
Citation: Yang, Y.; Liang, F.; Zhu, Q.;

Zhang, H. An Overview on Structural

Health Monitoring and Fault

Diagnosis of Offshore Wind Turbine

Support Structures. J. Mar. Sci. Eng.

2024, 12, 377. https://doi.org/

10.3390/jmse12030377

Academic Editors: João Miguel Dias,

Carlos Guedes Soares, Markes

E. Johnson, Rafael J. Bergillos,

Naomasa Oshiro, Alvise Benetazzo

and Kamal Djidjeli

Received: 10 January 2024

Revised: 5 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Review

An Overview on Structural Health Monitoring and Fault
Diagnosis of Offshore Wind Turbine Support Structures
Yang Yang 1 , Fayun Liang 1,* , Qingxin Zhu 2 and Hao Zhang 3

1 Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
yangyang2022@tongji.edu.cn

2 School of Environment and Architecture, University of Shanghai for Science and Technology,
Shanghai 200093, China; zhuqingxin@usst.edu.cn

3 College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
hzhang@dhu.edu.cn

* Correspondence: fyliang@tongji.edu.cn

Abstract: The service environment of offshore wind turbine (OWT) support structures is harsh, and it
is extremely difficult to replace these structures during their operational lifespan, making their failure
a catastrophic event. The structural health monitoring (SHM) of OWT support structures is a crucial
aspect of operational maintenance for OWT support structures, aiming to mitigate significant finan-
cial losses. This paper systematically summarizes the current monitoring methods and technologies
for OWT support structures, including towers and foundations. Through the review of monitoring
content and the evolution of monitoring techniques for supporting structures, it delves deeper into
the challenges faced by wind turbine monitoring and highlights potential avenues for future devel-
opment. Then, the current damage identification techniques for OWT towers and foundations are
analyzed, exploring various methods including model-based, vibration-based, artificial intelligence
and hybrid fault diagnosis methods. The article also examines the advantages and disadvantages of
each approach and outlines potential future directions for research and development in this field.
Furthermore, it delves into the current damage identification techniques for OWT towers and foun-
dations, discussing prevalent challenges and future directions in this domain. This status review can
provide reference and guidance for the monitoring design of OWT support structures, and provide
support for the fault diagnosis of OWT support structures.

Keywords: structural health monitoring; fault diagnosis; offshore wind turbine; support structures;
tower; foundation

1. Introduction

Wind energy is a clean and renewable energy source with vast reserves. The offshore
wind power generation industry is experiencing exponential growth. At the end of 2022, the
global installed capacity of offshore wind power has reached an impressive 64.3 GW. The
support structure of OWTs (tower and foundation) must withstand loads transferred from
the upper nacelle and blades, along with extreme and fatiguing environmental forces. It is,
therefore, imperative to conduct comprehensive health monitoring and damage diagnosis
for the supporting structures of OWT. This provides vital technical support for ensuring
the safe operation and maintenance of offshore wind power projects, ultimately promoting
the long-term sustainability and viability of this renewable energy source.

The monitoring of OWTs encompasses several key components, including nacelles,
blades, towers, and foundations. While nacelles and blades often receive the most at-
tention [1–4], OWT supporting structures are essential but often overlooked. Given the
significant economic losses caused by OWT damage, operation and maintenance account
for 30% of the total life cycle cost. Reasonable OWT monitoring can save operation and
maintenance expenses [5,6]. However, the monitoring of OWT support structures does not
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cover all OWTs, and the number of OWTs being monitored is generally about 10% of the
total number of OWTs in an entire wind farm. The potential damage to these supporting
structures during operation and maintenance can range from changes in modal parameters
to soil strength degradation, erosion, fatigue, cracks, and corrosion [7]. The complex ser-
vice environment is a primary factor in the degradation of these structures, with fatigue
accounting for 80% of structural damage [8,9]. The first offshore wind farm in China began
generating electricity in 2010 and has a service life of approximately 25 years. As the wind
farms approach the end of their service life, it is essential to consider end-of-service options.
For OWTs adopting re-operation plans (which refers to the process of repairing, modifying
or upgrading wind turbines that have been stopped or abandoned, so that they can resume
operation and continue to provide services to the power system) the performance evaluation
of their foundations relies heavily on monitoring data. In summary, the monitoring of OWT
supporting structures is crucial for ensuring safe operation and maintenance. The assessment
of an OWT service status relies heavily on these monitoring results, making it paramount for
wind farm operators to prioritize regular monitoring and damage diagnosis.

