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Abstract: In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm
based on the Laguerre function for dynamic positioning ships to solve the problems of input sat-
uration, unknown time-varying disturbances, and heavy computation. The nonlinear model of
a dynamic positioning ship is presented as a linear model, transformed from a standard affine
nonlinear state-space model by precise feedback linearization. The environmental disturbance is
overcome using an integrator. The time cost of the proposed nonlinear control algorithm is decreased
by inducing the Laguerre function to describe the feedback-linearization system input increments.
The Laguerre function reduces the matrix dimensions of the nonlinear optimization problem. The
simulation results for a DP supply vessel showed that the novel algorithm maintained the effective
control performance of the original nonlinear model predictive control algorithm and had a reduced
computation load to satisfy the requirements of real-time operation.

Keywords: dynamic positioning; input saturation; nonlinear model predictive control; Laguerre
function; low computation cost

1. Introduction

According to definitions provided by the International Maritime Organization (IMO)
and Det Norske Veritas (DNV), a dynamic positioning system (DPS) comprises all the
necessary equipment for a dynamic positioning ship, including the power, propulsion, and
dynamic positioning control systems [1,2]. Dynamic positioning systems have been widely
used in marine engineering fields such as offshore oil and gas resource development and
submarine pipeline laying. Shatto [3] created the first dynamic positioning system in 1961,
equipped with four steering propellers. The first DPS was employed by the ship “Cuss 1” in
the California Sea. In the same year, the drillship “Eureka” [3], belonging to the Royal Dutch
Shell company, was equipped with the first analog-signal DP system. The first digital-signal
DP ship, “Gloma Challenger” [3], was built in 1968 and traveled almost every ocean on
Earth, providing a wealth of favorable evidence for geological discoveries, especially for the
theory of plate and shell structures. Subsequently, the application of microwave position
reference, underwater acoustic position reference, satellite positioning, and other position
reference systems improved the accuracy of dynamic positioning systems.

The dynamic position control algorithm is the key component of a DPS. The first gener-
ation of dynamic positioning systems used conventional proportional–integral–derivative
(PID) control laws. To avoid responding to high-frequency movements, low-pass or notch
filters were employed to eliminate high-frequency components from the deviation sig-
nal [4].

In the mid-1970s, Balchen and others proposed the use of optimal control and Kalman
filtering theory combined with dynamic positioning control, giving rise to the second gener-
ation of dynamic positioning systems, which were also widely applied [5–7]. Currently, the
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third generation of dynamic positioning systems focuses on advanced control algorithms
such as nonlinear control algorithms and intelligent control theories [8–11]. Tannuri [12]
designed a control algorithm for dynamic positioning systems based on sliding mode con-
trol and employed nonlinear multi-variable mathematical models, providing robustness to
variations in displacement and environmental conditions. Do [13] developed a globally
robust and adaptive output feedback controller for the dynamic positioning of surface
ships under environmental disturbances based on Lyapunov’s direct method, forcing the
ship’s position and orientation to globally asymptotically converge to the desired values.
Hassani [14] proposed a new strategy for the design of robust DP controllers for marine
vessels under different sea conditions using mixed-µ synthesis. Yang [15] proposed a
robust adaptive NN-based output feedback control scheme for a dynamic positioning ship
with uncertainties and unknown external disturbances. Zhang [16] developed a dynamic
event-triggered mechanism for dynamic positioning vehicles with input saturation suited
to marine applications due to its concision and flexibility. Cho [17] presented a sliding
mode control algorithm as a robust dynamic positioning control technique applicable to
various tasks in the marine industry.

Due to the influence of the mechanical performance of the thrusters, the control force
and torque generated by a dynamic positioning system are subject to amplitude and in-
crement constraints, i.e., the system inputs and their rates of change present saturation
issues. The model predictive control (MPC) algorithm is the only advanced technology
that can handle the online optimization control of multi-variable constrained systems in
a systematic and intuitive manner [18], achieving favorable performance and robustness.
Wang Yuanhui et al. [19], drawing inspiration from GreenDP, designed a dynamic position-
ing controller combining the Kalman filter and model predictive control. Subsequently [20],
they used correlation-based non-switching analytical model predictive control theory to
design a nonlinear model predictive controller for dynamic positioning, addressing the
nonlinear control problem of dynamic positioning ship motion. Veksler [21] adopted the
MPC algorithm to combine positioning control and thrust allocation into a single algo-
rithm that could theoretically yield a near-optimal controller output. Miller [22] used the
MPC regulator to control the LNG carrier training service ship “Dorchester Lady” and
proved that a predictive controller could be built to steer an SS during an UNREP ma-
neuver. However, its application was difficult due to the requirement of a ship dynamics’
linear incremental model. Based on this, Miller [23] combined the MPC algorithm with
the line-of-sight (LOS) approach to control Maritime Autonomous Surface Ships (MASSs)
through the ship trajectory tracking system. This was combined with a variable maneuver
path advance, leading to effective trajectory tracking on turns and built-in integral action
reference correlation.However, the above methods only considered the thrust amplitude
constraints generated by the thrusters, ignoring the constraints on the thrust amplitude
increment within a certain time and non-zero-mean disturbance issues.

