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Abstract: In recent years, the surge in marine activities has increased the frequency of submarine
pipeline failures. Detecting and identifying the buried conditions of submarine pipelines has become
critical. Sub-bottom profilers (SBPs) are widely employed for pipeline detection, yet manual data
interpretation hampers efficiency. The present study proposes an automated detection method for
submarine pipelines using deep learning models. The approach enhances the YOLOv5s model by
integrating Squeeze and Excitation Networks (SE-Net) and S2-MLPv2 attention modules into the
backbone network structure. The Slicing Aided Hyper Inference (SAHI) module is subsequently
introduced to recognize original large-image data. Experimental results conducted in the Yellow
Sea region demonstrate that the refined model achieves a precision of 82.5%, recall of 99.2%, and
harmonic mean (F1 score) of 90.0% on actual submarine pipeline data detected using an SBP. These
results demonstrate the efficiency of the proposed method and applicability in real-world scenarios.

Keywords: subsea pipelines; pipeline detection; sub-bottom profiler (SBP) system; YOLOv5 object
detection algorithm

1. Introduction

Subsea pipelines serve as conduits for transporting petroleum, natural gas, and high-
voltage electrical currents. Severe malfunctions in the pipelines can result in significant
economic losses and even pose threats to human life [1]. The causes of subsea pipeline
failures can be attributed to two main factors. The first category includes mechanical
damage resulting from human activities such as fishing, ship anchoring, and other related
factors. Secondly, the deployment of cable pipelines in underwater terrains characterized
by rugged features such as trenches and rocky substrates can lead to anomalies like pipeline
exposure and suspension. Also, prolonged exposure to seawater in such conditions can
contribute to the deterioration and damage of the pipeline [2].

To mitigate the risks of subsea pipeline failures such as leakage, rupture, and other
hazards, regular pipeline inspections and maintenance are crucial [3,4]. However, because
most subsea pipelines are located beneath the seabed, conventional measurement methods
such as sonar and multibeam techniques, typically employed at shallower depths, are
no longer applicable [5,6]. A sub-bottom profiler (SBP), as a sonar system based on the
principles of underwater acoustics, serves as a continuous traverse-type detector for explor-
ing sub-seabed geological structures and formations. Leveraging its lower transmission
frequency, the SBP allows acoustic signals to penetrate through the water column, traverse
the seabed, and further penetrate deeper layers of the seabed. Through geological analysis,
the SBP facilitates the detection of structures and formations in the sub-seabed shallow
layers. Also, the subsea profiling system can map the depositional structure of shallow
sub-bottom layers through acoustic profile images. In addition to detecting exposed and

J. Mar. Sci. Eng. 2024, 12, 451. https://doi.org/10.3390/jmse12030451 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12030451
https://doi.org/10.3390/jmse12030451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse12030451
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12030451?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 451 2 of 12

suspended pipelines, the SBP can identify buried pipelines and hence provide extensive
applications in underwater pipeline surveys [7,8].