Structural health monitoring (SHM) techniques produce abundant data captured from
in situ structures, e.g., structural responses and environmental status, offering the potential
for fault detection and condition assessment [10,11]. An SHM system produces abundant
data captured from the in situ structure; these recorded data are transferred to servers and
stored. Then, data analysis methods are conducted to assess structural conditions or detect
anomalous changes. Note that more sensors obtain more detailed structural information;
however, a large number of sensors would increase the system budget and bring about
data redundancy [12]. Thus, considerable efforts have been devoted to optimizing sensor
layouts. In addition, methods for assessing structural condition or detecting anomalous
changes are also continuously reviewed by civil engineers. Accordingly, an SHM system
provides a reliable reference for structural maintenance, as shown in Figure 1, and this
article mainly summarizes data acquisition and fault diagnosis in the condition assessment
of structural health monitoring. Initially, it delves into the monitoring content of tower
and foundation structures within the supporting structure, emphasizing the significance of
employing diverse monitoring methods for specific purposes. This section can serve as a
practical guide for professionals involved in OWT monitoring. Subsequently, the article
examines the evolving fault diagnosis methods for current OWT supporting structures. The
increasing popularity of offshore wind power and the advancement of artificial intelligence
have significantly improved fault diagnosis, making it more intelligent and efficient. In
conclusion, this article wraps up by discussing and projecting the current status of industry
development. It offers valuable insights for the offshore wind power monitoring industry,
providing technical support for offshore wind farm operation and maintenance.
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Figure 1. Diagram of SHM of OWT support structures. Figure 1. Diagram of SHM of OWT support structures.

2. Strategies and Challenges in SHM of OWT Support Structures

The service environment of the offshore wind turbine (OWT) support structures is
harsh, as they must withstand inertial forces transmitted from the nacelle and blades,
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wind loads, waves, currents, and soil–structural interactions, as well as potential seismic
events. SHM can detect the service status of the OWT supporting structures, enabling
intervention to avoid the failure of the OWT supporting structure affecting the operation of
the wind farm. The SHM techniques of OWT includes acoustic inspection, thermal imaging
inspection, visual inspection, strain monitoring, and fatigue and modal characteristics
inspection [6]. The OWT with monopile foundation fault types are shown as an example in
Figure 2 [13]. The left side of Figure 2 illustrates the loads that may be encountered through-
out the service life of OWTs, while the right side depicts the various types of potential
damages to the support structure, which may include changes in modal parameters, soil
strength degradation, scouring, and more. For an OWT in service, the monitoring fatigue
types and technique of the tower and foundations will be illustrated in the following part.
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2.1. SHM Strategies of OWT Towers

The tower of OWTs serves as the connection between the nacelle and the foundation.
As the length of the OWT blades increase, the tower height also escalates. However, in
complex operation environments, there have been instances of tower collapse, leading
to significant economic losses [14,15]. Consequently, it is imperative to implement SHM
of OWT towers to assess their service condition and minimize the occurrence of OWT
accidents. The monitoring system of tower is supposed to include the following parts:

1. Vibration

Generally, damage (e.g., crack, bolt loosening, and corrosion) decrease structural
stiffness. Accordingly, the loss of stiffness leads to the change in structural dynamic
characteristics (e.g., frequency, damping ratio and mode shapes) [16]. Thus, operational
modal analysis (OMA) has been employed for damage detection and condition assessment.
Herein, modal parameters are compared between the intact and damaged conditions [17,18].
In particular, natural frequency always decreases with damaged conditions. To assess the
operational status of the tower, accelerometers are equipped to capture vibration data, which
are utilized to identify the modal parameters. Zhou et al. positioned five wireless accelerom-
eters at varying heights on the tower [19]. By examining vibration signals under different
excitations, they conducted modal analysis on an OWT with a monopile foundation. The
research results indicate that modal parameters derived from controlled ship impacts are more
accurate compared to those obtained from data collected under environmental loads.

2. Cracks

During the service period of OWTs, the tower is subjected to repeated cyclic loads;
studies have found that 80 percent of structural damages are caused by fatigue [8,9].
Monitoring crack depth and length at critical locations such as the tower and weld joints
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is crucial for evaluating tower integrity. Gansel et al. evaluated the performance of DY
butt welds under tensile loads using five eddy current differential sensors [20]. The data
obtained from crack monitoring can serve as a predictive indicator for OWT service life.
Strain sensors are utilized in critical parts to detect cracks [21]. Cicero et al. (2009) delved
into how welding defects in the tower influence its fitness throughout its service life,
revealing that once the tower exceeds the maximum acceptable lack of penetration defects,
it necessitates repair to uphold its structural integrity [22]. Capaldo et al. (2020) examined
how cracks impact the capacity of a tower to withstand buckling, analyzing the effects of
factors like crack location and length on its strength. Their findings revealed that cracks in
the compression zone of the tower have a more significant impact compared to those in
the tension zone. When the crack reaches a size of 30–40 cm, the critical load is reduced
by approximately 8% [23]. Additionally, visual inspection [24], either manual or assisted
by AI, is a widely used method for crack detection. Traditional methods rely heavily on
inspector expertise, while AI-assisted approaches leverage computer vision technologies
such as digital cameras to enhance crack identification accuracy. However, it should be
noted that visual inspection is limited to surface crack detection.

