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Abstract: A three-dimensional numerical model was established with OpenFOAM-5.x to investigate
plume characteristics under windless and rainless weather conditions. The large eddy simulation
was applied, combined with a modified solver for solving governing equations with the Boussinesq
approximation in a single rotating frame. The relationship between plume characteristics (e.g.,
gradient Richardson number and maximum plume width) and quantified parameters (e.g., rotation
period, shelf slope, and reduced gravity) was analyzed progressively. The results show the model
can reproduce the change in plume types and instability found in the laboratory experiments. With
the increase in the rotation period, river plumes change from a surface-advected type to a bottom-
attached type. The outline of the plume bulge accurately delineates the external region where the
gradient Richardson number is less than 0.25, as well as the region near the wall. When the shelf
slope approaches 0, the offshore movement becomes stronger while the alongshore coastal current
comes into being with a delay associated with the slope and the rotation period. Compared with the
extremely gentle slope case and the steep slope case, the maximum width in the gentle slope case
changes significantly at about 1.5 rotation periods. Greater reduced gravity does promote offshore
propagation, especially near the surface.

Keywords: river plume; OpenFOAM; LES; plume classification; gradient Richardson number

1. Introduction

A river plume is a common current in geophysical, rotating systems [1]. After freshwa-
ter flows out of an estuary in the Northern Hemisphere, initially undergoing radial motion,
it trends towards the right due to the Coriolis force [2]. Under conditions of low wind
and negligible ambient current, a river plume comes into being in two distinct regions: a
bulge region containing an anticyclonic vortex and an alongshore coastal current propa-
gating downstream [3]. The bulge continues to evolve indefinitely until an external force
imposed by ambient current or wind exerts an influence. Nof and Pichevin [4] provided
analytical descriptions of these two components. They found the Coriolis force term driv-
ing the offshore movement of the plume bulge balanced the momentum flux term of the
coastal current.

A river plume has various geometric characteristics, with different aspect ratios de-
fined as the ratio of the inertial radius to the Rossby radius, as suggested by Horner-Devine
et al. [3] Typically, after estuary outflow, a river plume interacts with the bottom shelf.
Chapman and Lentz [5] divided it into surface-advected plumes and bottom-attached
plumes. A surface-advected plume tends to be relatively thin and susceptible to lin-
gering near the surface. They are strongly influenced by ambient currents, winds, and
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tides, often associated with a strong vertical stratification [6]. One classic example is the
Mississippi River plume [7]. In contrast, a bottom-attached plume typically exhibits a
strong horizontal density gradient [8]. The density front extending from the surface to the
seabed segregates freshwater from the continental shelf water. This results in a freshwater
off-shelf flow within the frictional bottom boundary layer, leading to local changes in
density and velocity fields. Such plumes are responsible for transporting land-derived
materials, including sediments and nutrients. One classical case is the Niagara River
plume [9].

A series of numerical simulations have been conducted in previous studies focusing
on river plumes. Yankovsky et al. [10] employed numerical models to explore the impact
of flow variations during inertial and sub-inertial periods on the dynamics of river plumes.
Under inertial periods, the vortices became distorted, moving their deepest points down-
stream, and the water masses with the lowest density were forced offshore. Fong and
Geyer [11] utilized a three-dimensional primitive equation model, known as ECOM-3D, to
investigate the dynamics of unforced river plumes and their effect on the coastal transport
of freshwater. In the absence of an ambient flow field, the river plumes were confined to
the surface and formed vortices. The discrepancy between the vortices and the freshwater
transport in the nearshore flow was consistent with the relative freshwater input from
the river. Chen et al. [12] used the ROMS (Regional Ocean Modeling System) model to
investigate the dynamics and structure of hyperpycnal river plumes over a realistic range
of shelf slope (0.001–0.03). Fofonova et al. [13] proposed a test case for river plume propa-
gation to assess numerical methods used in coastal ocean modeling. This case included an
estuary-shelf system, combining the dynamics of nonlinear flow states with sharp frontal
boundaries and linear states with offshore geostrophic equilibrium, sensitive to physical or
numerical dissipation and mixing height. Brasseale and Maccready [14] introduced three
slope values, specifically 5 × 10−4, 1 × 10−3, and 2 × 10−3, into the ROMS model and
found that a gentle slope promotes alongshore transport. Xiao et al. [15] used a large eddy
simulation (LES) to study horizontal side jets in compound open channels with vegetated
floodplains. Meehan and Hamlington [16] used 3-D numerical simulations to examine
how the inlet-based Richardson (Ri0) and Reynolds (Re0) numbers affected the near-field
temporal evolution of helium buoyant plumes. They found a non-trivial dependence of the
puffing frequency on Re0. Shi et al. [17] utilized the transient solver for buoyant, turbulent
flow of incompressible fluids, BuoyantBoussinesqPimpleFoam, within the OpenFOAM
(Open Field Operation And Manipulation) to conduct an LES of a buoyancy-driven jet
with parameters matching those of experimental conditions. The authors identified the
inflow Froude number and the bed slope as key controlling parameters governing the
flow behavior.