In practical measurements, the measurement principle based on the SBP requires a
perpendicular orientation to the pipeline direction in order to fully capture the pipeline in-
formation. Many researchers have investigated the detection of underwater pipelines from
different directions. Karimanzira et al. [9] proposed a multi-sensor combination detection
method for underwater pipeline detection using a multibeam echo sounder (MBES), SBP,
and magnetic sensor. Lv et al. [10] proposed a method for recognizing submarine cable
faults based on FCN-55 GRU-SVM. The method combines deep learning with experimental
data from finite element simulations. Bharti et al. [11] utilized a magnetometer and Kalman
filter for detecting subsea pipelines, aiming at pipeline positioning. However, the approach
has limitations, such as low detection efficiency and inability to work with other sensors.
Li et al. [12] employed an edge extraction method for pipeline localization, achieving
a high-correct detection rate but with slower computational efficiency. Guan et al. [13]
integrated a sub-bottom profiler with a ship-borne underwater multi-sensor mapping
system aboard a vessel. The team developed a method for correcting position deviations
to improve the precision of pipeline detection and localization. However, the data pro-
cessing still relies on manual interpretation, leading to results influenced significantly by
the operator’s experience, often resulting in misjudgments and omissions. Another draw-
back is the limited attention to the automated detection of subsea pipelines. Considering
various imaging factors, pipeline shapes exhibit considerable variations in SBP images,
posing challenges in feature extraction and complicating the automatic detection of subsea
pipelines [14]. For this reason, the development of an automated and resilient approach for
pipeline detection using SBP images is an urgent and pivotal concern. In addressing this
problem and substantially reducing manual efforts while improving detection efficiency,
this study incorporates deep learning techniques in pipeline automatic detection. Deep
learning, leveraging its powerful feature learning capabilities and the ability to extract
meaningful information from complex data, is introduced in the automated detection of
pipelines [15]. Deep learning algorithms have demonstrated significant success in various
tasks and domains, attributed to their generalization capability, adaptability, and scala-
bility [16]. Li et al. [17], employing the YOLO V3 technique, demonstrated significant
outcomes in the detection of underwater targets such as sunken ships, fish schools, and
seafloor topography. The team accomplished the results by integrating spatial pyramid
pooling and online dataset preprocessing. Chen et al. [18] improved the model’s sensitivity
to channel features and enhanced target recognition by adjusting parameters and compu-
tational quantities in the Involution Bottleneck and incorporating an SE module. Despite
the advantages, deep learning presents challenges such as dependency on large-scale an-
notated data and the opacity of the model. Yang et al. [19], demonstrated improved small
object detection performance in the YOLOX model by refining it with Slicing Aided Hyper
Inference SAHI. Keles et al. [20] investigated the integration of SAHI with YOLOv5 and
YOLOX models, leading to a substantial improvement in optimizing the efficiency of the
target detection model.

Considering substantial collection costs and difficulties associated with acquiring
SBP data, it is often scarce and challenging to meet the training requirements of models.
Also, common SBP images typically possess large dimensions, while pipeline images,
characterized by simple structures, occupy a relatively small area within the SBP images.
This implies the need to design a detection strategy capable of identifying small targets
on large images to achieve rapid and accurate pipeline detection. This research adjusts
the foundational network structure of the YOLO model, modifying the comprehensive
attention mechanism to intensify the model’s focus on targets. The SAHI module is
employed to segment large images into n 640 × 640-sized images for validation. The results
are further combined by concatenating them to restore the original image size, displaying
the predicted outcomes. This improvement enables the model to achieve satisfactory results
when trained on a small dataset. By leveraging the optimal model proposed in this study
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and the SAHI module, the recognition of actual measurement data images is performed,
which significantly reduces manual identification time and boosts data processing efficiency.

2. Experimental Data and Model
2.1. Experimental Background

The data collection site for this experiment is located offshore near Dafeng District
and Xiangshui County, Jiangsu Province, China. Based on the geological information
revealed through the borehole drilling, including the stratigraphic structure, lithological
characteristics, burial conditions, and regional geological data, it is observed that within
the exploration depth (with the deepest borehole reaching 77.00 m and an elevation of
−91.66 m), the sediments belong to Quaternary deposits. The deposits are generally
stratified as silt layers, fine sand layers, clay layers, and other marine sediments. Figure 1a,b
depicts the study area map and the seafloor geological classification map, respectively.
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Figure 1. (a) Research area. (b) Sub-bottom stratigraphic map of the study area. The blue solid line in
figure (a) indicates the track route of the collected data, and the one in the red box in figure (b) indicates
the submarine pipeline.

2.2. Experimental Equipment

The equipment utilized for the shallow sub-bottom profile data collection was the
SES-2000 Standard High-Resolution Shallow Sub-bottom Profiler, manufactured by the
German company Innomar. This equipment is employed for transverse profiling opera-
tions of subsea pipelines. The operational water depth range of the equipment is 0.5 m to
500 m, with a penetration depth of less than 50 m and a resolution of greater than 5 cm.
The post-processing software used for shallow profiling data and graphical operations
was the Innomar ISE 2.9.5 analysis software. The computer setup for model execution
consists of a system running Windows 11 with an Intel Core i7-12650H processor, NVIDIA
GeForce RTX 4060 laptop GPU(Intel Corporation Headquarters City: Santa Clara, Cal-
ifornia, United States Country: United States), Python version 3.9, CUDA version 11.1,
Conda version 23.7.4, PyTorch version 1.9.1+cu111, and a 12th generation Intel(R) Core(TM)
i7-12650H CPU. The detailed configuration is shown in Table 1.

