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Abstract: This study investigates the impact of fluid loads on the elastic deformation and dynamic
response of linear structures. A weakly coupled modal solver is presented, which involves the solution
of a dynamic equation of motion with external loads. The mode superposition method is used to find
the dynamic response, utilizing predetermined mode shapes and natural frequencies associated with
the structure. These essential parameters are pre-calculated and provided as input for the simulation.
Integration of the weakly coupled modal solver is accomplished with the Lagrangian Differencing
Dynamics (LDD) method. This method can directly use surface mesh as boundary conditions, so it is
much more convenient than other meshless CFD methods. It employs Lagrangian finite differences,
utilizing a strong formulation of the Navier–Stokes equations to model an incompressible free-surface
flow. The elastic deformation of the structure, induced by fluid forces obtained from the flow solver, is
computed within the modal coupling algorithm through direct numerical integration. Subsequently,
this deformation is introduced into the flow solver to account for changes in geometry, resulting
in updated flow pressure and velocity fields. The flow particles and vertices of the structure are
advected in Lagrangian coordinates, resulting in Lagrangian–Lagrangian coupling in spaces with
weak or explicit coupling in time. The two-way coupling between fluid and structure is successfully
validated through various FSI benchmark cases. The efficiency of the LDD method is highlighted as it
operates directly on surface meshes, streamlining the simulation setup. Direct coupling of structural
deformation eliminates the conventional step of mapping fluid results onto the structural mesh and
vice versa.

Keywords: FSI; LDD; natural frequencies; mode shapes

1. Introduction

The Fluid–Structure Interaction (FSI) is the most prevalent physical phenomenon
in various engineering applications. Some of the applications, such as the interaction
between waves and vegetation in coastal wetlands and wave–ice interactions in the Arctic
environment [1], are crucial in mitigating coastal flooding [2]. FSI plays a pivotal role in
the refinement of structural designs for optimal performance under fluid loads, ensuring
both efficiency and reliability [3], e.g., the construction of offshore installations and the
design of windmills and ships. Identifying FSI-related issues early allows cost-effective
design changes, reducing the need for any modifications during manufacturing or oper-
ation [4]. Similarly, FSI affects the hydrodynamic performance of propellers, e.g., [5,6].
The damping represents energy dissipation within vibration cycles and emerges as a key
factor in resonance phenomena, impacting harmonic vibration amplitudes and the count
of noteworthy vibrations in time-dependent scenarios. In most cases, the role of damping
can be negligible in slightly damped vibrations. However, in the natural frequencies, their
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influence becomes pronounced, especially in near-resonant conditions, where excitation is
balanced solely through damping. Damping in the structure is generally low, except when
near resonance and the vibration cycle maintains a substantial level of independence [7].

However, simulating FSI effectively is complex, requiring certain assumptions in
both structural and fluid simulations. In most of the Computational Fluid Dynamics
(CFD) simulations, the consideration of elastic deformation at the boundaries is ignored [8].
Similarly, in most of the structural simulations, a constant pressure is considered at the
interior and exterior boundaries. Paik et al. [9] presented methods for coupling the CFD
solver with rigid and elastic models of a ship hull to compute structural loads. One-way
and two-way coupling approaches were used when considering the ship as elastic. In one-
way coupling, forces from CFD were used for structural loads analysis, but deformations
were not feedback to CFD. In two-way coupling, hull deformations influenced the CFD
solution. A URANS/DES overset solver with the modal superposition method is used for
the analysis. The gluing method was applied to transfer forces and deformations between
non-matching CFD and structural grids [9].

Different varieties of approaches have been formulated to tackle the intricacies of
one-way and two-way coupling of the FSI. A prominent approach involves fully coupled
(monolithic) methods that integrate structural and flow calculations in a single solver [10,11].
Conventional CFD solvers predominantly use an Eulerian-based approach. However, such
coupling of structural formulations, which mostly use Lagrangian-based approaches, leads
to a stiffer computation for the structural component compared to the fluid component.
Moreover, employing a unified scheme for extensive scenarios becomes computationally
intensive [12].

Grid-based partitioned methods offer a more feasible alternative to monolithic meth-
ods by tackling both the flow and structural formulation on two different meshes using
distinct solvers [13]. These methods necessitate the establishment of a communication
protocol at the interface between grids to appropriately transfer fluid loads to the structural
mesh and, conversely, to map the deformation onto the fluid mesh. In mesh-based solvers,
effective adjustment of the fluid mesh boundaries requires precise manipulation of adja-
cent mesh nodes to prevent mesh entanglement or deformation [14,15]. Recent advances
have demonstrated the successful application of partitioned methods, such as coupling
thin-walled girder theory with potential flow theory [16,17] and linking modal structure
solvers with RANS-VOF solvers, Boundary-Integral Equation Methods [18]. Solid4Foam
with the finite volume library is provided by OpenFOAM [19,20].