Model predictive control (MPC) systematically and intuitively determines the cur-
rent optimal control actions based on given constraints and performance requirements.
However, it faces the challenge of substantial online computations. Liuping Wang [24] pro-
posed a discrete model predictive control method using the Laguerre function to describe
the control increment signal, thereby reducing the computational load of the algorithm.
Kong Xiaobing et al. [25] introduced a nonlinear model predictive control algorithm based
on input–output feedback linearization, employing an approximate optimization method to
reduce the online computation load of solving nonlinear constrained problems in sequential
quadratic programming during the rolling optimization process.

To address the nonlinear nature of dynamic positioning ship motion, the saturation
of input amplitudes and their rates of change, and the susceptibility to disturbances from
the marine environment, a novel nonlinear model predictive control algorithm for the
dynamic positioning of ships is proposed based on the Laguerre function. Compared to the
original algorithm, this new approach effectively reduces the online computational load
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while retaining control performance. It allows a ship to rapidly reach and maintain the
desired position in real time.

This paper is organized as follows: Section 2 describes the problem and provides
background knowledge. Section 3 presents the design process of the dynamic positioning
controller and an analysis of the computation load. In Section 4, we provide simulation
results demonstrating the effective performance of the proposed DP controller. Section 5
concludes the paper.

2. Problem Description and Preliminaries

This section describes the nonlinear control problem of a DP ship and introduces
several key lemmas for developing the formation control strategy.

2.1. Problem Statement

A motion model of a dynamic positioning vessel at sea can be divided into low-
frequency and high-frequency motions. The former describes the low-frequency motion
generated by external environmental disturbances, such as low-frequency wind, second-
order wave forces, and ocean currents. The latter is associated with the high-frequency
motion of the vessel caused by high-frequency wind and first-order wave forces. To reduce
fuel consumption and propulsion equipment wear, typically only the low-frequency motion
of dynamic positioning vessels is considered, focusing on the control of horizontal motion
in three degrees of freedom: surge, sway, and yaw.

In Figure 1, vector η = [x, y, ψ]T represents the position and heading of the vessel in
the north–east coordinate system O0X0Y0, and vector ν = [u, v, r]T represents the horizon-
tal velocity and yaw angular velocity of the vessel in the body-fixed coordinate system.
Referring to Fossen, the mathematical model for the low-frequency motion of a dynamic
positioning vessel on the sea surface is expressed as [2]

{
η̇ = R(ψ)ν
Mν̇ + D(ν)ν = τ + τEnv

. (1)
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Figure 1. Horizontal coordinate frames of ship motion.

In this equation, M is the inertia matrix incorporating additional mass and is reversible
and positive definite. D is the linear damping matrix, also positive definite. τ represents
the actual thrust generated by the thrusters, and τEnv is an unknown time-varying low-
frequency disturbance term, representing the disturbing forces and moments from slowly
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varying environmental disturbances such as wind, waves, and currents. R is the rotation
matrix [2], expressed as

M =




m11 0 0
0 m22 m23
0 m32 m33


 (2)

R(ψ) =




cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


 (3)

D =




d11 0 0
0 d22 d23
0 d32 d33


. (4)

Suppose that x = [x, y, ψ, u, v, r]T , u = τ, d = τEnv, and





α11 = −d11/m11
α22 = −(d22m33 − d32m23)/(m22m33 −m23m32)
α23 = −(d23m33 − d33m23)/(m22m33 −m23m32)
α32 = (d22m32 − d32m22)/(m22m33 −m23m32)
α33 = (d23m32 − d33m22)/(m22m33 −m23m32)

(5)





β11 = 2/m11
β22 = m33/(m22m33 −m23m32)
β23 = −m23/(m22m33 −m23m32)
β32 = −m32/(m22m33 −m23m32)
β33 = m22/(m22m33 −m23m32)

. (6)

Thus, the standard nonlinear state-space model for dynamic positioning vessels is
obtained as follows:

{
ẋ = f (x) + g(x)(u + d)
y = h(x)

, (7)

where

f (x) =




x4cos(x3)− x5sin(x3)
x4sin(x3) + x5cos(x3)

x6
α11x4

α22x5 + alpha23x6
α32x5 + α33x6




(8)

g(x) =




0 0 0
0 0 0
0 0 0

β11 0 0
0 β22 β23
0 β32 β33




(9)

h(x) =




h1(x)
h2(x)
h3(x)


 =




x1
x2
x3


. (10)

To address the nonlinear dynamic positioning ship motion model described by
Equations (1) and (7), we designed a nonlinear model predictive controller (NMPC). The
goal was to enable the dynamic positioning ship to overcome environmental disturbances
and reach and maintain the desired position while satisfying the system constraints.
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2.2. Differential Geometry

For the control of nonlinear systems, researchers often neglect higher-order nonlinear
terms by expanding the system model to a first-order linear term through Taylor expansion.
However, precise feedback linearization technology uses differential geometry methods for
linearization without ignoring any nonlinear terms, and the linearization of this method is
accurate. To apply precise feedback linearization technology to nonlinear model predictive
control, the following definition needs to be introduced.

Definition 1. If f is a smooth vector field on U and h is a smooth scalar function on U, then f (h)
is a smooth function on U, defined as

L f h(x) =
n

∑
i=1

fi(x)(
∂h(x)

∂xi
) (11)

The function L f h is the Lie derivative of function h along the vector field f .

Definition 2. For a multiple input multiple output (MIMO) affine nonlinear system,
{

ẋ = f (x) + g(x)u
y = h(x)

, (12)

where x = Rn is the n order state variables of the system. f , g, and h are the vectors field that are
sufficiently smooth on the domain D ⊂ Rn. Mapping f : D → Rn and g: D → Rn are the vector
fields in D.

For the MIMO system, there exists the integers (r1, r2, · · · , rm) in the neighborhood of x0,
which satisfies that

Lgi L
k
f h(x) = 0





1 ≤ j ≤ m
1 ≤ i ≤ m
k ≤ ri − 1

, (13)

α(x) =




Lg1 Lr1−1
f h1(x) Lg2 Lr1−1

f h1(x) · · · Lgm Lr1−1
f h1(x)

Lg1 Lr2−1
f h2(x) Lg2 Lr2−1

f h2(x) · · · Lgm Lr2−1
f h2(x)

...
...

. . .
...

Lg1 Lrm−1
f hm(x) Lgm Lrm−1

f hm(x) · · · Lgm Lrm−1
f hm(x)




. (14)

If α(x) is the nonsingular matrix when x = x0, the integers(r1, r2, · · · , rm) are the relative
degree of the output variable yi. The total relative degree is the sum, r = r1 + r2 + · · ·+ rm. If the
total relative degree r = n, the system can achieve the precise feedback linearization.

2.3. Laguerre Function

The Laguerre functions are a class of orthogonal functions primarily used for system
identification. The discrete Laguerre network is shown in Figure 2 and expressed in
Equation (15) [24].

3.2 Laguerre Functions and DMPC 87

�
√

1−a2

1−az−1

1 � z−1−a
1−az−1 · · · � z−1−a

1−az−1
�ΓN (z)Γ2(z)Γ1(z)

Fig. 3.1. Discrete Laguerre network

Laguerre networks. However, taking the inverse z-transform of the Laguerre
networks does not lead to a compact expression of the Laguerre functions
in the time-domain. A more straightforward way to find these discrete-time
functions is based on a state-space realization of the networks.

Note that

Γk(z) = Γk−1(z)
z−1 − a

1 − az−1
, (3.4)

with Γ1 =
√

1−a2

1−az−1 . With this relation, the Laguerre network is illustrated in
Figure 3.1.

Letting l1(k) denote the inverse z-transform of Γ1(z, a), l2(k) the inverse
z-transform of Γ2(z, a) and so on to lN(k) the inverse z-transform of ΓN (z, a).
This set of discrete-time Laguerre functions are expressed in a vector form as

L(k) =
[
l1(k) l2(k) . . . lN(k)

]T
.

Taking advantage of the network realization (3.4), the set of discrete-time
Laguerre functions satisfies the following difference equation,

L(k + 1) = AlL(k), (3.5)

where matrix Al is (N×N) and is a function of parameters a and β = (1−a2),
and the initial condition is given by

L(0)T =
√
β
[
1 −a a2 −a3 . . . (−1)N−1aN−1

]
.