2.3. Data Preprocessing

The principle of SBP measurement data is to transmit acoustic pulses to the seafloor,
where the acoustic wave encounters the acoustic impedance interface as it propagates
through the seawater and sediment layers; part of the acoustic wave is reflected and
returned to the transducer to be converted into analog or digital signals, then recorded and
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output as a shallow stratigraphic acoustic recording profile that can reflect the acoustic
characteristics of the strata.

Table 1. Other variables configuration for model execution.

Parameter Configuration

Operating system Windows 11
Deep learning framework PyTorch 1.9.1+cu111
Programming language python3.9

GPU accelerated environment cuda11.1
GPU NVIDIA GeForce RTX 4060 Laptop
CPU 12th Gen Intel(R) Core(TM) i7-12650H

The data in this paper were collected using the SES-2000 Sub-bottom Profilera and
post-processing using the ISE 2.9.5 software. The signal underwent steps such as seabed line
tracking, gain compensation, and dynamic filtering compression to draw pixels based on
intensity. After processing, the data were cropped to obtain 11,625 original images. Manual
annotation using the labeling tool was performed to mark the position of the pipelines
in each image with rectangular bounding boxes, resulting in text-formatted annotation
files. During this process, manual cleaning of the dataset was conducted. The final pipeline
dataset consisted of 1233 images. Before feeding these images into the enhanced YOLOv5
network model, the mosaic data augmentation technique was used to enrich the image
dataset. This involved using strategies such as random resizing, arbitrary cropping, and
random rearrangement for concatenating images, thereby effectively enlarging the dataset
and enhancing the model’s aptitude for detecting diminutive targets. Before training the
model, adaptive scaling and padding operations were performed on the subsea pipeline
images to normalize the input image size to 640 × 640 pixels. Following labeling, the
dataset was randomly divided into training, validation, and test sets in an 8:1:1 ratio.
The training set was used to train the model, the validation set was used to evaluate the
recognition performance of the model in each iteration, and optimized model files were
saved. The test set was then used to evaluate the accuracy of the optimized model. The
flowchart illustrating the proposed method is shown in Figure 2.
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2.4. Experimental Model

The YOLOv5s model, as a lightweight model, consists mainly of three components:
backbone, neck, and head [21]. After the image input is finalized, the backbone segment
conducts feature extraction on the input images. The neck section is responsible for
integrating features from multiple scales within the feature maps and transmitting these
fused features to the prediction layer. The head segment performs regression predictions on
image features, producing bounding boxes, and predicting categories. Based on variations
in network depth and width, YOLOv5 can be classified into four model versions: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s as a small model has fewer network layers
and parameters, is faster and less demanding on computational resources, and is suitable
for scenarios with higher speed requirements. The YOLOv5m is a medium model, which
has more network depths and widths than the YOLOv5s, and is therefore more accurate,
but slightly slower. The YOLOv5l is a large model that adds more convolutional layers and
more feature channels. It also provides higher detection accuracy, but runs at a lower speed
compared to the YOLOv5s and YOLOv5m model versions. It is suitable for application
scenarios that require higher accuracy and have some computing power environment. The
YOLOv5x is a super large model with the largest network width and depth. It has the
highest accuracy, but is the slowest and requires a lot of computing resources to support it.
The YOLOv5 network uses the Generalized Intersection over Union (GIOU) as its network
loss function, as shown in Equations (1) and (2).

GIOU = IOU −
∣∣∣∣C − (A ∪ B)

c

∣∣∣∣, (1)

IOU = |A ∩ B|/|A ∪ B|, (2)

In this scenario, A and B denote any two bounding boxes, and C is a minimal enclosing
box that can encompass both A and B. The GIOU is defined as the Intersection over Union
(IOU) subtracted by the ratio of the area in C not covered by A and B to the total area of C.