3. Tower bending moment

The measurement of tower bending moment is typically achieved through strain
gauges, often located on the inner wall of the tower. However, it is noteworthy that
only a subset of OWTs is equipped with strain gauges for monitoring tower bending
moments. Santos et al. (2022) adopted acceleration data, supervisory control and data
acquisition (SCADA) to estimate the tower fore–aft bending moment damage equivalent
loads, utilizing artificial neural networks [25]. Jay et al. (2016) compared the yield strength
of traditionally welded tower sections with those spirally welded and found that the former
had a lower yield strength, confirming that the method of connection between different
tower sections significantly affects the bending capacity of towers [26]. Additionally, as thin
steel cylindrical shells, the bending properties of towers are greatly influenced by strain-
hardening models, which have a significant impact on curvature and bending capacity [27].
Fajuyitan et al. (2018) conducted research on the imperfection sensitivity of cylindrical shells
under uniform bending, examining the effects of cylinder length, end support conditions,
forms, and amplitudes of geometric imperfections. They also utilized a novel automation
strategy for analysis, but the research was primarily numerical simulation and further
analysis with field measurements is required [28]. The bending capacity and buckling
behavior of towers are closely related to their diameter–thickness ratios. OWTs towers
typically have a diameter–thickness ratio exceeding 150, and as this ratio increases, local
buckling can affect the bending properties of tubular cross-sections [29]. The continuous
monitoring of bending capacity can help detect potential safety hazards in towers and take
measures to ensure the long-term stable operation of OWTs.

4. Tower flange connection bolts inspection

OWTs are constantly exposed to cyclic loads, and if a bolt or flange bolt loosens and
falls off, it can have a significant impact on the stress of other bolts [30]. It is difficult to man-
ually identify bolt loosening, and it is one of the main reasons for structural collapse [31,32].
Liang et al. (2015) proposed an intelligent bolted joint failure monitoring approach to
achieve the real-time monitoring of bolt loosening. This method utilizes monitoring data
and combines the developed decision fusion system with Lamb wave propagation. How-
ever, more complex bolt structures are needed to verify the reliability of this method [33].
Ji et al. (2023) analyzed the impact of initial flatness divergence, indicating that tower-sided
gapping and flange-sided gapping conditions result in more severe fatigue damage to
bolts compared to parallel gapping [34]. Cheng et al. (2023) studied C1 wedge connections
in towers and found that the contact surface friction coefficient and bolt pretension level
significantly affect the local deformation capacity and stress range of the connection [35].
Li et al. (2023) proposed a damage monitoring method capable of identifying the loosening
location of flange bolts. This method is primarily based on dynamic strain responses, but
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the work conditions studied had a limited number of bolts, and further research is needed
to evaluate its applicability to OWTs with hundreds of bolts [36]. Other studies have exam-
ined the impact of flange bolt loosening on turbine responses, showing that bolt loosening
has little effect on the first-order frequency, damping ratio, and mode shape of the turbine.
However, it has a significant impact on the absolute value of the phase difference between
the upper and lower plates. When the bolt loosening rate is 6%, there is a noticeable
increase in numerical values [37]. Due to the large number of flange connection bolts in
tower sections, some studies have begun to use artificial intelligence methods [38,39] to
solve the problem of bolt stress distribution prediction. Nguyen et al. (2016) proposed an
image processing technique for identifying bolt loosening. The main principle is to identify
the rotation angle of the nut from images. This method was primarily validated in indoor
tests and lacks practical engineering applications and verification [40]. Dai et al. (2023)
used machine learning to predict the stress distribution of Circular Hollow Section Tube of
flexible high-neck flange joints [41].

5. Tower weld seam monitoring

Due to the limitations of the manufacturing process, traditional OWT towers usually
contain circumferential welds perpendicular to the tower height and longitudinal welds
parallel to the tower height. The quality of tower welds has an important impact on
the overall strength and service life of the tower [42]. The commonly used three weld
monitoring methods include ultrasonic phased array detection, TOFD detection and the
magnetic memory method. Each of the three methods has its advantages and disadvantages.
Ultrasonic phased array detection is more suitable for structures that are difficult to access,
has limitations in repeatability accuracy, and finds is difficult to calculate the defects
quantitatively; TOFD detection can achieve the quantified calculation of flaws, and has
blind spots in surface detection; the magnetic memory method is cost-effective, yet the
signal it generates is relatively feeble and susceptible to various influencing factors [43].
Farhan et al. (2022) studied the optimal monitoring time and repair strategy for OWT weld
from the early stage of its service life. It was found that the inspection should be carried out
around the midpoint of the service life of the welding joint, and the fatigue crack should
be repaired at the same time [44]. With the continuous development of technology, the
monitoring and detection methods for tower weld seams are also continuously improving
and being perfected. Monitoring tower weld seams can enable the timely discovery of
problems such as fatigue, damage, or aging, and avoid tower safety accidents.