The meshless-based partitioned method offers several advantages, especially in sce-
narios that involve free surfaces, violent flow, complex models, and large deformations [21].
In this approach, the need for re-meshing of the model after deformation is effectively
avoided. FSI is achieved by coupling the Smooth Particle Hydrodynamics (SPH) with
different structural solvers such as the Finite Element Method (FEM) [22–24] and Dis-
crete Element Method (DEM) [25–27] to compute the structural deformation. However,
transferring the information is not easy, as it is necessary to resolve the interfacial energy
balance [28]. Solving the structural deformation is computationally expensive but less so
than the monolithic method.

In recent days, the Mode Superposition method has been used to solve structural
deformation, and it is the most robust, fast, and computationally inexpensive method.
Debrabandere et al. (2012) presented a new reduced-order modeling approach for FSI
simulations. The method uses modal analysis to represent structural dynamics, solving the
modal equations within the computational fluid dynamics solver using a complementary
function and a particular integral method. Results for simple test cases compare well
with full-order models and experiments. FSI predictions for realistic turbomachinery
configurations demonstrate the potential of the method for efficient aeroelastic analysis
of flexible structures [29]. Sun et al. (2019) presented the Moving Particle Semi-implicit
(MPS) with the mode superposition method to simulate violent hydroelastic issues [30].
Corrado et al. (2020) validated the two-way coupling between CFD and FEM solvers and a
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more efficient modal superposition approach with the help of the HIRENASD test case [31].
Modal superposition is a useful technique for evaluating structures that are subjected to
dynamic loads due to its computational efficiency and simplicity. However, when dealing
with large structural deformations, the accuracy of this method tends to decrease. This is
because modal superposition assumes linear behavior and uncoupled modes, which may
not hold true in scenarios involving significant nonlinearity or mode coupling. Despite
these limitations, modal superposition remains a widely used and valuable tool, especially
when applied within its valid range [29–31]. Weak coupling in FSI offers simplicity and
ease of implementation, making it suitable for scenarios with transient events. However,
its limitations include stability issues necessitating small time steps, which can lead to
computational inefficiency, and potential accuracy trade-offs compared to implicit methods,
especially in large-scale simulations where the fluid and structural solvers use time steps
of different magnitudes [32]. The convenience of using modes superposition is that the
structural solver adds insignificant computational cost [17,29] and therefore, can adjust to
the flow solver requirements.

The aim of this study is to develop a model for Fluid–Structure Interaction (FSI) by
combining the Mode Superposition method and the Lagrangian Differencing Dynamics
(LDD) method in two-way partitioned weak coupling or explicit coupling. In terms of
computational efficiency, the LDD method is advantageous compared to most popular
meshless approaches, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle
Semi-implicit (MPS), finite point set method, and finite point method [33–35]. The LDD
method achieves large time steps with lower computational costs while maintaining second-
order accuracy. It is well-suited for complex transient problems since it has the advantage
of directly working on the meshes [8,16,17,36]. Using the mode superposition method
with LDD, structural deformation is calculated for the fluid load using precalculated mode
shapes and natural frequencies from the modal analysis. This approach leads to stable,
robust, and computationally efficient FSI simulations. The method enables fluid-induced
structural deformation to be weakly coupled into the flow solver. The deformation is
obtained by using direct integration. The flow particles and vertices of the structure are ad-
vected in Lagrangian coordinates. This results in Lagrangian–Lagrangian coupling in space,
while there is weak or explicit coupling in time. This ensures a more accurate representation
of the interaction between fluid and structure in ship and offshore hydrodynamics. The
efficiency of the LDD and Mode Superposition methods, operating directly on surface
meshes, may lead to practical and effective ship and offshore hydrodynamic simulations.

This paper discusses fluid–structure interaction (FSI) modeling using the two-way
weak coupling approach. Specifically, this paper details the governing equation of the
LDD method and the mode superposition technique in Section 2. The methodology of
implementing two-way coupling of FSI is then explained in Section 3. In Section 4, various
benchmark cases are presented that are then validated and verified with modal coupling
results. Finally, concluding remarks and a summary of the findings are given in Section 5.

2. Governing Equation
2.1. Incompressible Fluid Flow

An incompressible fluid flow solver known as LDD is employed, which utilizes a
generalized finite difference method with a meshless approach. It uses a robust and implicit
formulation of the Navier–Stokes equations to simulate incompressible free-surface fluids.
This solver is utilized to address initial boundary value problems, achieving second-order
accuracy in its solution. It has been successfully validated in various scenarios, including
lid-driven cavity, dam break, sloshing, water entry, etc. [8,36,37]. The continuity and
momentum equations are provided below:

Du
Dt

= −1
ρ
∇p + ν∇2u + g, x ∈ Ω, (1)

∇.u = 0 x ∈ Ω ∪ Γw ∪ Γ f s, (2)
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u = U x ∈ Γw, (3)

u(t = 0) = u0 x ∈ Ω (4)

In this context, D
Dt signifies the time rate of change of a property, u stands for the

velocity vector, ρ represents the fluid density, p denotes the dynamic pressure, υ symbolizes
the kinematic viscosity, g represents gravity, U corresponds to the wall velocity, and u0
denotes the initial velocity vector.