The attention mechanism is inspired by the human visual attention system, which
focuses on local information to suppress unnecessary details. This mechanism enables
the network to extract meaningful information from a large amount of data. Attention
mechanisms are mainly classified into spatial attention mechanisms and channel attention
mechanisms. Channel attention mechanisms include SE-Net, the Convolutional Block
Attention Module (CBAM), and Efficient Channel Attention (ECA-NET) in deep convo-
lutional neural networks. Spatial attention mechanisms include self-attention, non-local
attention, and other variants. In the context of lightweight networks, channel attention
mechanisms generally exhibit more effective model enhancement compared to spatial
attention mechanisms.

This study incorporated various attention models, including coordinate attention (CA),
SE-Net, and S2Attention, into the backbone of YOLOv5s. Comparative assessments were
conducted against other baseline models to evaluate detection performance and identify
the network model with high accuracy for underwater pipeline identification. The altered
network processing flow, incorporating CA, SE, and S2Attention attention in the network
architecture, is depicted in Figure 3 [22–24].

In the CA module of this model, attention processing involves obtaining two one-
dimensional vectors by applying separate average pooling operations in the horizontal
and vertical directions. Concatenation and convolution operations are used to compress
the channels in the spatial dimension. Spatial information in the vertical and horizontal
directions is encoded through batch normalization (BN) and non-linear transformations.
Following this, a split operation is conducted, and each segment is individually processed
through a 1 × 1 Convolution to align with the channel number of the input image. The
outcomes are then normalized and weighted, effectively amalgamating spatial information
by assigning weights across channels. The CA module accomplishes spatial information
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fusion through horizontal and vertical average pooling, succeeded by spatial encoding and
ultimately integrating spatial information through weighted channel-wise aggregation [24].
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The SE-Net module uses Global Average Pooling to compress the input feature map
into a one-dimensional vector. Weight coefficients are generated through two fully con-
nected layers and ReLU activation functions, representing the importance of each channel.
These weight coefficients are multiplied back into the original feature map, enhancing
crucial features and attenuating less important ones. In this model, the SE-Net module func-
tions as an attention mechanism, weighting across channels in the feature map dimension,
effectively reweighting the input feature map to obtain the desired feature map.

For the S2-MLPv2 module in this study, the feature map is first expanded and divided
into three parts. Each part undergoes separate transformations before being merged
using scattered attention on the segmented feature maps. Hierarchical pyramids are
employed to enhance the modeling capacity for fine-grained details, thereby achieving
higher recognition accuracy. When SE-Net and S2-MLPv2 are added at different positions
in the network, their impacts on the model differ, and in some instances, their accuracy
may even be compromised. After multiple experiments, it was observed that incorporating
SE-Net in the last layer of the backbone and S2-MLPV2 in the last layer of the head yielded
better results.

In the conclusive experiment, the genuine data were validated using SAHI, an open-
source detection method introduced by Fatih et al. [25] to address challenges in detecting
small objects. SAHI is a method for object detection and instance segmentation models,
characterized by slicing-assisted inference. This technique is implemented through image
cropping and processing during the inference phase. The model was trained using a
dataset collected in the field. The images are sequentially cropped to a size of 640 × 640 for
recognition. The recognized images are then merged with the original size, which enables
better recognition of small target objects on large-scale maps. During the experiment, the
model threshold was set to 0.8, with slice length and width sizes set to 640. The length
and width overlap of the next slice were set to 20%. The trained model weights were used
to assign values to the detection model, improving the recognition performance of SAHI.
Figure 4 shows the flowchart of the detection process after integrating the SAHI module.
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3. Experimental Results and Analysis

This section lists the metrics related to evaluating the pipeline identification perfor-
mance of the model, including precision, recall, AP (Average Precision), mAP@0.5, and F1.
Mathematical expressions for these metrics are shown in Equations (3) to (7).