6. Bolt inspection of tower and foundation connection

The bolts connecting the tower and foundation, during their service, are constantly
subjected to cyclic loads transmitted from the upper tower, which makes them prone to
fatigue failure. Weijtjens et al. (2021) used the monitoring data of bolts in the monopile
to the transition piece bolted flange connection and strain gauges of wind turbines to
study the load transfer behavior and predict the fatigue life of the bolts. By comparing
the field monitoring data with finite element analysis results, they found that the load
transfer coefficients obtained from field monitoring data were larger than those from finite
element simulations. Therefore, when using finite element simulations, consideration
should be given to the flange tilt [45]. The piezoelectric impedance method can be used to
monitor flange bolt looseness. This method utilizes the piezoelectric effect and is sensitive
to structural parameters, but it is also easily affected by environmental factors [46,47].
In addition, due to the harsh service environment, the bolts connecting the tower and
foundation also need to be monitored for bolt corrosion and stress. Damaged or ineffective
bolts should be replaced in a timely manner to detect and address potential safety hazards.

2.2. SHM Strategies of OWT Foundations

Since the first offshore wind farm project, the Vindeby project in Denmark in 1991,
the offshore wind power industry has developed rapidly, and OWTs have also developed
towards large-scale and deep-sea areas. The types of OWT foundations include monopile,
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gravity-based, jacket, tripod, tripole, spar type, tension-legged and semi-submersible
foundations [8]. The service life of OWTs is generally 20–25 years. To ensure the safety of
OWT foundations during the service period, health monitoring is required. The current
types and methods of monitoring are listed below.

1. Vibration

Abnormal vibration of the foundation poses a significant threat to the operation of the
OWT, and vibration of the foundation should be monitored [48]. Currently, a monopile
foundation generally has equipped accelerometers at the top of the monopile to monitor the
vibration of the foundation during service period. It is well known that OWTs have strict
frequency requirements for the foundation, and to avoid resonance, the natural frequency
of the foundation, one and three times of the blade rotation frequency, must be avoided.
The accelerometers deployed on the OWT foundation can obtain the vibration condition
of the foundation and provide monitoring data for the analysis of the frequency of the
foundation. In addition, for the floating OWT foundation, the monitoring of the OWT
vibration is also particularly important [49,50].

2. Displacement

For a fixed-base foundation, the displacement monitoring includes settlement and
inclination. Under environmental loads, self-weight loads, and long-term vibration during
the service life of an OWT, the foundation soil consolidates the settlement and inclination
is of great importance to ensure the safety of OWTs. In addition, for floating OWTs, the
rotation of foundation must be monitored during service life [50].

3. Axial forces and bending moments

For monopile foundations, the axial forces and bending moment of the monopile
is monitored by strain gauges placed at the bottom of the tower and at the top of the
monopile [51,52]. The weighted average recorded at the same height represents the axial
strain; the strain difference of opposite sides at the same height produces the bending
moments. For composite bucket foundations, in addition to monitoring the bending
moment at the top of the foundation, reinforcement gauges and concrete strain gauges
are used to monitor different parts of the foundation, including the transition section,
main beams, and secondary beams [53]. For jacket foundations, strain gauges are used to
measure different jacket members [54,55]. The marine environment has high requirements for
strain gauges, necessitating excellent resistance to corrosion, water, and shock, ensuring long-
term stable operation [56]. Furthermore, due to the confidentiality requirements surrounding
OWT data, there have been limited published studies on on-site axial and bending moment
monitoring. Nevertheless, as monitoring technology continues to advance, there will be a
gradual increase in relevant research aimed at ensuring the safety of wind turbine foundations.