The pressure and velocity equations are solved in a decoupled manner. The pressure
Poisson and the pressure gradient equations are presented as follows:

∇2 p = −ρ∇ · Du/Dt x ∈ Ω,

n · ∇p = ρn · [−Du
Dt

+ g + ν∇2u] x ∈ Γw

p = patm, x ∈ Γ f s

(5)

where n represents the normal vector at walls, patm represents atmospheric pressure, and g
is the gravity constant. Additional information can be found in [8,36–38]. The gradient and
Laplacian operators from Basic et al. [38] are utilized to discretize the equations mentioned
above. To calculate the value of a general function, denoted by f , at a specific node i, the
neighbouring nodes represented by j within a compact radius of h are taken into account.
The differential operators, which are based on [38], are defined as:

⟨∇ f ⟩i = Bi ∑
j∈I

Wijrij
(

f j − fi
)

(6)

⟨∇2 f ⟩i =
2d ∑jϵN Wij

(
f j − fi

)
(1 − rij.Bioi)

∑jϵN Wij(1 − rij.Bioi) ∥ rij ∥2 (7)

where, rij = r j − ri denotes the vector between locations of points i and j, while ri and r j
denote the positions of points i and j in the fluid domain. The distance between these points
is a scalar defined as rij = ∥rij∥. The weighting function Wij = W(rij, h) depends on the
distance rij, defined within some radius of the compact sphere, h. Here, fi and f j represent
the function values at locations ri and r j, respectively. The symmetric renormalization
tensor Bi, and the offset vector oi are, respectively, defined as:

Bi =

(
∑
j∈I

Wijrij ⊗ rij

)−1

(8)

oi = ∑
j∈I

Wijrij (9)

The solution of a time step in the LDD method initiates with the Lagrangian advection
of points, i.e., the points are moved in space according to their velocities. The stream-
lines compressibility issues that arise during Lagrangian advection are resolved using
the Particle-Based Dynamics (PBD) technique, which iteratively rearranges the locations
of points by enforcing a uniform distances between neighbor points [8]. Following this,
the pressure Poisson Equation (PPE) defined above is discretized by using the discrete
operators, that are defined above and analyzed in [38]. In this study, the PPE is solved using
the preconditioned BiCGSTAB linear solver, as explained in [8]. After solving the PPE, the
velocity equation arising from the momentum Equation (1) is explicitly determined for
each time step.
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2.2. Mode Superposition

The method of modal superposition is employed to analyze the dynamic behavior
of structures. It is estimated through the superposition of a limited number of modal
frequencies obtained from the modal analysis. Modal analysis comes into play to determine
the vibration characteristics, primarily the modes of operation and the natural frequencies
of a mechanical system or component. Natural frequency, or eigenfrequency, denotes the
frequency at which a system naturally oscillates without any external driving force. On
the other hand, mode shapes, also referred to as eigenvectors, depict the inherent behavior
of the component at its natural frequency. Both these parameters hold significance in the
structural design process, especially for scenarios involving dynamic loads. This approach
is particularly effective in minimizing computational efforts when evaluating the dynamic
response of linear structures [16,39]. This technique proves advantageous especially when
dealing with limited known loading frequencies. However, it is less applicable to the issues
that encompass exceedingly high frequencies [29,31].

The dynamic equation for a structure can be represented in matrix form as follows:

Mü + Cu̇ + Ku = f (t) (10)

In this equation, M denotes the mass-normalized matrix, C represents the damping
matrix, and K stands for the stiffness matrix. The column vector u corresponds to the
degree of freedom, while f (t) represents the applied forces over time. These matrices are
obtained through the discretization of the physical domain, resulting in an NxN matrix
where N signifies the degrees of freedom of the structural model. Mass normalization
is convenient in the modal superposition, as it ensures that the modal mass is consistent
across all modes, simplifying the modal participation factors and making them directly
interpretable as a percentage of total mass.

The foundation of modal superposition is rooted in modal analysis, yielding essential
outputs such as eigenfrequencies and their corresponding mode shapes. The eigenfrequen-
cies are computed via the undamped dynamic equation, treated as an eigenvalue problem:

(−ω2M + K)Φ = 0, Φ ̸= 0 (11)

In this context, the symbol Φ refers to the modal matrix, which contains a vector
of the mode shape corresponding to every natural frequency of the structure with n-
DOF, Φ = Φ1, Φ2, ..., Φn. Usually, the Finite Element Method (FEM) is used to model a
structure, and discretize and solve Equation (11). Multiple numerical methods exist for
determining natural frequencies and mode shapes, as no single method is universally
optimal for all problems. The techniques for extracting eigenvalues fall under the category
of transformation methods and/or tracking methods. The eigenvalue equation is initially
converted into a specific format in the transformation method, facilitating the extraction of
eigenvalues. The tracking method involves extracting the eigenvalues individually through
an iterative procedure. In this study, the Lanczos method was used, which combines
characteristics of the tracking and transformation methods. Mass normalization involves
scaling the mode shapes such that the square of the mode shape integrated over the
structure equals one. This ensures that each mode shape has a unit mass and simplifies the
subsequent modal superposition calculations.