For example, in the case where N = 5,

Al =

⎡
⎢⎢⎢⎢⎣

a 0 0 0 0
β a 0 0 0

−aβ β a 0 0
a2β −aβ β a 0

−a3β a2β −aβ β a

⎤
⎥⎥⎥⎥⎦

; L(0) =
√
β

⎡
⎢⎢⎢⎢⎣

1
−a
a2

−a3

a4

⎤
⎥⎥⎥⎥⎦
.

Figure 2. Discrete-time Laguerre network.

Γk(z) = Γk−1(z)
z−1 − a

1− az−1 , Γ1(z) =

√
1− a2

1− az−1 , (15)

where a represents the poles of the discrete-time Laguerre network; the stability region is
0 6 a 6 1; and N is the order of the Laguerre network. By inverse-z-transforming each
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term in Equation (15), we obtain the discrete-time Laguerre functions, represented in vector
form as

L(k) =
[

l1(k) l2(k) l3(k) ... lN(k)
]
. (16)

The relationship between adjacent discrete-time Laguerre functions at consecutive
instants can be derived from Equations (15) and (16):

L(k + 1) = Al L(k), (17)

where the matrix Al is a function of parameters a and β, with initial conditions

L(0) =
√

β
[

1 −a ...(−a)N−1 ]T (18)

Al =




a 0 0 · · · 0
β a 0 · · · 0
−aβ β a · · · 0

...
...

...
. . .

...
(−a)N−2β (−a)N−3β (−a)N−4β · · · a




. (19)

Additionally, an important property of discrete-time Laguerre functions is orthogonal-
ity [24]: {

∑∞
k=0 li(k)lj(k) = 0, i 6= j

∑∞
k=0 li(k)lj(k) = 1, i = j

. (20)

Based on the above properties, the impulse response of a stable system can be repre-
sented by the following discrete-time Laguerre functions:

H(k) = L(k)Tη = L(k)T[ c1 c2 c3 · · · cN
]T , (21)

where η = L(k)T [c1, c2, c3, · · · , cN ] are coefficients determined by the system data, and
leveraging the orthogonality of the Laguerre functions allows one to obtain the values of
each coefficient.

ci =
∞

∑
k=0

H(k)li(k) (22)

3. Steps for Dynamic Positioning Controller Design
3.1. Precise Feedback Linearization

The mathematical model of dynamic positioning vessel motion in Equation (7) is a
standard affine nonlinear expression. Feedback linearization is required before applying
the model predictive control algorithm. First, the Lie derivatives of the system output
variables in Equation (7) are calculated:




Lg1 L0
f h1 Lg2 L0

f h1 Lg3 L0
f h1

Lg1 L0
f h2 Lg2 L0

f h2 Lg3 L0
f h2

Lg1 L0
f h3 Lg2 L0

f h3 Lg3 L0
f h3


 =




0 0 0
0 0 0
0 0 0


 (23)

a(x) =




Lg1 L0
f h1 Lg2 L0

f h1 Lg3 L0
f h1

Lg1 L0
f h2 Lg2 L0

f h2 Lg3 L0
f h2

Lg1 L0
f h3 Lg2 L0

f h3 Lg3 L0
f h3


 =




β11 cos x3 −β22 sin x3 −β23 sin x3
β11 sin x3 β22 cos x3 β23 cos x3

0 β32 β33


. (24)

According to Equations (23) and (24), the relative orders of the system are r1 = 2,
r2 = 2, and r3 = 2, and the total relative order r = r1 + r2 + r3 is equal to the number
of system state variables. Therefore, the nonlinear model of dynamic positioning vessel
motion can undergo exact state feedback linearization, resulting in new state variables:
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



xm1 = L0
f hx

1 = x1

xm2 = L0
f hx

2 = x2

xm3 = L0
f hx

3 = x3

xm4 = L1
f hx

1 = x4 cos (x3)− x5 sin (x3)

xm5 = L1
f hx

2 = x4 sin (x3) + x5 cos (x3)

xm6 = L1
f hx

3 = x6

. (25)

The nonlinear feedback control rate is given by

u = a(x)−1(−b(x) + v)− d, (26)

in which

b(x) =




L2
f h1

L2
f h2

L2
f h3


 =




cos x3(α11x4 − x5x6)− sin x3(α22x5 + α23x6 + x4x6)
sin x3(α11x4 − x5x6) + cos x3(α22x5 + α23x6 + x4x6)
α32x5 + α33x6


. (27)

The linear model obtained through feedback linearization is
{

ẋm = Acxm + Bcv + Ecd
y = Ccxm

. (28)

The coefficients of each matrix in this equation are Ac =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Bc =




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




Cc =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


, Ec = Bca(x).