4. Corrosion and cracks

Due to harsh conditions, such as high salt and high humidity in the marine envi-
ronment, OWT foundations are prone to corrosion, which is one of the main reasons for
foundation damage. Recently, many corrosion detection techniques have been applied to
OWT foundation monitoring, such as corrosion coupons, electrochemical sensors, mag-
netic sensors, acoustic sensors, thermal cameras, radio frequency identification sensors,
radiography, and visual inspection [57]. The monitoring of cracks in the foundation is equally
important to that of crack monitoring in the tower. However, offshore wind turbine foundations
are located underwater for long periods of time, and welding joints are the weakest part of the
foundation. Under the action of long-term cyclic loads, it is necessary to monitor the fatigue
behavior of the weld seams. The weld seam location is prone to stress concentration, which
can cause local cracks [58]. Kolios et al. (2019) proposed a method for calculating the stress
concentration factors of weld seams by combining 3D laser scanning technology with finite
element analysis cameras and critical points where fatigue cracks may occur [59]. Additionally,
utilizing corrosion and crack monitoring results is very important for OWT operation and
maintenance as well as predicting the remaining service life.
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5. Scouring

Scouring can be measured by single-wave velocity and multi-wave velocity instruments
to detect changes in the terrain near the foundation at different locations, obtaining information
about foundation erosion. However, the underwater terrain measurement method has high
costs, is highly influenced by sea conditions, and cannot provide real-time erosion information.
Recently, wind farms have begun to adopt a local scouring real-time monitoring technology
based on sonar image processing technology, which can achieve the continuous, unattended,
real-time monitoring of underwater terrain data around the foundation.

In addition, scouring decreases the buried depth of the OWT foundation; accordingly,
structural dynamic properties change due to the scouring. Thus, structural dynamic charac-
teristics (e.g., frequency, the damping ratio, and mode shapes) are employed as an indicator
of the scouring [60–62]. Weijtjens et al. (2017) analyzed the modal parameters of OWTs and
found that the resonance frequency of the second-order mode is most closely related to OWT
scouring [62]. It can be used to quickly assess scouring conditions. Wang et al. (2023) used
finite element models to analyze the characteristics of vibration frequencies at different
scouring depths and proposed a scouring depth warning method based on changes in natu-
ral frequencies [63]. It is recommended to issue warnings when the decrease in operational
frequency reaches 0.01 Hz.

6. Grouted connections

For OWTs, there is a layer of grout in the overlapping part of the tower and the
OWT foundation connection. The grout quality must be checked to avoid the risk of
slippage in the transition section, which can be monitored by electromechanical impedance
spectroscopy [64]. Brett et al. (2018) adopted a swept frequency ultrasonic technique, which
can map the resonances characteristic of the structure and its various fault conditions [65].

7. Marine growth

Marine growth can produce hydrodynamic effects [66] and affect the modal charac-
teristics of OWTs. Jahjouh conducted research on the impact of marine growth on OWT
modal parameters to distinguish the differences between modal parameters caused by
marine growth and structural damage, providing a reference for analyzing abnormal modal
parameters of OWTs [67].

2.3. Challenges in SHM of OWT Support Structures

The offshore wind power industry continues to thrive and expand into deeper and
further seas, foreshadowing a promising future for the operation and maintenance market
of offshore wind farms. The above review part delved into the current monitoring items
associated with SHM strategies for OWT support structures. Upon analyzing current SHM
strategies for foundations and towers, the following challenges have been identified:

1. The challenging offshore environment leads to a significant probability of sensor
failures within the monitoring system, resulting in data loss and posing formidable
challenges for subsequent data analysis and processing. It is imperative to enhance
the reliability of the monitoring system and design a resilient monitoring system.

2. Monitoring typically involves the assessment of parameters such as acceleration,
strain, and displacement, leading to the generation of highly diverse monitoring data.
This poses a significant challenge for data analysis and makes it arduous to assess the
service status of OWTs using multi-source heterogeneous monitoring data.

3. The health monitoring of OWT support structures can slash operation and maintenance
costs while reducing the number of days required for troubleshooting and repairs.

4. The number of OWT support structures being monitored in wind farms is restricted,
and the monitoring process may not be continuous. The monitoring cycles of various
projects vary distinctly, ranging from testing intervals of 1 to 5 years. Long-term
real-time monitoring needs to be paid more attention for future progress.
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5. The offshore real-time data transmission network limits the intelligent development of
the monitoring system. Currently, there is limited real-time and intelligent capability,
with only a few wind farms achieving the automated real-time monitoring of OWT
support structures.

6. Given the current primitive state of intelligence in this field, the data processing
for wind farm health monitoring and maintenance necessitates a high degree of
professionalism from personnel. Currently, there is a scarcity of specialized teams
capable of meeting these demands.

3. Fault Diagnosis of OWT Support Structures

Health monitoring data hold valuable insights into environmental effects, structural
response, and performance evolution. It is crucial to diagnose the service status of OWT
support structures based on these data. Given the current research landscape, fault diag-
nosis can be broadly categorized into four distinct methods: model-based fault diagnosis,
vibration-based methods, artificial intelligence methods, and hybrid fault diagnosis meth-
ods. A comprehensive overview of the research status of these four fault diagnosis methods
is provided below.