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

F1 =
2 × P × R

P + R
, (5)

AP =
∫ 1

0
P(R)dR =

n

∑
k=0

P(k)∆R(k), (6)

mAP =
∑C

i=1 APi

C
(7)

In the provided definitions, P represents precision, R denotes recall, F1 is the harmonic
mean of P and R, and AP is the average precision, indicating the average precision at various
recall points or the area under the PR curve. The mean average precision (mAP) is the
average of average precisions (APs) across multiple object categories, where C represents
the number of categories. In this experiment, mAP@0.5 corresponds to the average AP
when the intersection-over-union threshold is set to 0.5. As there is only one category for
this subject, mAP is equivalent to AP. FP (false positive) indicates the number of negative
samples incorrectly identified as positive, FN (false negative) denotes the number of positive
samples incorrectly identified as negative, and TP (true positive) represents the number of
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positive samples correctly identified as positive. Table 2 presents the precision, recall, and
mAP@0.5 for the experimental data of different models in this experimental study.

Table 2. Table of Experimental Data Precision for Different Models.

Models P R mAP@0.5

YOLOv5s 0.852 0.438 0.681
YOLOv5m 0.861 0.610 0.749
YOLOv5l 0.840 0.555 0.729

YOLOv5s+SE 0.845 0.637 0.754
YOLOv5s+CA 0.812 0.623 0.727

YOLOv5s+S2-MLPv2+SE 0.848 0.651 0.760

From Table 2, it is evident that the incorporation of various attention models leads
to alterations in precision, recall, and mAP@0.5 for each model when compared to the
YOLOv5s. The YOLOv5s+S2-MLPv2+SE model demonstrates significant enhancements in
mAP@0.5 and R, with increments of 7.9% and 21.3%, respectively, over the YOLOv5s model.
This signifies a reduction in the false negative rate, resulting in an improved recall of 21.3%
and an average precision increase of 7.9%. However, it is noteworthy that the precision of
this model decreased by 0.4% relative to the YOLOv5s model during experimentation. The
decrease in precision for this model is typically attributed to an inverse relationship between
these two metrics in the dataset. The benchmark model for YOLOv5s+S2-MLPv2+SE is
the YOLOv5s model, a compact version with reduced network depth and width compared
to YOLOv5m. YOLOv5s has fewer parameters, which is advantageous for enhancing the
inference speed in the detection process. However, this reduces recognition accuracy, due
to the limited capacity of the smaller model to learn complex feature representations.

The primary objective of the model is to identify pipeline features in the SBP image.
It is crucial to maintain optimal recall while also ensuring precision to minimize false
negatives and missed detections. The model achieved the highest recall in this experi-
ment, meeting the requirements for pipeline recognition. Additionally, the mAP index
considers the comprehensive harmonic values of precision and recall. Table 2 demon-
strates that this model outperforms others in terms of recall and mAP. The mAP@0.5 and
R exhibit a gradual increasing trend with the model variations, reaching their peak in
the YOLOv5s+S2-MLPv2+SE model. This suggests that the proposed deep-learning model
attains the best average accuracy and recall for pipeline detection in the SBP image at the
IoU (Intersection over Union) threshold of 0.5. This demonstrates the model’s robustness
and applicability for performing the pipeline identification task.

To demonstrate the effectiveness of the proposed enhanced pipeline recognition
method, this paper trained six models presented in Table 2 with an identical dataset.
The PR curves in Figure 5 illustrate the relationship between the accuracy rate and re-
call rate, indicating the model’s generalization ability. The PR curve and axes area for
YOLOv5s+S2-MLPv2+SE are larger than the other five YOLOv5 models. The results indi-
cate that this enhanced model achieves the best overall performance, with higher average
precision and mean average precision metrics than the other models. The trained model
was employed to recognize 100 actual SBP submarine pipeline images and the detection
results are presented in Table 3.

Table 3 shows that the YOLOv5s base model, when enhanced with the S2-MLPv2 and
SE modules and subjected to the SAHI detection, attains a precision of 82.5% and a recall of
99.2%. This indicates a 41.6% improvement in recall compared to the YOLOv5s model. The
F1 score is 90.0%, reflecting a 20.2% improvement over the YOLOv5s model. The high recall
rate of 99.2% indicates that the enhanced model can accurately identify the most pipelines
in actual data. Applying the model to recognize original SBP data significantly reduces
manual identification time and enhances detection efficiency in practical production.
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Table 3. Accuracy SBP Submarine Pipeline Identification.