3.2. Linear Control Structure

Discretizing the state-space model (28) with a step size of h yields the discretized
linear model: {

xm(k + 1) = Adxm(k) + Bdv(k) + Edd(k)
y(k) = Cdxk

. (29)

Here, xm(k) represents the state of the linear system at time k; v(k) is the input to the
linear system; y(k) is the output of the linear system at time k; and Ad, Bd, Cd, and Ed are
the constant matrices after discretization.

Suppose that xm(k + 1) = xm(k) + ∆xm(k + 1) and vm(k + 1) = vm(k) + ∆vm(k + 1);
then, based on Equation (29), we obtain

{
∆xm(k + 1) = Ad∆xm(k) + Bd∆v(k)
y(k + 1) = y(k) + Cd(Ad∆xm(k) + Bd∆v(k))

. (30)

Suppose that xu(k) = [∆xm(k)T , y(k)T ]T ; introducing an integral component, we
obtain an augmented state-space model that eliminates the slowly varying disturbance
term d, expressed as follows:
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{
xu(k + 1) = Au(k) + B∆v(k)
y(k) = Cdxu(k)

. (31)

Here, A, B, and C represent the constant augmented matrix coefficients, which are as

follows: A =

[
Ad 06×3
Cd Ad I6×3

]
, B =

[
Bd
CdBd

]
, C =

[
03×6 I3×3

]
.

According to Equations (29) and (30), the future Nc system outputs Np in the control
time domain can be predicted as follows (Nc 6 Np):

Y = Fxu(k) + Φ∆V . (32)

In the equation above, Y =




y(k + 1|k)
y(k + 1|k)

...
y(k + 1|k)


, ∆V =




∆v(k)
∆v(k + 1)

...
∆v(k + Nc − 1)




F =




CA
CA2

...
CANp


, Φ =




CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CANp−1B CANp−2B · · · CANp−Nc B


.

Additionally, based on Equations (26), (29), and (30), the relationship between the
entire predicted time domain’s linear system state variables and the input v can be obtained:

Xmk = Γ + Π∆V , (33)

where Xm(k) =




xm(k)
xm(k + 1)

...
xm(k + Nc − 1)


, Γ =




xm(k)
xm(k) + ∑1

i=1 Ai
d∆xm(k)

...
xm(k) + ∑Nc−1

i=1 Ai
d∆xm(k)




Π =




0 0 · · · 0
∑1

i=1(Ai−1
m )Bm 0 · · · 0

...
...

. . .
...

∑
Np−1
i=1 (Ai−1

m )Bm ∑
Np−1
i=1 (Ai−1

m )Bm · · · 0




.

The optimization objective function is formulated as a quadratic function of ∆V :

J = (Nd − Y)T(Nd − Y) + ∆V T Rw∆V , (34)

where Rw represents the input weight. Substituting Equation (32) into the previous expres-
sion yields the performance index Jmin with respect to ∆V :

Jmin =
1
2

∆V T H∆V + f T∆V , (35)

where the Hessian matrix H and the vector f are defined as follows:

H = 2(ΦTΦ + Rw) (36)

f = −2Φ(Nd − Fx(k)). (37)

Under unconstrained conditions, the optimal solution for ∆V is given by

∆V = (ΦTΦ + Rw)
−1ΦT(Nd − Fxu(k)). (38)

Due to the physical limitations of the propulsion system on a dynamic positioning
vessel, the total control force and moment generated by the thrusters are constrained.
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Additionally, the amplitude of the total control force and moment changes within a certain
time is also constrained, indicating the presence of input and input rate saturation in
the system:

umin(k) 6 u(k) 6 umax(k) (39)

∆umin(k) 6 ∆u(k) 6 ∆umax(k). (40)

The input u of the nonlinear dynamic positioning vessel motion model under the
mapping of the nonlinear feedback control rate (26) results in the input v for the new linear
system. The linear inequality constraints (39) and (40) with respect to u are transformed
into nonlinear inequality constraints for v. However, the upper and lower bounds of V
throughout the control time domain, Vmin and Vmax, cannot be directly determined. Their
values are dependent on the system’s state at each sampling moment and need to be
determined. According to Equation (26), the relationship between U and V throughout the
entire control time domain can be obtained:





u(k) = a(x(k))−1(−b(x(k)) + v(k))
u(k + 1) = a(x(k + 1))−1(−b(x(k + 1)) + v(k + 1))
...
u(k + Nc − 1) = a(x(k + Nc − 1))−1(−b(x(k + Nc − 1)) + v(k + Nc − 1))