After the vibration modes and frequencies are extracted, their combination may be
used to simulate complex vibration of the structure. The superposition involves expressing
the displacement response as a linear combination of modal contributions. The over-
all displacement (u(t)) of the structural system for a time step can be represented as a
combination of mode shapes:

u(t) =
n

∑
i=1

Φyi(t) (12)
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where y(t) is the vector of modal coordinates (or generalized displacement). While one
can extract many vibration modes from a FEM model, in engineering practice, usually only
first few modes are relevant for analysis. By applying the generalized displacement and
the mass normalized modal vector Φ (i.e., substituting Equation (12) into Equation (10)),
the following is obtained:

ΦT MΦÿ(t) + ΦTCΦẏ(t) + ΦTKΦy(t) = ΦT f (t) (13)

To decouple the equation of motion for a Multi-Degree-of-Freedom (MDOF) system
into n equations of motion for Single Degree of Freedom (SDOF) systems, it is necessary
to diagonalize the damping term. This requires the introduction of a damping matrix, as
proposed by Lord Rayleigh, that is assumed to exhibit proportionality to both the mass and
stiffness matrices.

C = βK + αM (14)

The final equation of motion to be solved to simulate the FSI is given as follows:

ÿi(t) + 2ωiζiẏi(t) + ω2
i yi(t) = ΦT

i f (t) (15)

where ζi represents the damping ratio associated with mode i. It signifies the extent of real
damping present within a system in comparison to critical damping.

While any integration method may be used to solve the above ordinary differential
Equation (15) (ODE), in this proposed coupling method, the equation is solved using
the Complementary Function and Particular Integral (CFPI) method [29]. The solution is
presented in two parts: the complementary solution and the particular solution.

The complementary solution is defined as:

yt = yt−1 · e · (C +
ζ

s
· S) + ẏt−1 · e · 1

ωn · s
· S

ẏt = ẏt−1 · e · (C − ζ

s
· S)− yt−1 · e · ωn

s
· S

(16)

where, yt is displacement of current time step, yt−1 is displacement of previous time step,
ẏt is velocity of current time step and ẏt−1 is velocity of previous time step

The particular solution is defined as:

yt = −e · Ft−1 ·
(

ζ · ωn · dt + 2 · ζ2 − 1
ωn2 · W

· S +
ωn · dt + 2 · ζ

ωn3 · dt
· C
)

+Ft−1 ·
2 · ζ

ωn3 · dt
+ e · Ft ·

(
2 · ζ2 − 1
ωn2 · W

· S +
2 · ζ

ωn3 · dt
· C
)

+Ft ·
ωn · dt − 2 · ζ

ωn3 · dt

ẏt = e · Ft−1 ·
(

ζi + ωn · dt
ωn · wts

· S +
1

ωn2 · dt
· C
)
− Ft−1 ·

1
ωn2 · dt

−e · F ·
(

ζi
ωn · wts

· S +
1

ωn2 · dt
· C
)
+ F · 1

ωn2 · dt

(17)

The following coefficients are introduced for easier readability of the equations:

s =
√

1 − ζ2

W = ωn · dt · s

e = exp(−ζ · ωn · dt)

S = sin(W)

C = cos(W)

(18)
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The final solution is obtained as the sum of both complementary solutions and partic-
ular solutions. The CFPI method of integration was chosen in this study, because it was
verified that it is less sensitive to numerical errors when solving high-frequency oscillations,
as compared to the Newmark-beta method [29]. Since the vibration of the structure is
simply obtained using the direct integration of deformation and velocity value for each
mode, the time-step used for CFPI integration may be decoupled to fluid solver time-
step criterions. In other words, the high frequencies of the structural vibrations may be
accurately reproduced while interacting with fluid flow.

3. Methodology

In this paper, vibration modes are expressed using natural frequencies and mass-
normalized mode shapes, as detailed in Section 2.2. Equations (10)–(15) encloses the
force vector and the structural deformation of the system. The equation of motion for
a single mode (Equation (15)) is directly integrated in time within the fluid flow solver
using the CFPI method, resulting in the generalized displacement, denoted y(t). The same
process is repeated for all modes at each time step of the simulation. Then, the global
deformation of the structure is finally obtained using Equation (12), incorporating the
calculated generalized displacement. Thereby ensuring that updated structural shape
influences the flow calculations resulting in updated flow pressure and velocity fields [29].
Natural frequencies and corresponding modal vectors are determined externally before
commencing the CFD, either by analytical methods or by using external modal solvers.

The workflow of the fluid–structure solver is depicted in Figure 1. The below steps are
introduced to establish a two-way coupling of the fluid–structure interaction.

Figure 1. FSI with LDD workflow: This flowchart explains the process of integrating weak coupling
of the modal solver.
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1. Calculate the mass-normalized mode shapes and corresponding natural frequencies,
denoted as ω1, ω2, ..., ωn.

2. Define the initial and boundary conditions for the simulation, including the initial
displacement of the structural system if any.

3. Create Radial Basis Function (RBF) connections between fluid mesh and structural
mesh to transfer the mode shape information if the structural mesh is not the same as
the fluid mesh [40].