3.1. Model-Based Fault Diagnosis

The monitoring of OWT support structures typically only covers about 10% of the
total number of OWTs in a wind farm. How can fault diagnosis be effectively conducted for
the unmonitored OWTs? Furthermore, with the installation of OWT health monitoring sys-
tems, how can fault alarm thresholds be accurately set? Addressing these challenges may
require the integration of numerical simulation. The service status of unmonitored OWTs
can be generated utilizing validated OWT numerical models, introducing real external
loads, analyzing the OWTs response through numerical simulation, and performing fault
diagnosis. For the second scenario, models are employed to analyze the OWT potential
responses under various damage conditions, enabling the extraction of pertinent response
parameters such as changes in modal parameters under varying erosion depths and ac-
celeration responses under potential earthquake loads. The flowchart for model-based
fault diagnosis is outlined below in Figure 3 [68]. By using the OWT design parameters to
establish numerical model and inputting environmental loads, static and dynamic analyses
of the wind turbine can be conducted to obtain the response of the OWT support structure.
Based on the response results, the service status of the wind turbine can be evaluated.
Tewolde et al. (2017) utilized a validated finite element model, incorporating monitoring
data, to analyze parameter indicators under different damage conditions of the OWT,
thus aiding in determining health detection thresholds [69]. Li et al. (2020) utilized finite
element analysis to analyze the static and dynamic responses of a tower, providing valuable
engineering recommendations for monitoring [70]. It is noteworthy that during service,
the stiffness of the OWT foundations may vary due to structural damage or soil strength
degradation. McAdam et al. (2023) proposed a method to estimate foundation stiffness
based on field monitoring modal characteristics [71].



J. Mar. Sci. Eng. 2024, 12, 377 9 of 17J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 17 
 

 

 

Numerical model Calculation

Environment loads

Static response

Dynamic response

D
ia

g
n

o
sis

Diagnosis results

 

Figure 3. The flowchart of model-based fault diagnosis (the data were from [72,73]). 

3.2. Vibration-Based Fault Diagnosis Methods 

The vibration-based fault diagnosis method was adopted in the civil engineering sec-

tor in the 1980s [74]. The fault diagnosis may be called signal-based fault diagnosis by 

some researchers, as it includes electrical signals, vibration, sound signals. However, in 

the OWT monitoring area, the most commonly used signals are the vibration data. Figure 

4 illustrates how vibration data can be utilized for fault diagnosis. Initially, the accelera-

tion data captured by the accelerometers on site undergo preprocessing. Subsequently, 

modal parameters are identified using a Stochastic Subspace Identification method or 

other reliable methods. By utilizing the frequency obtained from modal identification, a 

comparison is made with the OWT required frequency for conducting fault diagnosis. 

Valencia and Fassois (2017) carried out analysis of an OWT model and collected the vibra-

tion data from the tower top and blades [75]. The results showed that the vibration–based 

damage diagnosis method for structures appears to be appealing and promising. How-

ever, the vibration sensors located mainly at the tower top and blades [76] could not gen-

erate the modal parameters of the OWT system and the review in this paper mainly fo-

cused on the fault diagnosis based on the vibration data collected from different heights 

of the tower. The on-site vibration monitoring data of OWTs are typically not publicly 

accessible, and there is a scarcity of publicly available databases. Dong et al. (2018) utilized 

OWT vibration monitoring data to analyze the structural vibration response characteris-

tics of OWTs, providing technical support for OWT fault diagnosis [77]. Weijtjens et al. 

(2017) employed OWT acceleration data to investigate the modal parameter characteris-

tics of OWTs and employed resonance frequency to monitor scour damage of OWTs [62]. 

Jeong et al. (2020) presented a multisensory data fusion-based damage detection method 

utilizing wireless smart sensors for OWT support structures [78]. They validated the pro-

posed method using numerical simulation and indoor experiments. Currently, there is a 

lack of support from actual OWT monitoring data. 
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3.2. Vibration-Based Fault Diagnosis Methods