. (41)

That is,
U(k) = fxv(X(k), V(k)). (42)

The original nonlinear system input u and the linear system input v can both be
obtained by summing their control increments u and v; that is,

u(k + m) = u(k− 1) + ∆u(k) + · · ·+ ∆u(k + m) (43)

v(k + m) = v(k− 1) + ∆v(k) + · · ·+ ∆v(k + m). (44)

Therefore, U and V over the entire control time domain are given by

U(k) = C1u(k− 1) + C2∆U(k) (45)

V(k) = C1v(k− 1) + C2∆V(k), (46)

where C1 =




I
I
...
I


, C2 =




I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I


.

Substituting the combined expressions (33) and (46) into (42) yields a nonlinear ex-
pression for U in terms of ∆V :

U = f∆v(∆V). (47)

The constraint conditions, transformed from the linear constraints on U in (39) and (40),
are combined with (36) and (47) to form the following nonlinear programming problem:

{
min J = 1

2 ∆V T H∆V + f T∆V
suchthat c(∆V) ≥ 0

. (48)

The left-hand side of the nonlinear constraint inequality in this equation is
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c(∆V) =




f∆v(∆V)−Umax
Umin − f∆v(∆V)

C−1
2 ( f∆v(∆V)− C1u(k− 1))− ∆Umax

∆Umin − C−1
2 ( f∆v(∆V)− C1u(k− 1))


. (49)

The current optimal solution for the feedback-linearized system input at time k, de-
noted as ∆V opt, is obtained by solving the nonlinear programming problem in Equation
(48) using the sequential quadratic programming method. In this process, the initial point
for iteration is set according to Equation (38), and the transformed values are derived to
obtain the inputs for the original nonlinear system, representing the required thrust and
moments for the dynamic positioning of the ship.

u(k) = a(x(k))−1[a(x(k− 1))u(k− 1) + b(x(k− 1))− b(x(k)) + ∆v(k)] (50)

3.3. Introduction to Laguerre Functions

A nonlinear model predictive control algorithm typically selects a relatively large
and appropriate control horizon (Nc) to ensure a more favorable dynamic response and
stability. However, increasing the control horizon also increases the solution time for the
nonlinear programming problem, preventing the computer from issuing control commands
in real time and affecting the positioning of the ship. Therefore, we introduce Laguerre
functions to describe the control increments of the linearized system after feedback, propos-
ing a new low-computational-cost nonlinear model predictive control algorithm for ship
dynamic positioning.

We assume that the future m time steps of the linear system control input increments
at the current time step k are represented by the following Laguerre function:

∆v(k + m) = L(m)Tηk, (51)

where L(m)T =




L1(m)T 01×N 01×N
01×N L2(m)T 01×N
01×N 01×N L3(m)T


, ηk =




ηk1
ηk2
ηk3


.

Substituting Equation (51) into the augmented state-space model (31), we obtain a
state-space model incorporating the Lagrange function:

{
xu(k + 1) = Axu(k) + BL(0)Tηk
y(k) = Cx(k)

. (52)

Thus, based on the current state and output sampled at time k, we can predict the
system’s state and output at future time k + m:

xu(k + m|k) = Amxu(k) + φ(m)Tηk (53)

y(k + m|k) = CAmxu(k) + φ(m)6Tηk, (54)

where φ(m)T = ∑m−1
i=0 Am−i−1BL(i)T . Then, we substitute the Laguerre function into the

optimization objective function (Equation (34)) to obtain

J =
Np

∑
m=1

[ηd + y(k + m)]T [ηd + y(k + m)] +
Np−1

∑
n=0

[L(n)Tηk]
T [L(n)Tηk]. (55)

Due to the sufficiently large prediction horizon Np, the orthogonality of the Lagrange
functions can be exploited to simplify the second term of Equation (55), resulting in

J =
Np

∑
m=1

[ηd + y(k + m)]T [ηd + y(k + m)] + ηT
k RLηk. (56)
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Introducing the variable x f (k) = [∆m(k)T , e(k)T ]T and substituting Equations (53) and
(54) into Equation (56) yields the new performance index function:

J =
1
2

ηT Hη+ f
T

η, (57)

where the Hessian matrix H and the vector f are represented as

H = 2(
Np

∑
m=1

φ(m)CTCφ(m)T + RL) (58)

f = 2
Np

∑
m=1

(φ(m)CTCAm)x f (k). (59)

Under unconstrained conditions, the optimal solution for η is

ηopt = −H f . (60)