4. At every time step of the simulation ∆t:

(a) Compute the forces exerted on the structural mesh due to fluid force.
(b) Solve equation of motion (15) for each mode shapes and natural frequencies
(c) Determine the overall deformation vector using Equation (12) and apply the

resulting deformation to the mesh.
(d) Solve the fluid equations for time t + ∆t, taking into account of structural

deformation.

The coupling scheme based on the mode superposition method is formulated by
solving the equation of motion with imposed loads by using mode shapes and natural
frequencies which are determined from the modal analysis in the pre-calculation stage
(step 1). This modal coupling is integrated into the LDD method, which takes initial and
boundary conditions (step 2) from simulation input. This step is needed only in situations
where the fluid mesh vertices do not overlap with structural vertices. In such a case,
an interpolation is needed to compute the mode shape for the fluid mesh, based on the
structural mesh (step 3). The displacement resulting from fluid forces (step 4a) is calculated
within the modal coupling algorithm using CFPI method (step 4b). This deformation
is applied on the mesh to account for geometric changes for the fluid solver (step 4c),
consequently calculating the updated flow pressure and velocity fields using updated mesh
(step 4d).

4. Results and Discussion
4.1. Validation of the Flow and Structural Solvers
4.1.1. Sloshing in Cobiodal Tank

The LDD method is validated by comparing the numerically obtained results to the
experimental data from one of the Rhee test cases [41]. Rhee’s experimental setup uses a
simplified cuboidal tank geometry with dimensions of 1200 mm, 600 mm, and 300 mm
along the x, y, and z directions, respectively, and shown in Figure 2.

Figure 2. Tank considered for sloshing to validate the simulation pressure with Rhee [41] Experi-
ment pressure.
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In this scenario, 20% of the tank volume is filled with water. The tank is subjected
to a sinusoidal translation motion along the x-direction(swaying), characterized by an
amplitude of 0.06 m and an oscillation period of 1.94 s. This study is based on the ex-
perimental work of Rhee [41] and aims to assess and confirm the agreement between the
experimental and numerical outcomes for the specified tank geometry, flow properties
and motion conditions with the LDD solver. The average pressure signal from the Rhee
experiment at sensor location P1 (570 mm in the x-direction from the origin), is compared
to the simulation average pressure and comparison plot shown in Figure 3. Also, the
corresponding deviation is shown in Table 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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T/t vs. Pressure
P1_Rhee_Experimental
P1_LDD_Present_Study

Figure 3. Comparison of pressure from the simulation at P1 location (Refer to Figure 2) with Rhee
experiment pressure [41].

Table 1. Deviation of pressure from the simulation with respect to Rhee Experiment at peak location.

Region 1st Peak 2nd Peak

Deviation of pressure [kPa] 0.1 0.35

The numerical results demonstrate a close correspondence with the experimental
average impact pressure values at each sloshing peak obtained by the Rhee. This showcases
the accuracy and reliability of the flow solver in predicting pressure values. Validating
pressure loads is an important step in the modal superposition method. These loads serve
as input parameters for calculating the deformation of the structure. Accurate validation
ensures that the pressure loads used in the analysis are representative of the actual operating
conditions and can provide reliable results. Any errors or inaccuracies in the pressure loads
can lead to significant discrepancies in calculating the deformation of the structure. This, in
turn, can impact its safety and performance. Therefore, it is crucial to validate the pressure
loads through experimental or numerical methods to ensure the accuracy and reliability of
the analysis results.
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4.1.2. Cantilever Beam Vibration

To verify the implementation of a modal solver, a simple cantilever beam with a
constant tip load applied over a time case is considered. An investigation was conducted to
compute the dynamic behavior of a cantilever beam with specific geometric characteristics,
including a length of 0.079 m and width of 0.005 m, under a 1N tip load and shown in
Figure 4. This included the computation of the natural frequencies and their corresponding
mode shapes. The initial five modes shapes are used in the simulation and shown in Table 2
and Figure 5.

For theoretical calculation, the damped vibration response of a cantilever beam which
is subjected to a tip load (Figure 4) is calculated for various natural frequencies using
Equation (19).

y(t) =
n

∑
i=0

F
ω2

ni

(
1 − e−ζωni t cos(ωdi

t)
)

(19)

where, y(t) is total displacement of the system at time t, F is magnitude of the load and n
is number of natural frequencies. The term F

ω2
n

scales the magnitude of the load. The

exponential term e−ζωnt accounts for the damping effect, causing the vibration to decay
over time. The cosine term cos(ωdt) represents the oscillatory behavior of the system. ωn
is natural frequency and ζ is damping ratio. Higher damping ratios ζ result in a larger
reduction in vibration frequency. ωd is the damped angular frequency and it is calculated
as follows

ωd = ωn

√
1 − ζ2 (20)

Figure 4. Cantilever beam subjected to the tip load is considered for comparative analysis of Mode
Superposition: Theoretical vs. Numerical.
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Figure 5. Mode shape of the beam along the length, Left: X-Displacement and Right: Y-Displacement.

Table 2. Initial 5 Modes and natural frequencies of the cantilever beam.