The vibration-based fault diagnosis method was adopted in the civil engineering
sector in the 1980s [74]. The fault diagnosis may be called signal-based fault diagnosis by
some researchers, as it includes electrical signals, vibration, sound signals. However, in the
OWT monitoring area, the most commonly used signals are the vibration data. Figure 4
illustrates how vibration data can be utilized for fault diagnosis. Initially, the acceleration
data captured by the accelerometers on site undergo preprocessing. Subsequently, modal
parameters are identified using a Stochastic Subspace Identification method or other reliable
methods. By utilizing the frequency obtained from modal identification, a comparison
is made with the OWT required frequency for conducting fault diagnosis. Valencia and
Fassois (2017) carried out analysis of an OWT model and collected the vibration data
from the tower top and blades [75]. The results showed that the vibration–based damage
diagnosis method for structures appears to be appealing and promising. However, the
vibration sensors located mainly at the tower top and blades [76] could not generate the
modal parameters of the OWT system and the review in this paper mainly focused on the
fault diagnosis based on the vibration data collected from different heights of the tower.
The on-site vibration monitoring data of OWTs are typically not publicly accessible, and
there is a scarcity of publicly available databases. Dong et al. (2018) utilized OWT vibration
monitoring data to analyze the structural vibration response characteristics of OWTs,
providing technical support for OWT fault diagnosis [77]. Weijtjens et al. (2017) employed
OWT acceleration data to investigate the modal parameter characteristics of OWTs and
employed resonance frequency to monitor scour damage of OWTs [62]. Jeong et al. (2020)
presented a multisensory data fusion-based damage detection method utilizing wireless
smart sensors for OWT support structures [78]. They validated the proposed method using
numerical simulation and indoor experiments. Currently, there is a lack of support from
actual OWT monitoring data.
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3.3. Artificial Intelligence Methods

With the development of artificial intelligence, more and more researchers are ex-
ploring the use of machine learning methods to solve the problem of fault diagnosis for
OWTs [79–81]. Relying on intelligent robots for data collection and intelligent algorithms
for damage identification, the accuracy rate can reach up to 90% [13]. Santos et al. (2022)
utilized a large amount of monitoring data from OWTs to train a two-tier neural network
model to obtain damage equivalent loads for tower fore–aft (FA) bending moments [25].
Puruncajas et al. (2020) proposed a method based on acceleration and deep convolutional
neural networks using acceleration data collected from indoor scaled model tests [54].
This method can achieve the intelligent identification of different damage conditions with
an accuracy rate of up to 99%, and it is expected to be used for damage identification of
future jacket support structures for OWTs. Guo et al. proposed an unsupervised statistical
estimation method to detect structural damage, but this method only considers two static
parameters: inclination and displacement [82]. Feijóo et al. (2021) utilized monitoring
data from healthy OWTs to train a neural network model for fault diagnosis [55]. Some
scholars have also used machine learning methods to evaluate the service performance
of OWT foundations, including cracks and corrosion, in order to achieve life-extension
classification [83]. Additionally, digital twin technology is currently a popular area for
scholars and wind power practitioners [6]. The digital twin intelligent operation and main-
tenance diagram for OWTs is shown below in Figure 5. The digital twin technology utilized
by OWTs creates a virtual model based on the physical model, mirroring its actual behavior.
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This process begins by establishing a numerical model using design data. Subsequently, the
response characteristics of the OWTs are analyzed through monitoring data, enabling the
extraction of modal parameters. To ensure the accuracy of the virtual model, the frequency
calculation results from the numerical model are compared with those obtained from analy-
sis results using monitoring data and then update the numerical model. Ultimately, a robust
virtual model that faithfully reflects the actual behavior of the OWT is established. This
virtual model serves as a powerful tool for numerical simulation analysis, fault diagnosis,
and structural prognosis, and it also offers valuable insights for wind turbine operation
and maintenance. Furthermore, throughout the operational lifecycle of OWT, both the
physical and virtual models can be updated in real time, enhancing the overall safety of
the operation and maintenance system. With the development of artificial intelligence,
enhanced digital twin technology is also emerging [83].
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3.4. Hybrid Fault Diagnosis Methods

With the current development and technological advancements in offshore wind
power, an increasing number of methods are being used for OWT fault diagnosis [84]. As
shown in Figure 6, the combination of monitoring data and numerical simulation was
carried out to update the finite element model of OWTs, allowing for further analysis of
their dynamic response and damage conditions [85,86]. During the simulation process, an
integrated bounding surface model can be employed for the soil model under dynamic
loads [87], while a simplified numerical model, such as the lumped parameter model [88],
can be utilized for OWTs. Iliopoulos et al. (2016) utilized limited monitoring displacement
and acceleration data in combination with finite element software to estimate the response
at the unmonitored location [89].
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4. Discussion

The fault diagnosis methods of the OWT support structures were compared, as shown
in Table 1.

Table 1. Advantages and disadvantages of various methods for fault diagnosis.

Methods Advantages Disadvantages

Model-based
fault diagnosis

Able to analyze the service status of unmonitored OWT
support structures using numerical simulation;

The SHM system has a limited number of measurement
points and using validated models, information such as
acceleration, displacement, and bending moment can be

obtained for unmeasured points.