However, there is a notable paucity of research on laboratory-scale numerical simula-
tions of the buoyant current incorporating the effects of self-rotation, as well as discussion
on the vertical variation in relevant variables. Moreover, conducting laboratory experi-
ments with an extremely gentle slope presents significant challenges, necessitating the use
of supplementary numerical simulations to bridge this gap.

This paper presents the configuration of three quantified parameters and the computed
results of a river plume, providing a description of the systematic characteristics of this
process. The velocity field obtained from laboratory experiments was used to validate the
model, which was then applied to investigate a wider range of quantified parameters. In
particular, we focus on the following questions:

1. How does the three-dimensional form of a river plume evolve (particularly near the
shelf slope) and what are the separation characteristics?

2. What are the dominant parameters controlling a river plume, and how do they
influence the dynamics?

3. How does a river plume develop under the condition of an extremely gentle slope
(e.g., 5 × 10−4), which cannot be replicated in laboratory experiments?
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4. What is the relative strength of stratification and mixing during the development
process?

2. Numerical Setup and Methods
2.1. Model Settings

This study is based on experiments conducted by Yuan et al. [18] in a rotating tank to
replicate the dynamics of river plumes under windless and rainless conditions. The numer-
ical model was constructed using an unstructured grid generated with Altair HyperMesh
2021 (https://altair.com/hypermesh), while the computational domain was discretized
using a Cartesian coordinate system employing unstructured tetrahedral meshes. The
boundaries of the computational domain were categorized into distinct regions, including
the inlet, the outlet, the top, the bottom, the slope, and the wall, as illustrated in Figure 1a.
The inclusion of a slope in the model aims to emulate the actual topography of a continental
shelf. Throughout the subsequent discussion, the alongshore direction represents the x
axis. Conversely, the offshore direction signifies the y axis. We imposed finer meshes near
the inlet by setting a smaller element size of the inlet’s edge than others in the step named
‘2D AutoMesh’.
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The diameter of the computational domain is 3 m, and the well-mixed density is
ρsal . Fresh water with a constant source velocity (a salinity level of 0 parts per thousand
corresponds to a density denoted as ρw, while adhering to the condition ρw < ρsal) only
enters from the inlet to simulate the sudden injection during ebb and flow. The total depth
H0 equals 0.25 m, the source width w0 equals 0.08 m, and the source height h0 equals 0.02 m.
The inflow Rossby number Roin = Uin,y/( f w0) represents the ratio of the inertial force to
the Coriolis force [3], where Uin,y is the source velocity, f= 2Ω sinφ = 4π sinφ/T is the
Coriolis parameter, Ω represents the rotational angular velocity, T is the rotation period,
and φ denotes the latitude. As suggested in [4], f = 4π/T. The inflow Froude number
Frin = Uin,y/

√
g′h0 represents the ratio of the inertial force to the reduced gravity [3], and

the reduced gravity is g′.

2.2. Governing Equations

The Navier-Stokes (N-S) equations are employed to describe the mixed state of flow,
incorporating the Boussinesq approximation. This approximation selectively considers
variations in density solely in relation to buoyancy forces [19]. The transport of salt within
incompressible fluids is governed by the advection-diffusion equation [20].