Mode 1 2 3 4 5

Natural Frequency (Hz) 15.09 93.433 257.66 374.8 495.57



J. Mar. Sci. Eng. 2024, 12, 318 11 of 24

To understand the beam response more deeply, both theoretical and numerical meth-
ods were employed. The dynamic response of the system is mainly influenced by a few
initial mode shapes. So all simulations were conducted exclusively for the initial five-
mode shapes. The natural frequencies of a cantilever were used to calculate its theoretical
displacement using Equation (19).

To compare this theoretical value with numerical simulations, the CFPI method was
used to solve the dynamic equations of motion. The results were presented graphically in
Figure 6. This comparison helped to understand the cantilever beam’s dynamic response
better. The numerical simulation results closely match the theoretical predictions. The
displacement difference is of the order of 1 × 10−4, providing strong verification of the
accuracy and reliability of the implementation. However, this is a simple load case, and
more complex loading cases were validated in the upcoming section.
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Figure 6. Comparison between the numerical and theoretical dynamic response of beam.

4.2. Deformation of Cantilever Gate

This section describes the initial experiment to verify the coupling implementation,
which includes a slowly deforming cantilever beam. The deformation of the beam is
induced by the transition from the hydrostatic loads into hydrodynamic loads. The veri-
fication of the coupling between flow and modal solver implementations is achieved by
replicating an experiment originally conducted by Antoci et al. [42].

The experiment resembles the classic dam-breaking scenario, with gradual fluid load-
ing on a rubber gate that is fixed to a rigid wall along its upper edge, which deforms under
fluid forces. The experimental setup features a fluid column within a tank with dimensions:
length (A) = 100 mm and height (H) = 140 mm. The rubber gate, supported by a rigid
obstruction, extends downward to touch the floor. The height of the gate is L = 79 mm. For
modeling, an elastic isotropic material with a density of ρgate = 1100 kg/m3 and Young’s
modulus E = 12 MPa is employed. The simulation considers only the first mode shape
and its associated natural frequency. Validation is undertaken for the tank filled with
water, density ρ = 1000 kg/m3 and dynamic viscosity µ = 10−3 Pa.s. Due to the pressure
difference, the water flows through the rubber gate exerting the force to deflect it. The
elastic deformation of the cantilever due to fluid loading is illustrated in Figure 7.
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Figure 7. Comparison of cantilever beam deformation from the current study with Antoci et al. [42]
at different time steps such as t = 0.08 s, 0.16 s, 0.24 s, 0.32 s and 0.40 s.

An assessment is being conducted to confirm whether the calculated deflection
matches the expected magnitude, and to ensure the accuracy of the dynamic solver’s
equations. The order of magnitude of deformation is the same as that in Antoci et al. [42].
However, this is not ideal for the primary objective of mode superposition. In this particu-
lar case, a static solution has been utilized, making the first bending mode sufficient for
relevance and a small discrepancy in the predicted solution.

4.3. Elastic Baffle in Sloshing Tank

To investigate the impact of fluid–structure interaction with the complex cyclic load [43–45],
an elastic baffle is introduced at the bottom of the tank, it is as same as the tank in Section 4.1.1
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Figure 2. The tank is subjected to the same sinusoidal excitation with an amplitude of 0.06 m
and a period of 1.94 s. In this study, the walls of the tank are assumed to be rigid, making the
baffle the sole flexible component within the tank structure as shown in Figure 8.

The elastic baffle has dimensions of 5 mm, 150 mm, and 120 mm along the x, y,
and z directions, respectively. The material property of the baffle includes the density of
4096 kg/m3, Young’s modulus of 38.4 MPa, and Poisson’s ratio of 0.3. The first five mode
shapes were calculated from modal analysis and used for the simulation. Mode shapes
are shown in Figure 9 and corresponding natural frequencies are shown in Table 3. By
incorporating the elastic baffle model, the investigation aims to analyze and comprehend
the effects of fluid–structure interaction within the tank system. Dimensions, material
properties and displacement X at the location D1 (the top left corner of the baffle looking
forward as shown in Figure 8) of the baffle are considered from the investigation conducted
by Sampann [46]. The reference X-displacement is compared with the X-displacement
obtained from the simulation and the results are presented graphically in Figure 10. The
comparison shows that both results follow the same trend and also match closely at all
the points where the most significant deformation takes place, thus verifying the precision
of the modal coupling. At the peak, the deviation of deformation is minimal compared
to the transition region where change in deformation takes place, due to the linear effect
of mode superposition. The corresponding values are listed in Table 4. This provides an
understanding of the baffle dynamic response under the specified sinusoidal excitation,
which contributes added value to the present implementation of FSI.

Figure 8. Rhee sloshing tank is considered and an elastic baffle is introduced at the bottom of
the tank.

Table 3. Initial 5 Modes and natural frequencies of the elastic baffle.

Mode 1 2 3 4 5

Natural Frequency (Hz) 100.12 270.05 301.33 392.05 505.44

Table 4. Deviation of deformation from the simulation with respect to Sampann.