Models P R F1

YOLOv5s 0.885 0.576 0.698
YOLOv5m 0.796 0.872 0.832
YOLOv5l 0.870 0.856 0.863

YOLOv5s+SE 0.808 0.840 0.823
YOLOv5s+CA 0.824 0.872 0.818

YOLOv5s+S2-MLPv2+SE 0.825 0.992 0.900

In addition, the results show that the YOLOv5s+S2-MLPv2+SE model exhibits sig-
nificant advantages over other models in terms of R and the F1 score, with a reduced
precision. This observation can be attributed to numerous factors affecting the imaging of
pipeline targets in real-world data, resulting in a substantial gap between actual and ideal
imaging results. Accurately predicting the shape of the pipeline is challenging, leading to a
reduction in pipeline identification accuracy.

The key factors influencing pipeline mapping can be summarized as follows:

• Noise impact: Within the bandwidth constraints of the system, extraneous acoustic
signals can introduce interference into the sonar-generated image. When a pipeline is
positioned near the water surface, the sonar effective beam aperture narrows, and hence
reduces the apparent scale of the pipeline within the imagery. This situation presents
challenges in differentiating the pipeline from other reflecting objects. Figure 6a.

• Substrate influence: Different depths and substrates require different detection fre-
quencies. Hard seabeds such as sand, rock, coral reefs, and shells severely limit the
depth of acoustic penetration. This restriction hinders the instrument exploration
depth, preventing the SBP from effectively receiving echo signals. Figure 6b depicts
the impact of a substrate influence on pipeline mapping.

• Ship swing: During measurement operations, fluctuations in the ship velocity and
heading can lead to vessel oscillations. This motion has an effect on the distance
between the survey equipment and the pipeline, resulting in distortions to the repre-
sentation of the pipeline shape within the captured image. Figure 6c shows distortions
in pipeline shape caused by ship swing.

• Air bubble effect: When a considerable volume of air bubbles encircles the transducer
within the water medium, the vibrational wave generated through the transducer fails
to transmit efficiently into the water as an acoustic pulse. This causes the loss of the
pipeline image information such that the SPB will not effectively receive echo signals.
Figure 6d shows the loss of the pipeline image information caused by air bubble effect.
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Figure 6. Graphs of the SBP produced by different influential factors (a–d). The figures show
measured pipeline images under various adverse conditions.

The proposed model predicted the best results in practical detection for pipes at
different depths, including bare leakage pipelines. Figure 7 presents the specific pipeline
detection images.
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4. Conclusions

The present study proposes an automated detection method for submarine pipelines
using a deep learning model. The approach enhances the feature extraction capability
by incorporating the S2-MLPv2 and SE attention modules into the YOLOv5s model. The
introduction of the SAHI module addresses challenges associated with detecting small
targets in large-sized, low-resolution images with inconspicuous features. This method
ensures the effective recognition of SBP pipeline images, eliminating the low efficiency
associated with manual identification in traditional submarine pipelines. It efficiently
performs automatic identification, assessment, and localization of exposed submarine
pipelines, ensuring both efficiency and accuracy in detection. Compared to traditional
submarine pipeline methods, significant savings in terms of labor, economic resources and
time can be achieved. The improved network model is tested on actual SBP submarine
pipeline data collected in Xiangshui County and Dafeng District, Jiangsu Province, China.
Experimental results demonstrate that the YOLOv5s+S2-MLPv2+SE model improves recall
on the training set by 21.3%, reaching 65.1%, and mAP by 7.9%, reaching 76.0%, compared to
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the original YOLOv5s benchmark model. On the actual SBP dataset, the recall is enhanced
by 41.6%, reaching 99.2%, and the F1 score is improved by 20.2%, reaching 90.0%, in
comparison to the base model YOLOv5. The model demonstrates robust identification
capabilities for pipes with different buried depths and bare leakage pipes, indicating strong
generalization capability. The experimental results show that the improved YOLOv5 model
meets the requirements for SBP data pipeline detection. The proposed model demonstrates
robustness and a generalization capability, outperforming other target detection algorithms
in terms of recall rate and harmonic mean. In addition, there is room for improvement
in the accuracy of the model in detecting pipelines. In this experiment, the precision of
the enhanced model is 6% lower than that of its baseline model in detecting pipes using
real data. There are two main reasons for this; one is that the precision and recall of the
model are usually inversely proportional to each other in the data, which results in the
phenomenon of higher recall and lower precision. Secondly, because the factors affecting
the imaging of pipeline targets in the actual data are noise impact, substrate impact, hull
swing and bubble impact, these factors will eventually lead to a large gap between the
actual imaging results; the ideal results have difficulty in accurately predicting the shape
of the pipeline, which will result in a reduction in the pipeline identification precision.
In summary, since the experiments in this paper were conducted in the sea with small
topographic undulations, future research work will be conducted in the area of model
accuracy improvement and in the sea with large topographic undulations, so as to further
verify the robustness and applicability of the model.