∇·⟨Urel⟩ = 0 (1)

∂⟨Urel⟩
∂t

+∇·(⟨Urel⟩ ⊗ ⟨Urel⟩) + 2Ω × ⟨Urel⟩+ Ω × Ω × r = −∇
(
⟨P⟩
ρw

)
+∇·(τ + τt) + (⟨R⟩+ 1)g (2)

∂Sal
∂t

+ Urel ·∇Sal = ∇2(κSSal) (3)

where ⟨. . .⟩ denotes the LES space scale filter, Urel is the relative velocity vector in the single
rotating reference frame (where the relative velocity equals the absolute velocity minus the
local velocity), Ω represents the rotational angular velocity, r denotes the position vector, t
is time, and P represents pressure. Additionally, τ denotes the resolved stress tensor, while
τt denotes the sub-grid scale (SGS) turbulent stress tensor, defined as:

τ = ν
[
∇⟨Urel⟩+ (∇⟨Urel⟩)T

]
(4)

τt = νt

[
∇⟨Urel⟩+ (∇⟨Urel⟩)T

]
− 2

3
Ik (5)

where ν denotes kinematic viscosity and νt = Ck
√

k∆ is turbulent viscosity. I represents
the identity matrix, k denotes turbulence kinetic energy, Ck is a model constant, and ∆ is
defined as the cutoff width. R = (ρ − ρw)/ρw is the relative density difference, ρ represents
the density of a mixture, and Sal denotes saline. κs = ν/Pr + νt/Prt denotes the effective
diffusivity. Pr is the Prandtl number, and Prt is the turbulent Prandtl number. In this paper,
Pr equals 0.9, while Prt equals 0.7 [21].

2.3. Reformulation Approach and Condition Settings for the Solver

OpenFOAM is a computational fluid dynamics library written in C++11 that is specifi-
cally designed for use on the Linux operating system to simulate fluid flow and related phe-
nomena [22]. The solver employed in this study is derived from two open-source solvers:
gravityCurrentFoam [21] and SRFPimpleFoam. The former was developed by modifying
the source code of the buoyantBoussinesqPimpleFoam solver included in OpenFOAM,
tailored for addressing incompressible turbulence through the utilization of the Boussi-
nesq approximation. The modified gravityCurrentFoam solver replaces the convection-
diffusion equation of temperature in buoyantBoussinesqPimpleFoam with the convection-
diffusion equation of salt concentration under a condition of constant temperature. On
the other hand, we customized the SRFPimpleFoam solver to handle transient incom-
pressible flow within a single rotating reference frame, giving specific attention to the
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Coriolis effect, which is a defining characteristic that separates river plumes from other
buoyant currents.

A three-dimensional LES was conducted employing a single-equation eddy viscosity
model, complemented by a Sub-Grid Scale (SGS) model. The simulation was initiated
with defined initial and boundary conditions for parameters, including relative velocity,
salinity, dynamic pressure, and turbulent viscosity. The top is applied with a slip boundary
condition, while the boundaries of the bottom, the slope, and the wall are considered non-
slip surfaces. The source velocity Uin,y, perpendicular to the inlet, is uniformly distributed,
with a value of 3.125 cm/s corresponding to an inflow discharge of 50 cm3/s. The inflow
salinity is set to 0 ppt, and the remaining boundaries are set to zeroGradient. The outlet
corresponds to inletOutlet. Regarding the turbulent viscosity, the bottom, the slope, and
the wall are set to nutkWallFunction, which defines the empirical model constants Cµ,
the wall roughness parameter E, and the Karman constant κ with values of 0.09, 9.8, and
0.41, respectively [23–25]. The pressure is solved using the preconditioned conjugate
gradient method (PCG), while the velocity field, the salinity field, and the field of turbulent
kinetic energy are solved using the preconditioned biconjugate gradient stabilized method
(PBICGStab). The pressure–velocity coupling is implemented using the PIMPLE algorithm,
which combines the Pressure Implicit with Splitting of Operator (PISO) and the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE). Convergence is considered
achieved when the residuals of all computational variables are smaller than 1 × 10−7 [21].
The fixed time step is set to 0.0025 s, and the courant numbers during the simulation are all
less than 1.