To handle the nonlinear constraint conditions in the original nonlinear programming
problem (48), the Laguerre function must be sequentially substituted into (33), (42) and (46)
to obtain the expression of U in terms of η:

U = fη(η). (61)

By combining Equation (57) and Equation (61), we rewrite the original nonlinear
programming problem (48) in terms of ∆V , forming a new nonlinear programming problem
with respect to η: {

min J = 1
2 ηT Hη+ f η

suchthat c(η) ≥ 0
, (62)

where

c(η) =




fη(η)−Umax
Umin − fη(η)

C−1
2 ( fη(η)− C1u(k− 1))− ∆Umax

∆Umin − C−1
2 ( fη(∆V)− C1u(k− 1))


. (63)

Finally, employing the sequential quadratic programming method, the optimal so-
lution to Equation (62) is determined, with Equation (60) used as the initial point. This
provides the required thrust and torque for the current time step k in the dynamic position-
ing of the vessel.

u(k) = a(x(k))−1[a(x(k− 1))u(k− 1) + b(x(k− 1))− b(x(k)) + L(0)Tη
opt
k ] (64)

3.4. Computational Analysis

The sequential quadratic programming algorithm involves approximating the non-
linear programming function at a certain point through a Taylor expansion into multiple
quadratic programming problems and iteratively obtaining the optimal solution. Its com-
putational complexity increases exponentially with the dimensionality of the variables.

The original nonlinear model predictive control method’s nonlinear optimization
problem, expressed in Equation (48), and the new nonlinear optimization problem of
the model predictive control algorithm based on the Laguerre function, expressed in
Equation (62), have a similar form. However, the dimensions of their internal variables
differ. In Equation (48), the variable ∆V has dimensions of 3NC × 1, the Hessian matrix H
has dimensions of 3Nc× 3Nc, and the coefficient vector f has dimensions of 3Nc × 1. Mean-
while, for the new algorithm’s optimization problem (62), the variable η has dimensions
of 3N × 1, the Hessian matrix H has dimensions of 3N × 3N, and the coefficient vector
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F has dimensions of 3N × 1. In practical applications, the Laguerre function series N is
much smaller than the control time domain Nc. Therefore, in the process of sequential
quadratic programming, with the same number of iterations, the computational load of the
proposed ship dynamic positioning nonlinear model predictive control algorithm based on
the Laguerre function is reduced compared to the original algorithm.

4. Simulation Verification and Data Analysis

To validate the effectiveness of the proposed ship dynamic positioning nonlinear
model predictive control algorithm based on the Laguerre function, simulation verification
was conducted using a dynamic positioning supply ship as the research object. The supply
ship had a length of 76.1 m, a width of 18.8 m, a draft of 6.25 m, and a displacement of
4200 t. The main parameters are detailed in Table 1, and the non-dimensional inertia matrix
and damping matrix were as follows [26]:

M ′′ =




1.1274 0.0000 0.0000
0.0000 1.8902 −0.0744
0.0000 −0.0744 0.1278


 (65)

D′′ =




0.0358 0.0000 0.0000
0.0000 0.1183 −0.0124
0.0000 −0.0041 0.0308


. (66)

The simulation experiment was configured using a nonlinear model predictive con-
troller with a prediction horizon (Np) of 10, a control horizon (Nc) of 150, Laguerre function
poles a = [0.46, 0.46, 0.46]T , and a series order of N = [4, 4, 4]T . The initial position of the
ship was set to η0 = [0 m, 0 m, 30◦], and the desired position was η0 = [20 m, 20 m, 40◦].
The low-frequency environmental disturbance was set to a certain value.

τEnv = RT(ψ) ·



3(1.2 + 1.5 sin (0.02t) + 1.4 sin (0.1t))kN
14(−0.9 + 2.0 sin (0.02t) + 1.3 sin (0.2t))kN
250(sin (0.09t) + 4 sin (0.01t))kN ·m


 (67)

Under simulated conditions equivalent to sea state four operations, the simulation
time was set to 500 s with a time step of 0.5 s. The experiment was conducted on a Lenovo
desktop computer equipped with an Intel Core(TM) i7-6700 CPU running at 3.4 GHz and
with 8 GB of RAM. The results of the experiment are depicted in Figures 3–8, where the
blue dashed line represents the original algorithm, and the red solid line represents the new
NMPC algorithm based on the Laguerre function. Additionally, the results are summarized
in Table 2.

Table 1. The main parameters of the DP supply vessel.