Author Contributions: Conceptualization, B.D., S.W., Z.C. and C.L.; methodology, B.D.; software,
B.D.; validation, Z.C.; formal analysis, B.D.; investigation, B.D.; resources, S.W.; data curation, S.W.
and Z.C.; writing—original draft preparation, B.D.; writing—review and editing, B.D., S.W. and Z.C.;
supervision, S.W. and Z.C.; funding acquisition, S.W. and Z.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (42266006),
the Jiangxi Provincial7 Natural Science Foundation (20232BAB204089, 20202ACBL214019), and the
East China University of Technology Graduate Innovation Fund Project (DHYC-202328).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to data security restrictions, the datasets presented in this article
are not readily available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Healey, A.J.; Seo, Y.G.T. Dynamic Motions of Marine Pipelines on the Ocean Bottom. J. Energy Resour. Technol. 1984, 106, 65–69.

[CrossRef]
2. Wang, K.; Jin, W. The Application Of Acoustic Detection Technology In The Investigation Of Submarine Pipelines. J. Appl. Sci.

Process Eng. 2023, 27, 2911–2921. [CrossRef]
3. Gao, L.; Gu, H.-T.; Feng, L. Research on Submarine Buried Oil and Gas Pipeline Autonomous Inspection System of USV.

In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16 June 2019;
ISOPE-I-19-153.

4. Kumudham, R.; Lakshmi, S.; Rajendran, V. Detection of Pipeline Using Machine Learning Algorithm and Analysing the Effect of
Resolution Enhancement on Object Recognition Accuracy. J. Xidian Univ. 2020, 14, 1026–1037. [CrossRef]

5. Byrne, B.W. Book Review: Offshore Geotechnical Engineering: Principles and Practice. Géotechnique 2011, 61, 1093. [CrossRef]
6. Baker, J.H.A. Alternative Approaches to Pipeline Survey: The Pipeline Engineer’s View. In SUT Subtech; Springer: Dordrecht,

The Netherlands, 1991. [CrossRef]
7. Kaiser, M.J. A Review of Deepwater Pipeline Construction in the U.S. Gulf of Mexico–Contracts, Cost, and Installation Methods.

J. Marine. Sci. Appl. 2016, 15, 288–306. [CrossRef]
8. Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2003;

Volume 84, p. 265. [CrossRef]

https://doi.org/10.1115/1.3231027
https://doi.org/10.6180/jase.202408_27(8).0006
https://doi.org/10.37896/jxu14.5/111
https://doi.org/10.1680/geot.11.B.002
https://doi.org/10.1007/978-94-011-3544-3_29
https://doi.org/10.1007/s11804-016-1373-7
https://doi.org/10.1029/2003EO280007


J. Mar. Sci. Eng. 2024, 12, 451 12 of 12

9. Jacobi, M.; Karimanzira, D. Multi Sensor Underwater Pipeline Tracking with AUVs. In Proceedings of the 2014 Oceans—St.
John’s, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–6. [CrossRef]

10. Lv, Y.; Dong, Y.; Li, Y.; Wu, H.; Hu, K.; Hu, H.; Feng, W. Submarine Cable Fault Identification Based on FCN-GRU-SVM. E3S Web
Conf. 2022, 360, 01055. [CrossRef]