There is a high demand for numerical analysis skills
for workers;

Modeling takes a long time, as each OWT has a different
structure, foundation, and ground environment,

requiring separate modeling for analysis;
Real-time OWT support structure service status cannot

be obtained, requiring a long time for analysis
and diagnosis.

Vibration-based fault
diagnosis methods

It is able to quickly diagnose the service status of OWT
support structures using monitoring data;

Vibration data can be used to reflect the erosion status of
OWT support structures;

The vibration characteristics of OWT support structures
can be obtained through ship collisions, allowing for

multiple monitoring during service.

Only a small number of OWT support structures in wind
farms have installed health monitoring systems, limiting

health diagnosis to only monitored OWT
support structures;

The harsh service environment of sensors leads to a high
probability of sensor failure and data loss;

The modal parameters of OWT support structures are
difficult to accurately identify due to environmental

loads and rotor rotation.

Artificial
intelligence methods

It can achieve multi-source and heterogeneous data
fusion to determine the service status of OWT;

There is significant room for future development, with
the potential for real-time intelligent monitoring.

The large volume of data results in time-consuming
calculations for machine learning models;

A significant amount of data are required for support, yet
currently, most offshore wind farm support structure

monitoring data remain undisclosed.

Hybrid fault
diagnosis methods

Combining the advantages of data-driven and
physics-based models to compensate for their

respective disadvantages;
There is significant room for future development.

It is challenging to achieve real-time diagnosis;
Professional personnel are required to diagnose faults by

combining monitoring data with numerical
simulation results.
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Based on the above analysis, the following are some comments on future development:

1. While the monitoring of OWT farms may be not conducted in real time, it serves as
an assessment of the operational and maintenance status of OWT support structures
using monitoring data. However, there is a lack of research on long-term vibration
monitoring to evaluate OWT support structures safety, indicating significant potential
for future development in this area.

2. The current level of real-time diagnosis and alarming is relatively low. Current
monitoring or fault diagnosis only assesses the current OWT support structures status
and lacks the ability to predict potential future failures. Predicting failures based on
current monitoring data is crucial and there is ample room for future advancements.

3. It is also crucial to combine diagnosis results to develop reasonable overhaul or
operation and maintenance strategies. This can significantly reduce operation and
maintenance expenses and time for offshore wind farms.

4. The current level of real-time monitoring is limited. It requires a significant amount
of time to diagnose OWT support structures using monitoring data, numerical sim-
ulations, or artificial intelligence. This results in a delay in fault diagnosis and an
inability to promptly address the service status.

5. Current research mainly focuses on monitoring damage through frequency changes,
but there is still a lack of research on how to quantify the relationship between
frequency and damage, such as cracks. In addition, further research is needed on
foundation stiffness during storms and the distinction between temporary and perma-
nent changes, in order to obtain data on permanent stiffness changes, which is crucial
for evaluating the status of OWT support structures.

6. OWT support structure monitoring data provide important data support for its
remaining lifespan and strategic choices after decommissioning it. Therefore, it
is essential to conduct in-depth exploration of the characteristics of OWT support
structures, utilizing the monitoring data.

7. In the future, artificial intelligence technology holds great potential for OWT sup-
port structures monitoring and fault diagnosis, particularly in the development of
remote intelligent monitoring and fault warning platforms. These platforms can assist
wind power operation and maintenance personnel in quickly assessing the opera-
tional status of wind turbines, issuing advance warnings for OWT support structure
malfunctions, and ultimately preventing significant economic losses.

5. Conclusions

In this paper, an overview of SHM and fault diagnosis for OWT support structures
was presented. SHM and fault diagnosis for OWT support structures are crucial to reducing
maintenance costs in offshore wind farms. The monitoring strategies for tower and foun-
dation structures can provide valuable insights for the design of monitoring strategies for
OWTs support structures. Additionally, the field of fault diagnosis in OWTs has developed
significantly with the application of artificial intelligence techniques. Based on the reviewed
literature, the following conclusions are drawn:

1. The monitoring and fault diagnosis of OWTs are of utmost significance, as they not
only reduce operational and maintenance costs for OWT farms, but also provide
technical support for the performance evaluation of supporting structures at the end
of their service life [90].

2. Utilizing modal parameters changes for OWT support structure fault identification is
widely adopted; however, the accuracy of modal parameter identification requires
stringent conditions, and identification is greatly influenced by environmental inter-
ference and OWT operational loads.

3. The real-time monitoring and fault diagnosis of wind farms are essential and require
further development in the future. Digital twin holds great potential for growth. Utiliz-
ing machine learning for fault recognition can be time-consuming and the processing
and utilization efficiency of real-time data remains relatively low. Furthermore, there
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is a scarcity of databases accessible to all parties involved in wind power, hindering
the optimization of fault diagnosis methods.
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