2.4. Quantified Parameters and Cases

Three sets of cases were included in this study: A for an extremely gentle slope, G for
a gentle slope, and S for a steep slope, as shown in Table 1. The quantified parameters are
shelf slope α, rotation period T, and reduced gravity g′. The values of the inflow Rossby
number Roin and the inflow Froude number Frin were referred to in [26]. Numerical
simulation makes controlling g′ at the specific values of 5.5 cm2/s and 7.0 cm2/s easy. The
corresponding salinity values are 7.4 ppt and 9.5 ppt in this paper, located at the level of
mesohaline (5.0–18.0 ppt) [27]. In the meantime, a very small slope value of 5 × 10−4 was
introduced as well, corresponding to Case A1. This value referred to the settings of [14],
which expanded the range of parameters.

Table 1. Parameters of numerical simulations.

Case No. α T (s) ρsal (g/cm3) ρw (g/cm3) g′ (cm/s2) Roin Frin

G1 0.1 30 1.003643 0.998010 5.5 0.93 0.94
G2 0.1 40 1.003643 0.998010 5.5 1.24 0.94
G3 0.1 40 1.004660 0.997494 7.0 1.24 0.84
A1 5 × 10−4 40 1.004660 0.997494 7.0 1.24 0.84
S1 0.2 60 1.004145 0.998509 5.5 1.87 0.94
S2 0.2 30 1.004660 0.997494 7.0 0.93 0.84
S3 0.2 40 1.004660 0.997494 7.0 1.24 0.84
S3* 0.2 40 1.004660 0.997494 7.0 1.24 0.84
S3** 0.2 40 1.004660 0.997494 7.0 1.24 0.84
S4 0.2 60 1.004660 0.997494 7.0 1.87 0.84

The numbers following G, A, and S in the “Case No.” column are used for numbering only and have no physical
significance, while A, G, and S represent extremely gentle slope, gentle slope, and steep slope, respectively. The
minimum grid size is set to 2 mm in S3*, 6 mm in S3**, and 4 mm in the other cases.

2.5. Model Validation
2.5.1. Grid Sensitivity Analysis

To verify the sensitivity of the grid size, Cases S3**, S3, and S3* were selected with
the minimum grid size of 6 mm, 4 mm, and 2 mm, respectively, considering the source
height h0 = 2 cm. The results of Case S3 are almost identical to Case S3* and Case
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S3**, as shown in Figure 2. Therefore, given the constraints imposed by computational
resources, the model with the minimum grid size of 4 mm was selected. The G se-
ries cases require approximately 7 million grids, while the S series cases need about
8 million grids.
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2.5.2. Comparison between Present Simulation and Experimental Data

We compared the numerical simulation results with the experimental results in [26].
The accuracy was evaluated using the below skill score [28]:

SS = 1 −

Count
∑

i=1
∥vLES − vPIV∥2

Count
∑

i=1
∥vPIV − vPIV∥2

(6)

where vLES is the computation result, vPIV is the experimental data, and vPIV is the
mean value of series vPIV. The feasibility of the model is extremely high when the
skill score is greater than 0.65, and the credibility of the model is poor when it is less
than 0.2.

Figure 3a shows the horizontal velocity fields captured by particle image velocimetry
(PIV) [26] for Case G3 at t = 0.3 T, 1 T, and 2 T, respectively, where T is the rotation period
of the case. The right column presents the corresponding computed results obtained by
the LES. The distances from the black dashed lines to the x-axis in the 6 panels are the
maximum widths of the river plume at that moment.