11. Bharti, V.; Lane, D.; Wang, S. A Semi-Heuristic Approach for Tracking Buried Subsea Pipelines Using Fluxgate Magnetometers.
In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong,
20–21 August 2020; pp. 469–475. [CrossRef]

12. Li, S.; Zhao, J.; Zhang, H.; Zhang, Y. Automatic Detection of Pipelines from Sub-Bottom Profiler Sonar Images. IEEE J. Oceanic
Eng. 2022, 47, 417–432. [CrossRef]

13. Guan, M.; Cheng, Y.; Li, Q.; Wang, C.; Fang, X.; Yu, J. An Effective Method for Submarine Buried Pipeline Detection via
Multi-Sensor Data Fusion. IEEE Access 2019, 7, 125300–125309. [CrossRef]

14. Wunderlich, J.; Wendt, G.; Müller, S. High-Resolution Echo-Sounding and Detection of Embedded Archaeological Objects with
Nonlinear Sub-Bottom Profilers. Mar. Geophys. Res. 2005, 26, 123–133. [CrossRef]

15. Wang, C.; Jiang, Y.; Wang, K.; Wei, F. A Field-Programmable Gate Array System for Sonar Image Recognition Based on
Convolutional Neural Network. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2021, 235, 1808–1818. [CrossRef]

16. Zheng, G.; Zhang, H.; Li, Y.; Zhao, J. A Universal Automatic Bottom Tracking Method of Side Scan Sonar Data Based on Semantic
Segmentation. Remote Sens. 2021, 13, 1945. [CrossRef]

17. Li, J.; Chen, L.; Shen, J.; Xiao, X.; Liu, X.; Sun, X.; Wang, X.; Li, D. Improved Neural Network with Spatial Pyramid Pooling and
Online Datasets Preprocessing for Underwater Target Detection Based on Side Scan Sonar Imagery. Remote Sens. 2023, 15, 440.
[CrossRef]

18. Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant Disease Recognition Model Based on Improved
YOLOv5. Agronomy 2022, 12, 365. [CrossRef]

19. Yang, L.; Yuan, G.; Zhou, H.; Liu, H.; Chen, J.; Wu, H. RS-YOLOX: A High-Precision Detector for Object Detection in Satellite
Remote Sensing Images. Appl. Sci. 2022, 12, 8707. [CrossRef]

20. Keles, M.C.; Salmanoglu, B.; Guzel, M.S.; Gursoy, B.; Bostanci, G.E. Evaluation of YOLO Models with Sliced Inference for Small
Object Detection. arXiv 2022, arXiv:2203.04799. [CrossRef]

21. Jocher, G. YOLOv5 by Ultralytics 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 March 2024).
22. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717.
[CrossRef]

23. Weston, J.; Sukhbaatar, S. System 2 Attention (Is Something You Might Need Too). arXiv 2023, arXiv:2311.11829. [CrossRef]
24. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]
25. Akyon, F.C.; Altinuc, S.O.; Temizel, A. Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection. In Proceedings

of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 966–970.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/OCEANS.2014.7003013
https://doi.org/10.1051/e3sconf/202236001055
https://doi.org/10.1109/CASE48305.2020.9216755
https://doi.org/10.1109/JOE.2021.3107609
https://doi.org/10.1109/ACCESS.2019.2938264
https://doi.org/10.1007/s11001-005-3712-y
https://doi.org/10.1177/0959651820939345
https://doi.org/10.3390/rs13101945
https://doi.org/10.3390/rs15020440
https://doi.org/10.3390/agronomy12020365
https://doi.org/10.3390/app12178707
https://doi.org/10.1109/CVPRW50498.2020.00203
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/CVPR46437.2021.01350
https://doi.org/10.48550/arXiv.2311.11829
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/ICIP46576.2022.9897990

	Introduction 
	Experimental Data and Model 
	Experimental Background 
	Experimental Equipment 
	Data Preprocessing 
	Experimental Model 

	Experimental Results and Analysis 
	Conclusions 
	References

