 6b. In conjunction with the CPU time curve, Nopt = 1154 can
be determined. The distribution of outer and interior collocation points by adopting Nopt
for Case 2 is plotted in Figure 7. The free surface elevation results around the left and right
cylinders are illustrated in Figure 8a,b, respectively. The maximum elevation of the free
surface occurs at 180◦ for the left cylinder. The resultant force results for different values of
kr using the RMM are presented in Figure 9. The results indicate that the resultant force on
the left cylinder is greater than that on the right cylinder.
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Figure 6. The convergence analysis of wave passing two circular cylinder using the RMM for Case 2;
(a) convergence analysis of M, (b) convergence analysis of N.
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Case 3: Water wave past four vertical cylinders

In this case, the RMM will be utilized to solve the wave problem involving four vertical
cylinders. The numerical results will be compared with those reported in the literature [25].
The wave number k is 4.03482. Two incident angles, θinc = 0 and π/2, are considered.

First, the incident angle θinc = 0 was considered. The convergence analysis using
the proposed method is illustrated in Figure 10. As seen in Figure 10a, it is evident that
the error curve converges when M = 100. Figure 10b displays the curve for the number
of collocation points, N, and CPU time. The optimal number of collocation points, Nopt
= 2880, can be determined. The distribution of outer and interior collocation points by
adopting Nopt for Case 3 is shown in Figure 11. With the parameters mentioned above,
we can calculate free surface elevation around different cylinders using the RMM. The
results are shown in Figure 12a–d. The maximum wave elevation occurs in the front of
the left, top, and bottom cylinders, while the wave elevation is small in the rear of the left,
top, and bottom cylinders. The results of resultant force on the corresponding cylinder
are plotted in Figure 13a,b. The resultant force results of D.V. Evans [25] are shown in
Figure 13a. A noticeable peak near kr = 4 is evident in the Evans result; however, the peak
is less pronounced in the RMM result, as shown in Figure 13b. Nevertheless, the results for
other kr values exhibit good agreement.
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Figure 10. The convergence analysis for different M and N using the RMM. (a) Convergence analysis
for M; (b) convergence analysis for N.
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Figure 12. The results of free surface elevation around different cylinders for θinc = 0, (a) cylinder 1
(left); (b) cylinder 2 (top); (c) cylinder 3 (right); (d) cylinder 4 (bottom).

Finally, the angle of the incident wave becomes θinc = π/2. The convergence analysis
of M and N are shown in Figure 14a,b, respectively. According to Figure 14a, there is
little difference in the convergence curves, and we chose M = 80 for the analysis. The
analysis of the optimal number of collocation points is shown in Figure 14b. The optimal
number of collocation points is Nopt = 2868. Figure 15 shows the elevation of free surface
on each cylinder. It can be observed that the position of the maximum wave elevation has
changed. Employing the regularization technique of subtraction and addition and selecting
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the double-layer potential as the basis function results in several disadvantages. The main
drawback is that its accuracy is typically limited. Its accuracy slowly improves from 10−1

to 10−4 as the number of points increases. Furthermore, an excessive number of source
points do not significantly improve the calculation accuracy. Therefore, establishing an
objective criterion for the optimal number of collocation points is important. By combining
error estimation techniques, we have achieved a satisfactory result.
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Figure 13. The resultant force on the corresponding cylinder for 𝜃௜௡௖ = 0, (a) D. V. Evans 
(1997) results [25], (b) RMM results. 
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5. Conclusions

In this paper, we employ the RMM method combined with the error estimation
technique to address the challenge of waves passing multiple cylinders. The approach of
combining the RMM with the error estimation technique yields a convergent result that
closely approximates the analytical solution. The optimal parameters of the numerical
method can be determined through this error estimation technique. Numerical results
demonstrate that the optimal number of collocation points for the RMM can be easily
determined using the developed error estimation technique, especially when an exact
solution is unattainable. A comparison with analytical solutions reveals a close agreement
in Case 1. In conclusion, the numerical examination successfully validates the accuracy of
the error estimation technique, underscoring its robust predictive capability.
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