Figure 3b shows the PIV experimental results vPIV and computed data vLES of the
offshore velocity in the center of the inlet at t = 0.3 T, 1 T, and 2 T for Case G3. Uin,y
is the source velocity and Ury is the offshore velocity of the grid cell, with the plus or
minus indicating the directions. The computed results of the maximum width and offshore
velocity of the river plume are in good agreement with the experimental results. Therefore,
the three-dimensional LES model used in this paper can correctly simulate the development
of the river plume.
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3. Results and Discussion
3.1. Plume Classification

From a top view, the inflow of freshwater in the northern hemisphere moves radially
after flowing out of the estuary and is deflected to the right by the Coriolis force. The
plume bulge presents an anticyclonic vortex and a geostrophic jet structure surrounding
the vortex, and the fresh water gradually forms two parts [4]: a circulation vortex area
staying near the estuary and a coastal current flowing downstream. As T increases, so does
the Rossby number, and the inertial force of fluid movement becomes dominant, causing
river plume morphology to change from a surface-advected type to a bottom-attached type.
The numerical model accurately reflects this morphological transition. The equilibrium
depth [29] is defined here as:

hg =

√
2Q f

g′

For Cases S2–S4, hg equals 2.446 cm, 2.118 cm, and 1.730 cm, respectively. Therefore,
for Case S4, hg is less than buoyant inflow depth h0, and the river plume is surface-advected.
Figure 4a shows the bottom-attached plume.
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3.2. Gradient Richardson Number

Stratification and shear have a significant impact on the turbulence variation in estuar-
ies and coasts. Stratification is defined using the square of the Brunt-Väisälä frequency:

N2 = − g
ρs

∂ρ

∂z
(7)

where ρs is the initial density and ρ is the mixed fluid density. N represents the frequency
at which the water parcel oscillates around the neutral density position in an area where
density varies linearly [30]. Assuming that the vertical velocity gradient is much larger
than the horizontal gradient, the mean shear S is defined as:

S2 =

(
∂u
∂z

)2
+

(
∂v
∂z

)2
(8)

Shear generates turbulence, while stratification transforms kinetic energy into potential
energy from turbulence in opposite ways. The Richardson number is often used for the
comparison between shearing and stratification, and the gradient Richardson number is
defined as [30]:

Rig =
N2

S2 (9)

Rig = 0.25 is the critical value that distinguishes between subcritical and supercritical
flows and indicates significant differences in instability morphology and mixing effective-
ness at the interface. A larger Rig indicates that the adjacent layers are stable, while the
opposite means that the velocity shear at the interface can overcome the limitations of
stratification and produce shear instability.

Taking the lateral profiles for Case A1, Case G2, and Case S4 as examples, Figure 5b–d
show the lateral profiles of Rig. The black area corresponds to the bottom slope. The
outer contour of the current plume bulge accurately delineates the external region where
Rig < 0.25, while in the majority of the internal region of the plume bulge, Rig ≥ 0.25
indicates strong stratification. The region near the wall exhibits higher rotational kinetic
energy, resulting in stronger shear and hence a lower Rig. Inside the plume bulge, Rig
near the bottom slope is more likely to be less than 0.25 compared to near the top. This is
partly due to the inflow density ρw being lower than that of the ambient fluid ρs, causing
upwelling of the inflowing fluid. For Case A1, based on the extremely small slope, the
vertical convective space of the river plume is more constrained, with stronger offshore
thrust near the wall. For Case G2, it is necessary to consider the acceleration effect of the
bottom slope, which is discussed further in Section 3.5. Additionally, in Case A1, there are
a few regions in the interior where Rig < 0.25. Overlaying these adjacent cross-sections
in the third dimension yields the corresponding three-dimensional structure with shear
instability. A very small area of cyan parts inside the contour for Case S4 presents stronger
stratification compared with the other two cases.