Parameter Value Parameter Value

Loa 76.1 m Bm 18.8 m
dm 6.25 m DWT 4200 t
X −1000∼1000 kN Y −300∼300 kN
N −7620∼7620 kN·m ∆X −200∼200 kN/s
∆Y −60∼60 kN/s ∆N −1524∼1524 kN·m/s

Simulation experiment results analysis: Overall, the response curves of the proposed
nonlinear model predictive control (NMPC) algorithm for ship dynamic positioning were
almost identical to those of the original algorithm. Figures 3 and 4 show the ship’s trajectory
and time response under low-frequency environmental disturbance, indicating that the
designed controller overcame ocean environmental disturbances to bring the ship to and
maintain it at the desired position. Figure 5 represents the ship’s speed response curve; the
speed components had relatively small values, and, under the influence of environmental
disturbances, they oscillated near the zero point. Figure 6 illustrates the response curves of
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ship control forces and torques and their rate of change, showing that the control forces and
torques were within the constraint range. Ultimately, they oscillated around a fixed value to
counteract the impact of ocean environmental disturbances on the ship. Figure 7 represents
the response curves for the rate of change in the control forces and torques, all within their
constraint range, which oscillated around a zero mean. Figure 8 and Table 2 compare the
computational load of the newly designed ship dynamic positioning NMPC algorithm
based on the Laguerre function with that of the original algorithm. The graph indicates
that the new algorithm’s single-computation time was significantly lower than that of the
original algorithm. During the 1 s–17 s simulation period, the original algorithm’s single
minimum computation time was 227.9 ms, with a maximum of 1847.0 ms and an average
of 684.2 ms, preventing the real-time calculation of the control algorithm. During this
period, the new algorithm’s single minimum computation time was 10.9 ms, the maximum
was 227.9 ms, and the average was 134.6 ms, marking a decrease of 80.3% compared to
the original algorithm. In the subsequent simulation period from 17 s to 500 s, as the
sequential quadratic programming (SQP) iteration’s starting point was already the optimal
point, the computational load was the same as when unconstrained. The new algorithm’s
average computation time during this period was 13.6 ms, a 22.8% decrease compared to
the original algorithm’s time of 10.5 ms. Overall, the average computation time of the new
algorithm was 14.6 ms, representing a 59.1% decrease compared to the original algorithm’s
time of 35.7 ms, ensuring the real-time performance of the algorithm solution.

Figure 3. Response trajectory curves of the DP vessel.

Figure 4. Response curves of positions and headings.
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Figure 5. Response curves of ship velocity and yaw rate.

Figure 6. Response curves of control forces and moments.

Figure 7. Response curves of control forces and moment rates.
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Figure 8. Comparison of computation load.

Table 2. Comparison of mean computation time.

Time Range Mark New Algorithm (ms) Origin
Algorithm (ms) Difference

1 s∼17 s Min 10.9 227.9
1 s∼17 s Max 304.4 1847.0
1 s∼17 s Mean 134.6 684.2 80.3%
17 s∼500 s Min 10.1 13.1
17 s∼500 s Max 12.3 15.9
17 s∼500 s Mean 10.5 13.6 22.8%
Total Mean 14.6 35.7 59.1%

The experimental results indicated that the ship dynamic positioning nonlinear model
predictive control (NMPC) algorithm based on the Laguerre function designed in this work
could overcome the impact of unknown time-varying ocean environmental disturbances
under the conditions of input and input rate saturation. It enabled the ship to reach and
maintain the desired position while retaining the control performance of the original nonlin-
ear model predictive control algorithm. Additionally, the computational load significantly
decreased, ensuring the real-time solution of the algorithm.

5. Conclusions

This paper proposes a novel nonlinear model predictive control (NMPC) algorithm
for ship dynamic positioning based on the Laguerre function. The algorithm uses the
Laguerre function to describe the control increment signal of the linear system after feed-
back linearization, reducing the dimensions of the coefficient matrices in the nonlinear
constraint problems. This addresses the issue of the high computational load in the original
nonlinear model predictive control algorithm. Finally, the algorithm was validated through
simulation experiments on a supply ship. The results demonstrated that the improved
ship dynamic positioning NMPC algorithm, under input and input rate saturation condi-
tions, overcame the impact of unknown time-varying disturbances, such as wind, waves,
and currents. It ensured that the ship reached and maintained the desired position and
heading angle. The new algorithm retains the favorable control performance of the origi-
nal NMPC algorithm while addressing the computational load issue, satisfying real-time
computational requirements.

In future work, we will study the stability and reliability of the NMPC algorithm based
on the Laguerre function and consider thrust allocation to solve the overdriving problem
for dynamic positioning ships.
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