Region Peak Transition

Max Deviation of deformation [m] 0.005 0.01
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Figure 9. Modal results of an elastic baffle with reference to its undeformed wireframe, i.e., the first
five mode-shapes.
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Figure 10. Comparison of X-displacement from the simulation at D1 location (Refer to Figure 8) with
numerical results from Sampann [46].

4.4. Elastic Beam in Shallow Oil

The validity of the two-way coupling of fluid and structure has been substantiated
through a comparison of both numerical simulations and experimental data obtained from
benchmark studies conducted by Idelsohn et al. [47,48]. The experiments centered around
the flexible beam exposed to sloshing loads and it is similar to Section 4.3 with different
fluid properties and tank. Specifically, a cuboidal tank featuring a clamped elastic beam,
made using dielectric polyurethane and filled with sunflower oil was investigated.

For the validation study, a specific test case from Idelsohn et al.’s work was selected. In
this test case, the tank was filled with oil up to the height of the beam. The tank dimensions
were 609 mm, 344.5 mm, and 39 mm in the x, y, and z directions, respectively. The flexible
beam clamped to the tank’s bottom, exhibited dimensions of 4 mm, 57.4 mm, and 33.2 mm
in the x, y, and z directions as shown in Figure 11. The beam is characterized by a density
of 1100 kg/m3, a Young modulus of 60 MPa, and a Poisson ratio of 0.49. On the other hand,
the oil has a density of 917 kg/m3 and a kinematic viscosity of 5 × 10−5 m²/s. The first five
mode shapes obtained from modal analysis are used for the simulation. Mode shapes are
presented in Figure 12 and corresponding natural frequencies are shown in Table 5.

Table 5. Initial 5 Modes and natural frequencies of the elastic beam.

Mode 1 2 3 4 5

Natural Frequency (Hz) 186.4 560.61 673.29 856.07 939.09

The dynamic excitation imposed on the tank involved sinusoidal oscillatory motion
about the z-axis, characterized by an amplitude of 4 degrees and a frequency of 0.61 Hz.
Figure 13 shows X-displacement data at the tip of the beam, which has been compared
with both experimental and numerical data from Idelsohn et al. The comparison indicates
a favorable agreement between the results of the current study and the existing data [47].
Although a slight offset has been observed in certain locations, it matches closely with the
numerical results from Idelsohn at the maximum deformation locations with a deviation
order of 1 × 10−4. The validation results consistently demonstrate a robust agreement in
the accuracy of the implemented two-way coupling for fluid–structure interaction.
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Figure 11. Idelsohn sloshing tank is considered and an elastic beam is introduced at the bottom of
the tank.

Figure 12. Modal results of an elastic beam with reference to its undeformed wireframe, i.e., the first
five mode-shapes.
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Figure 13. Comparison of X-displacement from the simulation at the end of the beam (Refer to
Figure 11) with experimental and numerical results from [47].

4.5. Flow Impact on a Cantilever Beam

After successful verification and validation of the FSI through various benchmark cases
in the above Section 4.1, extending the exploration by conducting a study for a cantilever
beam is subjected to sudden impact and subsequently oscillatory fluid loads. The geometric
dimensions remain consistent with the static case, maintaining a thickness of 5 mm, while
the fluid properties remain unchanged. The simulation involves a domain measuring
0.5 × 0.2 m, where an initial fluid column of dimensions 0.1 × 0.14 m is positioned at the
left end of the domain. A beam is placed at the centerline of the tank, with its fixed end
touching the bottom of the tank. The simulation replicates a scenario of a dam-break study,
covering a total time of 10 s with intervals of 1 × 10−3 s.

In the simulation, the first five natural frequencies are utilized (as detailed in Table 2)
along with their corresponding mode shapes that are illustrated in Figure 5. The dynamic
behavior of the cantilever beam is presented in Figure 14.

The response of a beam to a load comes from any one individual mode shape or
combination of mode shapes. From Figure 14, the combination of mode shape is clearly
visible at 0.2 s and the dynamic response of the beam is dominated by the first mode after
5 s. The displacement of both the tip and mid-section of the beam is captured in the x and y
directions, as shown in Figure 15. Figure 16 also shows the same behavior of combination
mode shapes at 0.2 s and the dynamic response majorly from the first mode shape after
5 s. This observation highlights the effectiveness of the mode superposition technique in
accurately capturing the impact of various modes on the system’s response.
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Figure 14. Dynamic response of cantilever beam at different time step.
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Figure 15. Dynamic response over a time period at the mid and tip section, Left: X Displacement and
Right: Y Displacement.
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Figure 16. Displacement at the mid and tip section until 1 s, Left: X Displacement and Right:
Y Displacement.
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4.6. Water Entry of a Wedge

The investigation on free fall of a wedge in the water case was replicated from the
study carried out by Hosseinzadeh [49]. The wedge had a V-shaped variable dead-rise
angle at the bottom. The wedge had dimensions of 1500 × 940 × 450 mm in length,
breadth and depth. To reinforce the bottom of the wedge, 4 mm thick T−shaped stiffen-
ers (T54 × 3 + 35 × 4 mm) were placed in the middle of the longitudinal and transverse
direction on the starboard keel.