Taking Rig as an example, the current numerical simulation complements the previous
experimental study by addressing the lack of vertical profile analysis. It provides a more
intuitive understanding of the three-dimensional structure of a river plume. While PIV
experiments can construct quasi-three-dimensional structures using field data obtained at
each layer, the present numerical simulation directly provides three-dimensional structures,
as seen in Figure 5a.
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3.3. Effect of Reduced Gravity on River Plume Morphology

The salinity field of the lateral profile was converted into a density field, facilitated by
the transformation relationship between the density of saline and temperature under a stan-
dard atmosphere proposed by Millero and Huang [31]. The normalized processing of the
NaCl aqueous solution density was performed using the formula ρ̂ = (ρ − ρw)/(ρs − ρw).
The red and blue lines in Figure 6 are the contour lines, with a value of 0.8. There is little
difference between Case S1 and Case S4, as shown in Figure 6a−h. From Figure 6b−e, it
can be found that at the same vertical height, in the horizontal direction, the river plume
for Case S4, with a larger reduced gravity, spreads faster near the top than that for Case S1.
However, near the bottom slope, the river plume for Case S4 gradually spreads faster than
that for Case S1 starting in Figure 6f−h, which indicates that larger reduced gravity does
promote the spread of river plumes, especially in the upper layer of ambient flow, but it
is not as intuitive as the influence of the rotation period discussed in Section 3.1 on the
structure of river plumes.
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3.4. How the Salinity Field Varies with Time under Different Shelf Slopes

A right trapezium with a height of 90 cm is used to simulate the real continental shelf.
When the slope is 5 × 10−4, the difference between parallel sides of the trapezium is only
0.045 cm, which cannot be achieved in laboratory experiments. This demonstrates the
necessity of performing numerical simulations.

Figure 7 shows the schematic diagram of the dimensionless density field on the top of
the three slopes at T = 40 s and g’ = 7 cm2/s. The definition of the dimensionless density
field is given in Section 3.3. The blue scattered points correspond to dimensionless densities
ρ̂ in the range (0.945, 0.955). In Figure 7i–j for Case G3, cyclone vortices can be seen clearly,
and the river plume is highly unstable. However, in Figure 7n–o for Case S3, the structure of
the geostrophic jet gradually develops on the left side of the inlet, and the overall stability is
maintained well. Case A1, which cannot be obtained experimentally, shows the instability
of the geostrophic jet structure to a certain extent, in which some fresh water is thrown out
to the left during the process.

BIN =
θ

Roin
(10)

θ =
g′α

Lb f 2 (11)

Lb =

(
2Qg′

f 3

)0.25

(12)
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In the above formula, θ represents the instability parameter, while Lb denotes the
Rossby radius. When the bulk Richardson number (BIN) [18] is less than 0.8, the devel-
opment of river plumes is predominantly influenced by rotational kinetic energy. Conse-
quently, it produces extra cyclonic vortices, aligning well with the characteristics of the
bottom-attached plume, as seen in Figure 7i. From a parameter-calculation perspective, it is
observed that the BIN values for Case G3 and Case S3 are situated on either side of the 0.8
threshold. Meanwhile, due to its gentle slope, Case A1 necessitates a BIN value below 0.8,
thus maintaining characteristics consistent with a bottom-attached plume. Nevertheless,
it is noteworthy that no distinct cyclonic structure is discernible outside the bulge. We
posit that as the bottom slope approaches 0, the vertical movement of fresh water becomes
spatially constrained. This results in heightened offshore movement, corresponding to a
plume maximum width greater than that observed in the other two cases at the same time
period, as seen in Figure 7a,f,k. Subsequently, a coastal current emerges, albeit with a no-
ticeable delay associated with the slope and the rotation period, and the horizontal terrain
adjustments necessitate an extended development period. However, when compared to
the red depth of the other two cases at the same time, Case A1 exhibits pronounced kinetic
energy within the plume bulge.

In terms of the significance of conducting numerical simulations, the supplemented
Case A1 expands the parameter space that cannot be reached in laboratory experiments.
The BIN parameter is still insufficient in terms of measuring the stability of the plume
structure. The instability of Case A1 is not as obvious as that of Case G3.

3.5. Analysis of the Statistical Distribution of the Maximum Widths

The top salinity fields were normalized by dividing each grid cell’s salinity by the ini-
tial salinity value of the ambient fluid. After screening out the grid cells with dimensionless
salinity in 0.885–0.915, the cell with the maximum offshore distance was taken as the point
with the maximum width.