The material properties of the wedge were also taken into account, i.e., the wedge
was modeled by using a material with density of 2700 kg/m3, the modulus of elasticity
of 68 GPa, and the Poisson’s ratio of 0.33. The accuracy of the properties were important
to consider, as they can have a significant effect on the behavior of the wedge during the
free fall water entry [49]. The tank has dimensions of 5 × 5 × 1.75 m and is filled with
water up to a height of 1.5 m in the z direction, as shown in Figure 17. For both structural
modal analysis and fluid simulation, the surface mesh of the wedge was represented by
9200 triangles, which is shown in Figure 17. To conduct the numerical analysis of the
impact loads, the wedge was dropped vertically from a height of 0.25 m (measured from
the free surface up to the keel) into the water, with zero initial velocity. During the free
fall, the velocity increased to U = 2.2 m/s as the wedge made contact with the water. The
numerical time step was taken as constant, δt = 2.5 × 10−3. The modal analysis of the
structural model resulted in obtaining the first five significant modes, which are shown in
Figure 18 and corresponding natural frequencies are shown in Table 6. The same surface
mesh and the modes obtained were used as input for the LDD-modal coupling solver.

During the simulation of free fall water entry, the evolution of loads and deformation
of the wedge are observed and analyzed. The hydrodynamic pressure measured during
the simulation at points PS1 and PP1 was compared with the experimental data given
by Hosseinzadeh et al. [49] as shown in Figure 19. It shows that the maximum pressure
matches with the experimental data and the deviation between them is 4%. However, it
has been observed that the decrease in the pressure signal after the peaks happened faster
in the simulation than that reported by the experimental data.

When the wedge impacts the water at a velocity of 2.2 m/s, it deforms in the X, Y, and
Z directions. Figure 20 illustrates the deformation in the maximum impact load condition.
It has been noted that the maximum amount of deformation observed was 36 µm.

Table 6. Initial 5 Modes and natural frequencies of the wedge.

Mode 1 2 3 4 5

Natural Frequency (Hz) 213.8 376.6 440.95 529.12 535.23

Figure 17. Numerical setup to replicate the experiment of [49]. On the left, a tank filled with water up
to 1.5 m and a wedge placed at a distance of 0.25 m above the free surface. On the right, a wedge
with a surface mesh was used for the modal coupling solver.
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Figure 18. Modal results of a wedge with reference to its undeformed wireframe, i.e., the first
five mode shapes.
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Figure 19. Comparison of dynamic pressure from the simulation with experimental results from [49],
Left: PS1 point as per [49] and Right: PP1 point as per [49].
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Figure 20. Deformation of Wedge in X, Y, and Z directions and deformation magnitude at maximum
impact load condition, where wedge touches the water with 2.2 m/s velocity.

5. Conclusions

The modal-coupling solver has been seamlessly integrated into the Lagrangian Differ-
encing Dynamics (LDD) solver. The numerical experimentation has shown that it enables
effective two-way weak coupling of the fluid–structure interaction. The effectiveness of
the Modal Coupling approach is attributed to its utilization of the mode superposition
method. While the proposed bidirectional coupling is explicit in time, the insignificant cost
of computing the structural deformation by using the mode superposition method allows
the weak coupling to remain stable for time-steps that are required by the flow solver.

The verification and validation of the bidirectional fluid–structure interaction are
successfully demonstrated through seven numerical experiments. The benchmark cases
included both slowly and quickly deforming structures, and single or oscillatory fluid
loads. The benchmark cases resembled swaying and rotating sloshing experiments (with
and without flexible baffles), dam break experiments (with an elastic gate or obstacles) and
water-entry experiment (slamming loads applied to a stiffened structure). The comparison
between the numerically obtained results and the available experimental data demonstrated
the ability of the proposed coupling method to capture complex interactions between fluids
and structures.

The efficiency of the modal-coupling solver is accomplished by small computational
cost of deforming the structure, by its flexibility to accommodate to the flow solver time-
steps, and by using the Lagrangian LDD method to obtain accurate pressure loads. While
this allows straightforward and efficient Lagrangian–Lagrangian coupling during the
simulation, the engineering advantage is that there is no need for meshing or preparing the
coupling interface, since the flow solver operates directly on surface meshes shared by the
structural solver.

The above features of the proposed coupling method show practicality and applicabil-
ity in future ship and offshore hydrodynamic simulations. The implementation process of
the coupling scheme substantiates the tool’s capability to facilitate the effortless coupling
of diverse solvers, all without necessitating changes to solver algorithms or input files.
The incorporation of the energy equation into the framework is planned in future work.



J. Mar. Sci. Eng. 2024, 12, 318 22 of 24

This expansion aims to explore the influence of energy on the fluid–structure interaction,
thereby broadening the scope and insights of the analysis.
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37. Bašić, J.; Degiuli, N.; Malenica, Š.; Ban, D. Lagrangian finite-difference method for predicting green water loadings. Ocean Eng.
2020, 209, 107533. [CrossRef]

38. Basic, J.; Degiuli, N.; Ban, D. A class of renormalised meshless Laplacians for boundary value problems. J. Comput. Phys. 2018,
354, 269–287. [CrossRef]
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