Figure 8a,b illustrates that only altering the reduced gravity does not induce substantial
modifications in the overall distribution pattern of horizontal coordinates for a plume’s
maximum width. At a specific adjacent moment, approximately 1.5 T, the x-coordinate
value changes sharply, as seen in Figure 8a. It shows that the cyclonic vortex begins to
separate from the bulge, as seen in Figure 7f–h. The distribution pattern for Case S3
develops an “M” shape, while Case A1 shows a continuous trend of movement along the
same direction as the coastal current’s. Cases A1, G3, and S3 have the same T and g’, but the
slope value of 0.1 in Case S3 is located between 5 × 10−4 and 0.2. The obviously different
distributions of maximum widths in the above three cases demonstrate the non-negligible
influence of the shelf slope on the development of plume structure. On the other hand,
similar sections also exist in these three cases, while two analogous parts were outlined with
dashed boxes of the same color, corresponding to black dotted lines and red dashed lines
in Figure 8. Based on the proportion of similar parts in the overall distribution pattern, we
can determine a fundamental recognition of the temporal sequence of plume development
in the above cases solely with different slope values. Larger shelf slopes accelerate the
development of river plumes in a more evident way, as greater slope values correspond
to larger accelerations, which is quite intuitive. In addition, an increase in bed slope also
highlights other hydrodynamic phenomena, like vortices and ski jumps [32,33].

Regarding the bottom slope parameter αLb/hg [18,34] as the x axis and the dimen-
sionless plume maximum width during the stationary phase as the y axis, the scattered
distribution of the above eight typical cases is plotted, as shown in Figure 9. It can be
seen that the bottom slope parameter distinguishes three kinds of shelf slopes. Here, the
stationary phase corresponds to 3–10 rotation periods. The recirculating bulge grows unsta-
ble after 10 T in most cases without a slope, while the plume maximum width increases
dramatically in the exponential phase (0–3 T) [5].
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4. Conclusions

1. The numerical model effectively replicates the evolution process of river plumes
and the inherently unstable vortex structure observed in laboratory experiments
conducted under windless and rainless conditions. It extends the parameter spaces
that are inaccessible through conventional laboratory experiments, as demonstrated
by employing an exceedingly gentle slope. Meanwhile, current numerical simula-
tions complement the previous experimental study by addressing the lack of vertical
profile analysis.
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2. The outline of the plume bulge quite accurately delineates the external region where
the gradient Richardson number is less than 0.25, indicating strong shear, while in
the majority of the internal region of the plume bulge, it is larger than 0.25. The
region near the wall exhibits a lower gradient Richardson number, considering higher
rotational kinetic energy. Inside the plume bulge, the gradient Richardson number
near the bottom slope is more likely to be less than 0.25 compared to near the top.

3. The bulge instability number evaluates the stability of a river plume from a holistic
perspective. For gentle slope cases, designating certain river plumes as unstable
does not necessarily imply that extensive regions within the bulge exhibit weak
stratification. On the other hand, the area of the region with weak stratification is
quite small for steep slope cases, which further substantiates its characterization as
a stable river plume. Steep slopes correspond to a larger distribution area and color
depth in strong stratification regions.

4. A larger reduced gravity does promote the propagation of river plumes, especially in
the upper layer of water, but it is not as intuitive as the influence of rotation period and
slope on plume structure. When the shelf slope approaches 0, the offshore movement
becomes stronger while the alongshore coastal current comes into being with a delay
related to the slope and the rotation period.

5. Compared with the steep slope case and the extremely gentle slope case, with the
same rotation period and reduced gravity, the horizontal coordinate of the point
corresponding to the maximum width in the gentle slope case at about t = 1.5 T
changed significantly. However, similar sections also exist in these three cases. A
larger shelf slope accelerates the development of river plumes, evidently.

In summary, this paper introduces a numerical model for investigating plume charac-
teristics based on a modified solver for solving governing equations with the Boussinesq
approximation in a single rotating frame, which enriches the existing numerical models of
river plumes. The lateral profiles of the gradient Richardson number obtained from the
research provide a basis for further exploration of stratification and shear. Meanwhile, this
model holds potential for application in the exploration of river plumes in other regions.
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